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Abstract—Two key issues in stochastic self-assembly are
whether the system will converge to the desirable global equi-
librium and how quickly it converges. In this paper an optimal
self assembly design approach, which guarantees the unique
desirable convergence and provides the fastest convergence
rate, is proposed for active self-assembly systems. We adopt a
Markov chain to model the self-assembly system. Based on the
convergence theory of a Markov chain, we solve an optimization
problem in which minimizing a certain function involved in
the Markov chain results in both maximum yield of the target
assemblies at the equilibrium and optimal convergence rate to
the desired equilibrium. Several examples are carried out to
further illustrate the importance and the effectiveness of the
proposed approach.

I. INTRODUCTION

Self-assembly is the spontaneous organization of particles
into specific patterns or structures without outside inter-
vention. Self-assembly has vast applications in science and
engineering, e.g., in biology [14], [15], electrical engineering
[9], computer science, etc.

One category of self-assembly is active self-assembly
[1], [9], compared to passive self-assembly. In active self-
assembly systems, particles play active roles in that they can
somehow decide what reactions to take. Active self-assembly
has been developed extensively in robotics, see [3], [6], [9],
[12], [16], with the particles’ decision to form and sever cer-
tain connections programmable. Moreover, according to [9],
one possible natural active self-assembly system might be
proteins undergoing conformational switching that changes
the outcomes of their subsequent interactions.

Other than deterministic self-assembly, which uniquely
assembles one supertile (assembly) through deterministic
assembly rules, stochastic self-assembly provides probabilis-
tic assembly rules that lead to different macrostates with
different probabilities. The stochastic self-assembly system
can be modeled as a Markov process. The assembly objective
is to bring the system to the target macrostate and stay
there with high probability. That is, starting from any initial
macrostate, given an evolution time longer than the conver-
gence time, the system would reach an output macrostate.
Repeating this process for a large number of times, we
expect that a high proportion of output macrostates are
the objective macrostate. Equivalently, the desirable Markov
system should converge to a distribution where the target
macrostate is of high probability. This distribution is the
desired global equilibrium of the system. Many algorithms
have been proposed for this. For example, in [9], [12],
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optimal assembly rules have been developed so that the yield
of a desired assembly type at equilibrium is maximized. In
[5], [6], assembly rules that require reduced communication
burden have been proposed.

Given a system with desirable equilibrium, the most
important factor is the equilibration rate, i.e. convergence
rate. This has caught much attention recently and been
analyzed in different papers [7], [10], [16]. However, only
limited work has been pursued, e.g. [2], [11], for designing
the optimal convergence rate. In [2], [11], approaches have
been proposed to optimize the reaction rates to achieve fast
convergence to the specified target state.

In this paper, we propose a novel design of the stochastic
active self-assembly system through specifying the optimal
parameters in the corresponding Markov system. A Markov
decision process (MDP) transformation is applied to come
up with an equivalent MDP, thus enabling the convergence to
the desirable global equilibrium and the optimization of the
convergence rate. We first describe the active self-assembly
system, resorting to a Markov chain model. Second, based on
the convergence theory of Markov chains, we demonstrate a
general optimization problem in which minimizing a certain
function involved in the Markov chain would result in the
optimal self-assembly rules. Then, we propose an illustrative
self-assembly system design. Several examples are followed
to further show the importance and the effectiveness of the
proposed approach. Different from [2], [11], our approach
is completely derived from Markov theories and properties,
direct and concise.

II. PROBLEM FORMULATION

A. System Description
We denote the smallest unit in a self-assembly system as

a particle and assume that the system consists of m identical
particles. Let component Ci denote the ith type of assembly
composed of ni connected particles and C = {C1, · · · , CI}
be the set of all possible I types of components (assemblies),
assume that n1 ≤ n2 ≤ · · · ≤ nI . Note it is possible
that Ci 6= Cj even if ni = nj . Macrostate xk ∈ X
describes the number of each type of component in the
system at time k, whereX denotes the set of all the reachable
macrostates. Let N = dim(X), then N is a known number
when m is finite. Note here xk = [x

(1)
k , · · · , x(I)k ] with

ΣIi=1x
(i)
k ni = m for any k. As an example, if at time k the

system contains only components of type C1, the macrostate
is xk = [ m 0 · · · 0 ] ∈ R1×I . Assume the objective
assembly is Cd ∈ C, the target macrostates thus belong to
set x = {x ∈ X : Σi6=dx(i)ni < nd}, where the particles are
assembled to the maximum amount of Cd.
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From time k to k+1, system transitions from state xk to
xk+1 via reactions, i.e. combination/break/decay/null action,
among the existing components at time k. Actions taken at
time k depend on the current state xk only. The definition
of each action will be given later in this paper.

