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Abstract— The concept of using multiple models to cope
with transients which arise in adaptive systems with large
parametric uncertainties was introduced in the 1990s. Both
switching between multiple fixed models, and switching and
tuning between fixed and adaptive models was proposed, and
the stability of the resulting schemes was established. In all
cases, the number of models needed is generally large, and the
models used do not cooperate in any real sense.

It was recently shown by the authors that if it is known
a priori that the unknown plant parameter vector lies in the
convex hull of a set of adaptive model parameter vectors at the
initial time, it will remain in the convex hull of the parameters
even as they evolve with time [1]. Later, a stability result was
derived in [2] which decouples the stability and performance
issues. In this paper, a new concept of second level adaptation is
introduced to develop different stable strategies which improve
the performance of the overall system. Simulation results are
provided to illustrate the effectiveness of the proposed scheme
in a rapidly time-varying environment, and are shown to be
far superior to existing schemes.

I. INTRODUCTION

Adaptive control theory, dealing with the control of linear

time-invariant systems with unknown parameters, has been

studied since the 1960s, and an extensive literature currently

exists in this area [3], [4], [5], [6], [7], [8]. It is now generally

accepted that when parametric errors are small, classical

adaptive control assures both stability and robustness.

When parametric errors are large, it has been observed

over the years that the transient response of adaptive systems

is oscillatory, and numerous efforts have been made to

improve the performance in such cases. One such effort,

involving multiple models, was introduced in the 1990s.

During this period, both fixed models [9], [10] and fixed

and adaptive models [11], [12] were proposed for improving

the transient response. In [9], [10], a supervisor controller

switches into feedback a sequence of linear set-point con-

trollers from a family of candidate controllers. This causes

the output of the controlled process to track a constant

reference input, provided that the transfer function of the

process is in the union of a number of subclasses, each of

which is small enough so that one of the candidate controllers

would solve the positioning problem. In contrast to the above,

both fixed and adaptive models were used in [13], [11], [12]

for the identification of the plant, and later for its control.

Based on an index of performance, one of the models is

The research was supported by the National Science Foundation under
Grant No. ECS-0824118.

The authors are with the Center for Systems Science, Yale Uni-
versity, New Haven, CT 06520, USA, email: {zhuo.han,
kumpati.narendra@yale.edu}

chosen at any instant as the “best” and used at that instant

to determine the control input. At the same time an adaptive

model is initiated from the same point in parameter space,

and the process is continued. The qualitative explanation

provided is that the index of performance would, in general,

choose the model “closest” to the plant in some sense, and

consequently adaptation would commence from that model,

resulting in improved performance. Switching to the closest

model implies fast response in the adaptive context, and

tuning from that model improves the system response on a

slower time scale (i.e. incrementally as in classical adaptive

control). Extensive simulation studies have demonstrated that

the methods proposed perform satisfactorily when no limits

are placed on the number of models that can be used [14],

[15], [16], [17], [1], [18]. From a practical standpoint, the

methods proposed above suffer from two major drawbacks.

First, it is found that the number of models needed to assure

that at least one of the fixed models is sufficiently close

to the plant in parameter space is quite large and grows

exponentially with the dimension of the unknown parameter

vector. Second, the various models do not cooperate in any

real sense to make the decision concerning the location

of the unknown plant parameter vector. In particular, the

performance indices of the different models are merely used

to locate a model close to the plant. As a consequence,

resources (i.e. the data available at the different models)

are not used efficiently. In spite of these shortcomings, the

methods are found to perform satisfactorily when the plant

is time-invariant and the number of models that can be used

is sufficiently large.

It is well known that the demands of a rapidly advancing

technology are the prime movers of new theoretical advances.

In numerous areas such as medicine, neuroscience, finance

and national security, classes of problems are arising where

decisions have to be made in the presence of large para-

metric uncertainty and ambient noise, or rapid variations in

parameters. The adaptive methods that are currently available

are generally inadequate to deal with such problems. The

objective of this paper is to set up a general framework based

on multiple models which can address the problems that arise

in these contexts. We consider in this paper multiple models

for the control of an unknown plant where the control action

taken is based collectively on all the models so that resources

are used efficiently. Finally, from a practical standpoint, very

few models (comparable to the dimension of the unknown

parameter vector) are needed for the identification process.
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II. MULTIPLE MODELS FOR ADAPTIVE CONTROL

We now consider the adaptive control of a linear time-

invariant (LTI) plant using multiple models, when the state

variables of the plant are accessible. To facilitate the intro-

duction of the principal concepts contained in this paper, we

start our discussions with a relatively simple adaptive control

problem whose solution can be found in any standard text

on adaptive control. After stating the problem, we provide

in quick succession the adaptive solution using a single

identification model, the solution using a finite number N

of adaptive models, and a discussion of the creation of an

arbitrary number of virtual adaptive models for control pur-

poses. Throughout the paper, for the sake of completeness,

well known arguments in adaptive literature are included in

the discussions, but details are omitted to conserve space.

