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Abstract— Rotary Left Ventricular Assist Devices (LVAD) are 
mechanical pumps implanted in patients with congestive heart 
failure to assist their heart in pumping the required amount of 
blood in the circulatory system. Until recently, the combined 
mathematical model of the LVAD coupled with the left ventricle 
has assumed the availability of the rotational speed of the pump 
as the independent control variable.  In reality, however, the 
device is controlled by the pump motor current which, in turn, 
produces the desired rotational speed of the pump motor.  
Therefore, the actual implementation of any desired speed 
controller for the device requires the solution of an inverse 
problem in order to determine the corresponding motor current 
that yields the desired pump speed.  Recently, it has been 
observed from in-vivo experiments that an LVAD that is 
controlled by a motor current with a given profile (constant or 
ramp-like) has yielded a corresponding pump speed that 
exhibits a superposition of an oscillatory component which is 
synchronized with the pulsatility of the heart hemodynamic 
variables.   Because of this, it has become evident that the 
solution of this inverse problem is extremely difficulty to 
accomplish.  In this paper, we reformulate the existing 
combined LVAD and left ventricle model in such a way so as to 
introduce the pump motor current instead of the pump speed as 
the control variable, hence avoiding the inverse problem 
altogether.  This new model is not only a more realistic 
representation of the LVAD control variable but also is much 
more practical in that it allows for the derivation of a controller 
directly in terms of the pump motor current rather than 
indirectly in terms of its rotational speed.  Validation of this 
model and the challenges involved in using it when designing a 
feedback controller for the LVAD are also discussed. 

 

I. INTRODUCTION 

 HE Rotary Left Ventricular Assist Device (LVAD) is a 
continuous flow mechanical pump implanted as a bridge 

between the left ventricle of the heart and the aorta in patients 
with congestive heart failure who are awaiting heart 
transplantation. The purpose of the pump is to assist the 
native heart in providing the needed cardiac output (CO) and 
mean arterial pressure (MAP) [1][2] to sustain the life of the 
patient until a donor heart becomes available [3]. In recent 
years, it has been observed that the LVAD can also be used to 
help the sick heart recover and as a result avoid the transplant 
option. This rotary type of ventricular assist devices is much 
smaller, more efficient, quieter and more reliable than its 
predecessor the pulsatile type.    But unlike the pulsatile type,  
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the rotary LVAD continuously pumps blood in the circulatory 
system and hence suffers from two problems.   If the pump is 
rotated at a speed too  low to maintain the needed blood 
perfusion, regurgitation (backflow) might occur.  If the pump 
is rotated at a high speed attempting to draw more blood than 
available in the ventricle, ventricular suction might occur. 
Both of these extreme conditions are undesirable and need to 
be avoided by insuring that the pump is always rotated at 
speeds that remain between these two extremes.   

In order for the LVAD to operate properly, a feedback 
controller is needed to automatically adjust the pump speed so 
as to meet the body’s needs for perfusion for different levels 
of patient activity. Since implanting sensors in the human 
heart comes with its own set of problems from being a 
liability on the battery energy to its vulnerability to thrombus 
formation over the sensing diaphragm [4], it is imperative that 
a design of a controller for the pump speed be accomplished 
while avoiding the use of feedback from the patient’s 
hemodynamic variables. Several successful attempts have 
recently been made to design feedback controllers for the 
device using the pump flow signal as the feedback variable 
[5-7].    

One of the main difficulties encountered with these 
approaches is that the pump speed is not directly accessible as 
a control variable.  In reality, the device is controlled by the 
pump motor current and hence an inverse problem needs to be 
solved to determine the motor current that corresponds to a 
desired feedback pump speed. This inverse problem is 
extremely difficult to solve because of the highly nonlinear 
relationship that exists between the pump speed and the pump 
motor current and because of the systemic coupling that exists 
between the left ventricle and the LVAD.  Most notably, it has 
been recently observed from in-vivo experiments that a 
constant pump motor current always yields a pump speed that 
exhibits a superposition of an oscillating component 
synchronized with the heart pulsatlity [8]. This coupling 
effect basically means that a constant pump speed cannot be 
simply produced from a constant pump motor current.  

In this paper we report on a new model for the LVAD that 
uses the pump motor current instead of the pump speed as the 
control variable. The proposed model consists of the standard 
5th order model of the cardiovascular system coupled with a 
first order model of the LVAD.  The LVAD, however, is 
modeled by establishing a relationship between the pressure 
difference across the pump and the pump motor current. The 
combined 6th order model is now controlled by the LVAD 
motor current. Simulation results presented in this paper show 
that this model is a more accurate representation of the real 
system and is much more useful for exploring the 
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application of modern control methods for optimally 
controlling the LVAD. 