The above system is a discrete state Markov system on
state spaceX , as pointed out in [9], [12]. When time intervals
between reactions are not of concern, the system can be
interpreted as a discrete time discrete state Markov chain,
see in [5], [6], [7], [10].

Next we give the Markov chain model for the self-
assembly system.

B. Markov model for self-assembly
In the following we give the generalized description of the

self-assembly system.
Assume at time k the system is at state xk = x. A random

variable F1(x) is sampled so that two assemblies are selected
from set Sx = {Ci ∈ C : x(i) 6= 0} × {Cj ∈ C : x(j) >
χi(j)}, where χi(j) = 1 when i = j and 0 otherwise.
One of the actions from set A = {null, decay, act} is taken
according to system attributes F2(ε), where ε is a parameter
set. By null it means that the current state xk is copied to
time k+1, by decay it means that the selected components
Ci and Cj are decayed to ni + nj C1 components. That is,
null :

xk+1 = xk

decay :

x
(i)
k+1 = x

(i)
k − 1

x
(j)
k+1 = x

(j)
k − 1

x
(1)
k+1 = x

(1)
k + ni + nj

x
(r)
k+1 = x

(r)
k , for i /∈ {1, i, j}

(1)

The act includes three possible actions, i.e. act.comb,
act.break, act.null and its outcome is determined by the
law F3(g, u1, u2, Ci, Cj , Cd)
act.comb :

x
(i)
k+1 = x

(i)
k − 1

x
(j)
k+1 = x

(j)
k − 1

Cl = rand(u1(Ci, Cj)), nl = ni + nj
x
(l)
k+1 = x

(l)
k + 1

x
(r)
k+1 = x

(r)
k for r /∈ {i, j, l}

act.break :

Cl = g(Ci, Cj), l ∈ {i, j}
x
(l)
k+1 = x

(l)
k − 1

{Clb,Slb} = rand(u2(Cl))
x
(r)
k+1 = x

(r)
k + Sbi , if r = bi, Cbi ∈ Clb

x
(r)
k+1 = x

(r)
k , for Cr /∈ Clb

(2)

act.null :
xk+1 = xk

Where rand(•) is the result of sampling a random variable
with the specified distribution, u1 and u2 are the random
variables with inputs Ci, Cj and Cl respectively, g denotes

the rule for further selecting one component out of {Ci, Cj},
Clb denotes the set of all types of smaller size assemblies that
the selected component Cl could break into and Slb describes
the number of each resulting assembly. Define F(x) = F̂(F1,
F2, F3, x,Cd) as the output given state x, it is easy to see
that when xk = x, the probability of xk+1 = y is p (x, y) ,
Pr(xk+1 = y | xk = x) = p(y = F(x)), which relies only
on the current state xk = x and is irrelevant to time k. Thus
the system is a stationary Markov chain. As dim(X) = N ,
the Markov transition matrix P is of N×N dimension, with
entries being p (x, y), x, y ∈ X.

Different forms of policies have been proposed to design
F(x) [2], [5], [6], [12]. As F1, F2 are in general determined
by system attributes, the design is in fact focused on F3.
These policies, with or without specifying it, are basically
aimed to design the system Markov transition probability so
that the Markov system converges to a stationary distribution
(equilibrium) where the probability of the desired microstate
is maximized. This is the primary goal of self-assembly.

C. Assembly Tasks
With component Cd ∈ C being the goal assembly and

set x = {x ∈ X : Σi6=dx(i)ni < nd} in turn the desirable
macrostate set, resorting to Markov modeling language, one
of our assembly tasks is to design an ergodic Markov sys-
tem with transition matrix P, whose stationary distribution
contains the maximized probability Pr(x). Moreover, the
convergence rate to the stationary distribution should be
the fastest. We interpret our task as “optimal self-assembly
system design”. Aware that the set x can be integrated into
one Markov state of the system without loss of generality,
we hereby equate x to one Markov state.