II. CARDIOVASCULAR MODEL 

The heart is a very complex dynamic system that is very 
difficult to model mathematically. Although various 
complete heart models including both left and right ventricles 
and pulmonary circulation already exist, in this paper we are 
interested in a much simpler approach that involves only the 
left ventricle.  We assume that the right ventricle and 
pulmonary circulation are healthy and normal and as a result 
their effect on the LVAD, which is connected from the left 
ventricle to the ascending aorta, can be neglected.  

 
Figure 1: Cardiovascular circuit model 

 

A 5th order lumped parameter circuit model of the left 
ventricle is shown in Figure 1. This model reproduces the left 
ventricle hemodynamics of the heart and can be described by 
the differential equations [5-7]: 
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where 1( )x t  is the Left Ventricular Pressure ( )LVP t , 2 ( )x t is 

the Left Atrial Pressure ( )LAP t , 3 ( )x t  is the Arterial 

Pressure ( )AP t , 4 ( )x t  is the Aortic Pressure ( )AoP t , all in 

mmHg , and 5 ( )x t  is the blood flow in the aorta in /ml s .

 In this model, the behavior of the left ventricle is modeled 
by means of a time varying capacitance (or compliance) 

( ) 1 ( )C t E t  where ( )E t  is the elastance of the left 

ventricle. The elastance ( )E t  describes the relationship 

between the ventricle's pressure and volume [9] according to 
an expression of the form: 

  
0

( ) ( ) ( )E t LVP t LVV t V   (2) 

where ( )LVV t  is the left ventricular volume and 
0

V  is a 

reference volume, which corresponds to the theoretical 
volume in the ventricle at zero pressure. Several 
mathematical expressions have been derived to approximate 
the elastance function ( )E t . In our work, we use the 

expression [10]: 

 max min min
( ) ( ) ( )  

n n
E t E E E t E    (3) 
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and where 
max

/
n

t t T , 
max

0.2 0.15
c

T t   and ct  is the 

cardiac cycle, i.e., 60 /
c

t HR , where HR is the heart-rate. 

The constants maxE  and minE  are related to the end-systolic 

pressure volume relationship (ESPVR) and the end-diastolic 
pressure volume relationship (EDPVR) respectively. 

Typical values in (3) for a normal healthy heart with a heart 
rate of 60 beats per minute ( bpm ) are max 2.0E   and 

min 0.06E   ( /mmHg ml ).  In the model from which (1) was 

derived, preload and pulmonary circulations are represented 
by the capacitance RC ; the aortic compliance is represented 

by the capacitance AC , and afterload is represented by the 

four-element Windkessel circuit model [11] comprising  

,  ,  ,  and 
C S S S

R L C R . The left ventricle’s mitral and aortic 

valves are represented by two non-ideal switches (or diodes) 
consisting of a resistance MR  and ideal diode MD  for the 

mitral valve, and resistance AR and ideal diode AD  for the 

aortic valve. The expression ( )r   in (1) is defined by: 
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In the representation given in (1), we have kept the number of 
model parameters at a minimum while maintaining enough 
complexity in the model so that it can reproduce the 
hemodynamics of the left ventricle.  The various model 
parameters appearing in (1) and their typical associated 
values can be found in [6] and [12]. 
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We note that the model in expression (1) is autonomous.  
Its solution is oscillatory due to the cyclic nature of the terms 

( )C t  and 1 ( )C t  in the matrices in (1).  Within each cycle 

(called the cardiac cycle) there are three different phases of 
operation which occur over four different time intervals. The 
three phases are summarized in Table I. Clearly, every phase 
within the cardiac cycle is modeled by a different set of linear 
time-varying differential equations resulting from (1). 

Table I:  Phases within each cardiac cycle 

Valves Phases 
Mitral Aortic 
Closed Closed Isovolumic Relaxation (I) 
Open Closed Filling (F) 
Closed Closed Isovolumic Contraction (I) 
Closed Open Ejection (E) 
Open Open Not feasible 

 

III. A MODEL FOR THE LVAD CONTROLLED BY ITS MOTOR 

CURRENT  

The LVAD considered in this paper is a rotary mechanical 
pump connected with two cannulae between the left ventricle 
and the aorta.  The LVAD pumps blood continuously from 
the left ventricle into the aorta. The pressure difference 
between the left ventricle and the aorta is characterized by the 
following relationship: 
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In the above expression, pH  is the pressure (head) gain 

across the pump and Q  is the blood flow rate through the 

pump. The parameters iR , oR , and pR  represent the flow 

resistances and iL , oL , and pL  represent the flow inertances 

of the cannulae and pump respectively.  The nonlinear 
time-varying resistance 

suR  has the form:  
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It is included in the model to characterize the phenomenon of 
suction. Clearly, 

suR  is zero when the pump is operating 

normally and is activated when ( )LVP t  ( 1x ) becomes less 

than a predetermined small threshold 1x , a condition that 

represents suction. The value of 
suR  when suction occurs 

increases linearly as a function of the difference between 

( )LVP t  and 1x . The parameter   is a cannula dependent 

scaling factor. The values used for the suction parameters are 
3.5 /s ml    and 1 1x mmHg [5-7]. 

 The pressure gain across the pump pH  is modeled using 

the direct relation between the electric power supplied to the 
pump motor e  and the hydrodynamic power generated by 

the pump p  scaled by the pump efficiency   as: 

 p e    (8) 

Furthermore, the electric power may be written in terms of the 
supplied voltage V  and the supplied current ( )i t  to the 

pump motor while the hydrodynamic power may be written in 
terms of the pump head or pressure gain pH  and the pump 

flow Q  as: 

 
( )e

p p

V i t

g H Q
  
 

 (9) 

where   is the density of the reference fluid and g  is the 

acceleration of gravity ( 3 213,600 / , 9.8 /Hg kg m g m s   ).  

Using the expressions obtained in (9) and substituting in 
(8) yields: 

( )Pg H Q V i t         (10) 

Solving for the pump pressure gain PH , 
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or 
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p

i t
H

Q
                             (12) 

where
V

g




 .  For a typical LVAD, after applying the 

appropriate conversion factors and assuming a pump motor 
supplied voltage 12V volts  as well as a pump efficiency of 

100% (assuming that most losses are accounted for by the 
pressure losses induced by pR  and pL ), the constant  can be 

computed to be  89,944 /mmHg ml s amp    . 

Substituting (12) in (6) we obtain the nonlinear state 
equation governing the behavior of the LVAD as: 

 * * ( )
( ) ( )

dQ i t
LVP t AoP t R Q L

dt Q
     (13) 

where *

i o p su
R R R R R     and *

i o p
L L L L   . Note 

that it is important to validate the numerical solution when 
expression (13) is used by ensuring that the system does not 
allow for operation at zero pump flow ( )Q t  at any point 

during the cardiac cycle since equation (13) exhibits its 
nonlinearity with the pump flow ( )Q t  in the denominator. 

 When combined with the model of the left ventricle (1), the 
LVAD state equation model in (13) will yield a model that is 
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controlled by the pump motor current ( )i t  as desired.  

Furthermore, using the relation between the pump pressure 

pH  and the pump speed ( )t [12-15]: 

 2 ( )pH t  (14) 

and comparing with (12), an expression for the pump speed in 
terms of  the pump motor current can be derived as follows:  
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t

Q t
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

  (15) 

where 7 29.9025 10 / ( )mmHg rpm   .  Note that it is now 

clear how the heart hemodynamics through ( )Q t  influence 

directly, in a highly nonlinear manner, the pump speed ( )t .  

 

IV. THE COMBINED MODEL WITH PUMP MOTOR CURRENT 

AS THE CONTROL VARIABLE 

The addition of the LVAD to the left ventricle model (1) 
will yield the 6th order system shown in Figure 2 and 
described by the differential equations:    
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(16) 

Notice that the additional state variable 6x Q  represents 

the blood flow through the pump. Eight other passive 

variables: , , , , ,i p o i p oR R R L L L and   have also been 

added. The combined model (16) is now a forced system 
where the control variable is the supplied current to the pump 
motor ( )i t . 

 
Figure 2: Combined cardiovascular and LVAD model 

 
This model can be expressed in the standard state-space 

form: 

 ( )( ) ( ) ( ), , ,
k

tx t A x t b i t k I F E  
  

 (17) 

where the subscripts I, F, and K denote (see Table I) the 
Isovolumic Relaxation and Contraction phases (k=I), the 
Filling phase (k=F), and the Ejection phase (k=E) [5]. In 
addition, the vector b


 multiplying the control variable ( )i t  

is a function of one of the state variables, specifically 6 ( )x t

which appears in the denominator.  Therefore, special care 
must be taken in the numerical solution of the system in (17) 
as the non-linearity can significantly affect the stability of the 
solution algorithm. In this case, a simple time-lagging 
combined with a sub-level iteration scheme was devised to 
control the stability of the numerical solution process.  