III. THEORETICAL DEVELOPMENT

A. Convergence Rate for Nonreversible Markov Chain
In order to facilitate the introduction of the optimal self-

assembly system design we begin with a brief introduction
to the relevant background.

Let X be a finite set with dim (X) = N and consider a
Markov chain on X with transition probabilities p (x, y) =
Pr (xk+1 = y |xk = x), x, y ∈ X. Let P be the N × N
transition matrix with entries p (x, y).
Definition 1: Markov Chain that is irreducible (i.e. the

only absorbing set is the whole state set), aperiodic and
positive recurrent is an ergodic Markov Chain.
Proposition 1: An ergodic Markov chain P has unique

stationary probability distribution π and has only one eigen-
value equals to 1. Moreover, there exists

lim
k→∞

pk (x, y) = π(y) (3)

where k is the number of time steps, pk (x, y) is the (x, y)
entry of P k, π(y) is the yth entry of π.

We only discuss ergodic Markov chains here.
The convergence rate is an index on how fast the system

converges from the initial distribution to the stationary dis-
tribution π. For reversible Markov chains, i.e. chains that
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satisfy the detailed balance condition

π(x)p (x, y) = π(y)p (y, x)

it can be shown that the convergence rate in (3) is bounded
by βk1 , where β1 = max (λ1, |λN−1|) , λ1 is the second
largest eigenvalue of P and λN−1 the smallest one (recall
that an ergodic reversible chain P has all real eigenvalues
belonging to the interval (−1, 1]). However, for nonreversible
chains, the eigenvalues of P are not real. In order to
derive the convergence rate in this case, reversibilization
approaches have been proposed and broadly used to construct
a reversible transition matrix M (P ) from P, see, in [4], [8],
[13].

Let P̃ = (p̃ (x, y)) be the time reversal of P , i.e.

p̃ (x, y) = p (y, x)
π(y)

π(x)

Then P̃ is an ergodic Markov transition matrix that has
the same unique stationary distribution π as P. Define the
multiplicative reversibilization M (P ) of P by

M (P ) = PP̃ (4)

It is easy to see that M (P ) is a reversible Markov transition
matrix that also has the same stationary distribution π,
see in [4]. Furthermore, the eigenvalues of M (P ) are real
and nonnegative, i.e. they belong to the interval [0, 1] . Let
β1 (M) be the second largest eigenvalue of M (P ) . For
distributions μ,π define the variation distance

kμ− πkvar =
1

2

X
x∈X

¯̄̄
μ(x) − π(x)

¯̄̄
where μ(x), π(x) denote one entry that corresponds to state
x, i.e. the probability of x, in μ and π respectively. We have
the following theorem [4]:
Theorem 2: Let P be an ergodic transition matrix on a

finite state space X and let π be its stationary distribution.
Then for any initial distribution μ

4 kπk[μ]− πk2var ≤ (β1 (M))k
X
x∈X

¡
μ(x) − π(x)

¢2
π(x)

(5)

where πk[μ] is the distribution of the chain P at time k with
initial distribution μ.

Theorem 2 tells us that for a nonreversible Markov chain
P , from any initial distribution, the convergence rate of the
system to stationary distribution is bounded by (β1 (M))

k
.

The smaller β1 (M) is, the faster the system converges to its
stationary distribution.

B. Optimal Design for Self-assembly
From Section II-B, we know that the Markov transition

probability from macrostate x to macrostate y is p(x, y) =
p(y = F(x)), which is the (x, y) entry of Markov transition
matrix P = P (F). In general, the Markov chain correspond-
ing to a self-assembly system is non-reversible. We thus
resort to (4) for the reversibilization and result in M(F).

Let μ0 be the initial distribution of the system’s macrostate
and μ

(x)
0 be the probability that the system is in macrostate

x ∈ X at time 0. For example, if system always starts
from macrostate x̊ = [ m 0 · · · 0 ], the system’s initial
distribution is an impulse distribution with μ

(̊x)
0 = Pr(̊x) =

1, μ
(x 6=x̊)
0 = Pr(x 6= x̊) = 0. We know μk = μ0P

k in
turn describes the distribution system’s macrostate and μ

(y)
k

the probability that the system is in macrostate y ∈ X at
time k. We want to design F to fulfill three tasks. First,
the system has to be ergodic. Second, the yield of a desired
assembly type at equilibrium is maximized. That is, we want
to have a stationary distribution π with the component π(x)
being maximized. Here π(x) is the probability of the desirable
macrostate x corresponding to Cd. Third, we want to optimize
the system so that it converges to this π with the highest rate.
That is, the system evolves to the stationary distribution very
fast.