 

V. CHALLENGES IN THE DEVELOPMENT OF A FEEDBACK 

CONTROLLER BASED ON THE PUMP MOTOR CURRENT 

Clearly that the model derived above allows for the LVAD 
to be controlled by its pump motor ( )i t instead of its pump 

speed ( )t . In this model, the motor current must be adjusted 

to meet the patient needs for cardiac output while at the same 
time keeping the speed in the safe region to avoid backflow 
and suction.   
 It is important at this stage to validate the model by 
examining how the pump speed is affected when using the 
pump motor current ( )i t as the control variable.  Figure 3 

shows a plot of the pump speed when the model, with a heart 
rate 60HR bpm , is exited with a linearly increasing pump 

current starting at (0) 0.09578i amp  and increasing with a 

slope 0.00934364 /m amp s . There are several important 
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observations that can be made from this figure.  First, note 
that the resulting pump speed ( )t  does not also increase 

linearly.  Instead, it increases nonlinearly with a decreasing 
rate of increase.  Second, the pump speed has a superposed 
oscillatory component that has the same pulsatility as the 
heart rate of 60 bpm.  This is a very interesting and extremely 
important new phenomenon that has recently been observed 
in in-vivo data obtained through clinical studies of intensive 
care patients implanted with LVADs [8].  This is the first time 
that such a phenomenon has been reproduced from a 
combined cardiovascular and LVAD model and represents a 
breakthrough in accurately modeling this complex 
bio-mechanical system. 

A third observation that can be made from Figure 3 is that 
the amplitude of the oscillatory component in the pump speed 
signal ( )t  seems to decrease in time up to a point when a 

breakdown occurs and the amplitude exhibits a sudden 
increase when the pump current is increased beyond this 
point.  In Figure 3, this breakdown occurs at 40t s  which 

corresponds to a pump speed of 15,500 rpm . Clearly this 

value of pump speed corresponds to the onset of suction as 
was demonstrated in [5-7]. 

 

 
Figure 3: Pump Speed signal as a function of time derived from our 

model when the pump motor current is increased linearly. 

 
If we take a closer look at the pump speed signal ( )t  at 

different constant values of pump motor current ( )i t , it can be 

clearly seen that the waveform signature of the pump speed 
signal drastically changes from when the pump is operating 
normally to when the pump operates in suction. Figures 4 and 
5 show plots of the pump speed when 0.18i amp  and 

0.5i amp respectively. In Figure 4 the pump is operating in 

the normal range while in Figure 5 the pump is in suction. 
This drastic change in the signature and pattern of the 
oscillatory component of the pump speed signal can be used 
in the determination of the onset of suction using pattern 
recognition methods. Such work is in progress and will be 
reported in future publications. 

A fourth interesting phenomenon is observed when the 
model is excited with a constant pump motor current and the 

maximum elastance value of the left ventricle maxE  is 

progressively reduced representing a heart with a worsening 
degrees of heart disease. This causes the availability of 
pressure in the left ventricle to significantly diminish hence 
causing the pulsatility of the pump to be substantially 
reduced. Figures 6 and 7 show this phenomenon when the 
maximum elastance value of the left ventricle is gradually 
reduced from max 1.0E   (representing a sick heart) to 

max 0.25E   (representing a critically sick heart) and the 

pump motor current is kept constant at 0.18i amp . Figure 6 

shows the left ventricular pressure revealing that the 
availability range goes from 8 45 mmHg  (from diastole to 

systole) to 8 13mmHg  (from diastole to systole) when the 

heart is critically sick. Figure 7 shows the corresponding 
pump speed in rpm  revealing that the pump pulsatility 

decreases from over 10% to less than 2.5% of the mean speed.  
This phenomenon, which was not observed in models that use 
pump speed as the control variable, now clearly indicates that 
it should be taken into consideration in the design of an 
effective feedback controller. 

 

 
Figure 4: Pump Speed signal as a function of time when the motor 

current 0.18i amp  

 

 
Figure 5: Pump Speed signal as a function of time when the motor 

current 0.5i amp . 
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 Figure 6: Left Ventricular Pressure as a function of time for different 

values of the maximum left ventricular elastance and motor current
0.18i amp . 

 

 
Figure 7: Pump Speed signal as a function of time for different values of 
the maximum left ventricular elastance and motor current 0.18i amp

 

 
VI. CONCLUSION 

In this paper, a new 6th order state-space model of a rotary 
Left Ventricular Assist Device connected to a cardiovascular 
system is presented.   The control variable in this model is the 
pump   motor current instead of the pump speed which so far 
has been used as the only control variable in the currently 
existing models. This model is much more useful for 
optimally controlling the LVAD since it avoids solving the 
inverse problem for determining the pump motor current that 
produces an already determined optimized pump speed. The 
challenges in using this model to design a feedback controller 
for the LVAD motor current are discussed. The 
characteristics of the pump speed signal, which is one of the 
variables that can be directly and accurately measured, when 
the pump is operating normally with no suction and when it is 
operating in suction, are also described based on results 
obtained from the model. Possible approaches for exploiting 
these characteristics in the development of LVAD control 
algorithms are also discussed. 
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