It is not hard to see the decay action in (1) guarantees the
system to be ergodic. We have the following optimal design
rule,

Fs ∈
n
F : π(x) > 0.95× π(x)max

o
(6)

Fopt = argmin
Fs
(β1 (M(Fs)))

Thus, the system has the fastest convergence rate to the
desirable stationary distribution. Note that Fs could be a set.

IV. ILLUSTRATIVE SYSTEM DESIGN AND OPTIMIZATION

In this section we design an illustrative active self-
assembly system. We remark that the optimal design pro-
posed can be extended to general systems with various
self-assembly regulations and properties. We choose the
following illustrative system, similar to that in [6], [2], in
order to better illustrate the detailed design ideas and logic.

A. Self-assembly Rule
Recall the desirable assembly is Cd. We give the assembly

rule here.
When system is at state x, random variable F1(x) is sam-

pled to select the two components Ci, Cj out of the existing
assemblies. Assume without loss of generality throughout
that ni ≤ nj . Random variable F2 is sampled to select an
action from set A = {null, decay, act} at every time step.
F1 and F2 are usually determined by the system attributes.
When F2 = {act}, the self-assembly policy F3 is proposed
as:

a) act.comb if ni + nj ≤ nI and d /∈ {i, j}
b) act.break Cj if ni + nj > nI and j 6= d
c) act.break Ci if ni + nj > nI , j = d, i 6= d
d) act.null if i = j = d

(7)

We give more information on act.comb and act.break
rules here. When act.comb is taken, the outcome assembly
is according to the sampling on random variable u1(Ci, Cj).
u1 is usually predefined according to the system attributes.
We assume here, similar to that in [9], that we can interfere
with the act.break action through the preprogramming on
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every component. Here we interpret C1, C2, C3 as the basic
tiles for all assemblies. We assume all the components are
appropriately preprogrammed so that when it is subject to
act.break, it would break according to Clb = {{case 1: all
C1}, {case 2: maximum number of C2 with the remainder
being C1}, {case 3: maximum number of C3 with the
reminder being C1}} with probabilities b1, b2, b3 subject
to b1+b2+b3 = 1.

As we have mentioned before, F1, F2 are predefined by the
system, so clearly the only parameters left for us to design
are b1, b2, b3 in function u2 such that sampling u2 gives the
outcome of different combination of C1, C2, C3 assemblies
according to b for each input Cl in (2). Let b = [b1, b2,
b3], the parameterized Markov matrix P (F) thus turns into
P (b).

B. Approach

Our optimal design approach is given as the following:
• Given a self-assembly system {m, C, F, Cd} with ini-

tial state of m number of C1 assemblies, i.e. macrostate
x̊, calculate Markov transition matrix P.
– First, calculate only the “nonbreak” transition ma-

trix P1. That is, P1 denotes the system that in-
volves only act.comb, null and decay actions,
with act.break being substituted by null. P1 can
be easily calculated by Monte Carlo simulations
according to action rules (7) and system attributes.

– Second, write down the “break” probability matrix
P2(b) analytically, with only act.break involved.

– Third, analytically calculate the whole transition
matrix

P (b) = P1 + (ΛP1 − pnullI)(P2(b)− I))
where pnull is the null rate of the system, I is an
identity matrix, ΛP1 is a diagonal matrix with the
diagonal entries of P1.

• Vary the values of b under the constraint b1+b2+b3 =
1 to get different P (b) matrices. Using b notation, and
let π(x)max = maxb(π(x)(b)), equation (6) now becomes:

bs = {b :π(x)(b) ≥ 0.95× π
(x)
max}

bopt = argmin
bs
(β1 (M(P (bs)))), bopt < 1

(8)

V. SIMULATION

We adopt the self-assembly system used in [9], i.e., system
with programmable triangular particles (parts), in order to
illustrate our optimization procedure. Consider a system with
m = 8 and I = 11, with set C as shown in Figure 1.

Note here the assembly pool is slightly different from that
in [9] since we have removed several duplicated assemblies
here. That is, some assemblies that are the same in shape but
different in orientation have been removed. The combination
chart in Table 1 lists all the possible combinations of two
selected assemblies in this system. That is, all the possible
output of rand(u1).

1 2 3 4 5 6

7 8 9 10 11

Figure 1. All possible assemblies

Component Component Products
C1 C1 {C2}
C1 C2 {C3}
C1 C3 {C4, C5, C6}
C1 C4 {C7, C8, C9, C10}
C1 C5 {C8, C9, C10, C11}
C1 C6 {C9}
C2 C2 {C4, C5}
C2 C3 {C7, C8, C9, C10, C11}

Table 1. List of possible combinations

As for the function F, at any time step k, we take F1
uniform over all the existing assemblies. F2 is assumed to
have an outcome with 5% null, 0.05% decay and otherwise
act. Take u1 uniform over the appropriate combinations
and determine g according to the act.break rule in (7).
Moreover, u2(b) is a random variable whose distribution is
parameterized by b.

As preparation, first we count all possible macrostates
in the given system; in this example there are N = 43
possible macrostates. From each macrostate, we generate
10000 random samples and calculate the one-step forward
transition probabilities p1 according to F̂(F1, F2, F3, x, Cd)
with Monte Carlo method. We then analytically calculate the
complete transition matrix P (b) according to the proposed
approach in Sec. IV-B, here b is subject to b1+b2+b3 = 1
and 0 ≤b1, b2, b3 ≤ 1. Then, by varying the value of b
as well as applying the reversibilization approach, we obtain
β1 (M(P (b))) and stationary distribution π(b). The set b
that satisfies the optimal rule (8) is chosen as the optimal
solution bopt.

A. Case Study
1) Case 1 Cd = C4: Assume that the system always

starts from the initial macrostate with 8 C1 components and
evolves. That is, the system has an initial distribution μ0,
where μ

(̊x)
0 = Pr(̊x) = 1, μ

(x 6=x̊)
0 = Pr(x 6= x̊) = 0,

x̊ = [ 8 0 · · · 0 ]. The desirable macrostate set x =
{macrostate with two C4, which is macrostate No. 39}. The
bopt is calculated to be [0, 1, 0] where β1 = 0.9758 is of
the optimal value according to (8). That is, [0, 1, 0] provides
the best combination of small β1 and large π(39) over all
possible b. The stationary distribution π and the distribution
evolution of the system are given in Figure 2a. Note in Figure
2a-right and similar figures later, we can tell that the system
reaches the stationary distribution when the composition of
all probabilities, corresponding to different macrostates in
the distribution, does not change in time any more.
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In order to clarify the difference between different b
values, we list here also some nonoptimal b and their
corresponding eigenvalues of M(P ).

b =[1, 0, 0] → β1 = 0.9864

b =[0, 0, 1] → β1 = 0.9995

We show in Figures 2b-2c the system performance given
different values of b.

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

States

Pr
ob

ab
ili

ty

20 40 60 80 100 120 140 160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time step

Pr
ob

ab
ili

ty Desired state

Figure 2a. bopt=[0,1,0]
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Figure 2b. b=[1,0,0]

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

States

Pr
ob

ab
ili

ty

0 1000 2000 3000 4000 5000
0

0.2

0.4

0.6

0.8

1

Time step

Pr
ob

ab
ili

ty Desired state

Undesired state

Figure 2c. b=[0,0,1]

left - stationary distribution, right - distribution evolution

With the optimal set bopt = [0, 1, 0], we see the system
has a desirable stationary distribution, as shown in Figure
2a-left, where the probability for the desirable macrostate is
0.9880, close to 1. That means after reaching the stationary
distribution, the system stays at the desirable macrostate
almost for sure. In Figure 2a-right, we show the proba-
bility composition from all macrostates at different time
steps, i.e. the evolution of distribution. We can see that the
probability of the desirable macrostate reaches its stationary
value quickly, within 150 time steps. While when b = [1
0 0] the system has a suboptimal stationary distribution
with probability corresponding to the 39th macrostate being
0.9676 and it converges at around 500 time steps, as shown in
Figure 2b. Even worse, if b = [0, 0, 1], the system converges

to the stationary distribution shown in Figure 2c-left, where
the undesirable 31th macrostate x = [0, 2, 0, 0, 0, 0, 1, 0], i.e.
macrostate with 2 C2 and 1 C7 assemblies, has comparable
probability to that of the desired 39th macrostate. From
Figure 2c-right we can tell the convergence time is more
than 5000 time steps. From the above scenarios, observing
the relationship between convergence rate and β1, we verify
Theorem 2 in that the smaller β1 is, the faster the conver-
gence rate of the system is.
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Figure 3. Upper bound of the variation distance between πk and

stationary distribution, over different value of β1.

We show in Figure 3 the sensitivity of the upper bound of
the variation distance between πk, the system distribution at
time step k, and the stationary distribution π towards β1, i.e.
the upper bound of the left side in the equation in Theorem
2. It can be seen that when β1 = 0.9758, the upper bound
of the variation distance decreases to a negligible value at
time step 150, while when β1 = 0.9864, the upper bound
decreases to a trivial value at time step 500. In contrast,
when β1 = 0.9995, even at time step 5000, the upper bound
still has a considerable value. This explains the convergence
results we had earlier in Figures 2a-2c.

Considering the relationship between the conformation of
the objective assembly Cd and optimal set bopt, it is easy to
see that C2+C2 → C4, while neither of C1+C2, C3+C3,
C1 + C1, C3 + C2 would give C4 directly. Thus, it makes
sense that maximizing the number of C2 results in the fastest
convergence to the maximum yield of C4.
2) Case 2 Cd = C6: Similar to Case 1, assume the

system always starts from the initial macrostate with 8 C1
components and evolves. Now the desirable macrostate set
x = {macrostate with two C6, i.e. macrostate No. 42}.
According to (8), bopt is calculated to be

bopt=[0.415, 0.005, 0.580] → β1 = 0.9970

The corresponding stationary distribution π and the distrib-
ution evolution of the system are shown in Figure 4.

We also list here a nonoptimal b value with corresponding
eigenvalue of M(P ) and stationary distribution π, shown in
Figure 5 for comparison purposes.

b =[0, 0, 1] → β1 = 0.9991
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We can see that in this case the optimal set bopt is
calculated to be bopt=[0.415, 0.005, 0.580], where the
probability for the desirable macrostate in the stationary
distribution is the highest, 0.825, as shown in Figure 4-
left. In Figure 4-right, we see the system converges to the
stationary distribution at around 3000 time steps. While
when b = [0, 0, 1] the system converges to a stationary
distribution where the undesirable macrostate, No. 31, has
higher probability than that of the 42th macrostate, as shown
in Figure 5.
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Figure 4. bopt=[0.415,0.005,0.580]

left - stationary distribution, right - convergence time
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Figure 5. Stationary distribution for b= [0, 0, 1]

Similar to the analysis in Case 1 and observing the
conformation of Cd = C6, we know that C1 + C3 → C6,
while neither of C1+C2, C2+C3, C2+C2 would give C6
directly. Thus, designing b to balance the number of C1 and
C3 should result in the fastest convergence to the maximum
yield of C6.

VI. CONCLUSION AND FUTURE WORK

In this paper an optimal design approach for active self-
assembly is proposed, based on the convergence theory of
Markov chains. The proposed approach serves two purposes.
First, it guarantees that the system converges to the global
equilibrium with desirable assembly compositions. Second,
it provides the fastest convergence rate. An illustrative self-
assembly system design is proposed to verify the developed
scheme. By the simulation examples we learned the impact
of parameter set b on the convergence result. If b was se-
lected randomly, the system might converge to an undesirable
global equilibrium, i.e. the system is highly inclined to end
up in undesired assemblies. With our optimized selection
of the b set, the fastest convergence rate to the desirable
equilibrium is attained.

As it is known, the Markov chain modeling in self-
assembly is subject to the curse of dimensionality of the sys-
tem states. Thus, although the proposed scheme is quite use-
ful for designing small systems or understanding fragments
of larger systems, its complexity is an issue. For example,
for a system with m particles and O(m) component types,
there are N ∼ O(2m) macrostates, which introduces into the
analysis an N ×N Markov matrix. In the future, we plan to
adjust our design to larger systems by reducing the system
dimension. In this case, instead of sticking to the original
optimal design, we might find a state reduction approach
or an approximation of the optimization that offers the best
trade-off between calculation complexity and accuracy.
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