A. Statement of the Adaptive Control Problem

An LTI plant Σp is described by the state equations

Σp : ẋp(t) = Apxp(t) + bu(t) (1)

where xp(·) : R
+ → R

n, u(·) : R+ → R. Ap ∈ R
n×n and

b ∈ R
n are in companion form. The elements of the last

row of the matrix Ap are [ap(1), ap(2), . . . , ap(n)] = θTp and

are assumed to be unknown. b = [0, . . . , 0, 1]T . A reference

model Σm is described by the differential equation

Σm : ẋm(t) = Amxm(t) + br(t) (2)

where r(·) : R
+ → R is a known bounded piecewise

continuous reference signal. The matrix Am is also in com-

panion form, is stable, and has the last row θTm. Assuming

that θp ∈ Sθ where Sθ is a compact set in parameter

space, the objective is to determine the input u(·) to the

plant such that all signals in the system are bounded and

limt→∞[xp(t)− xm(t)] = 0.

B. Single Model

Assuming that an indirect approach is used to control Σp,

an identification model Σi is set up which is described by

the differential equation

Σi : ẋi(t) = Amxi(t) + [Ai(t)−Am]xp(t) + bu(t) (3)

where Ai(t) is a matrix in companion form, whose last row

θTi (t) = [ai(1)(t), ai(2)(t), . . . , ai(n)(t)] (the estimate of the

plant parameters) can be adjusted adaptively. Defining θi(t)−
θp = θ̃i(t) and xi(t) − xp(t) = ei(t), the error equation

can be written as ėi(t) = Amei(t) + bθ̃Ti (t)xp(t). ei(t) will

be referred to as the identification error and θ̃i(t) as the

parameter error.

Using a Lyapunov function candidate V (ei, θ̃i) = eTi Pei+
θ̃Ti θ̃i where P is the positive definite matrix solution of the

Lyapunov equation AT
mP + PAm = −Q, Q = QT > 0, it

follows directly from well known results in adaptive control

that the adaptive law

θ̇i(t) = −eTi (t)Pbxp(t) (4)

results in V̇ (ei, θ̃i) = −eTi Qei ≤ 0. This assures the stability

of the identifier and consequently the boundedness of both

the identification error ei(t) and the parameter error θ̃i(t)
(and hence θi(t)). To assure the stability of the plant, and

hence the boundedness of xp(t), feedback control is used so

that u(t) = −kT (t)xp(t) + r(t) where k(t) = θi(t) − θm.

This yields the (control) error equation ėc(t) = Amec(t) +
bk̃T (t)xp(t). Following the same arguments as before, it

follows that ec ∈ L2 ∩ L∞ which assures the boundedness

of xp(t) and ėc(t). From Barbalat’s lemma it follows that

limt→∞ ec(t) = 0. Or the state xp(t) of the plant follows

the state xm(t) of the reference model asymptotically.

C. Multiple Models

In adaptive control it is well known that the designer can

use an arbitrary number of models to identify the plant, but

only one controller to control it. It therefore follows that

N identification models Σ1,Σ2, . . . ,ΣN can be set up to

provide N estimates of the parameter vector. The model

Σi (i ∈ Ω = {1, 2, . . . , N}) includes the parameter estimate

θi(t) which can be updated adaptively, i.e.

Σi : ẋi(t) = Amxi(t) + [Ai(t)−Am]xp(t) + bu(t) (5)

with xi(t0) = xp(t0).

Comment: The N adaptive models are consequently de-

scribed by identical differential equations with the same

initial state as the plant but with different initial values of the

parameter vectors. The former condition is realizable since

it is assumed that the plant states are accessible.

From the above assumptions it follows that the identifica-

tion errors ei(t) = xi(t)−xp(t) satisfy the error differential

equations

ėi(t) = Amei(t) + bθ̃Ti (t)xp(t) (6)

with θi(t0) = θit0 and ei(t0) = 0 i ∈ Ω.

Assuming that the N models are operating in parallel, the

question arises as to how the information obtained is to be

used to control the system at every instant. This becomes par-

ticularly relevant when the plant is unstable. Using classical

theory, any one of the estimates can be used to stabilize the

system. In [13], [11], [12], it was suggested that different

performance indices of the form Ji(t) =
∫ t

t0
‖ei(τ)‖

2dτ

could be used to compare the different estimates and provide

a basis for the choice of the control parameter vector. If

one of the models is chosen as the “best” at any instant

according to one of the criteria, it can, in turn, be used to

select the controller parameter. It was shown in [12] that if

an arbitrarily small but finite dwell time is used, switching

between different parameters results in the stability of the

overall system and the asymptotic convergence of the control

error to zero. As in classical adaptive control, the parameter

estimates need not converge to the plant parameter vector θp
but do so if the reference input is persistently exciting.

Comment: The efficacy of the control depends upon how
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rapidly (and how accurately) the plant parameter can be

estimated. When the number of models N is small and the

region of uncertainty Sθ is large, the improvement in the

transient behavior of the system, over that realized using a

single model, may not be significant. Additional properties of

the multiple models need to be exploited, and this is treated

in the following section.

D. Convex Hull Property

The following discussion concerns the convex hull in

parameter space formed by the set of parameter vectors

θi(t) (i ∈ Ω) corresponding to the N models Σi. In the

previous subsection N estimates θ1, θ2, . . . , θN of the plant

parameter vector θp were generated. Since the plant Σp is

linear, it follows that any convex combination of the esti-

mates is also an estimate of θp so that θ0(t) =
∑N

i=1 βiθi(t)
can be considered as a virtual model, where βi are nonneg-

ative constant coefficients satisfying
∑N

i=1 βi = 1. Further,

θ̃0(t) = θ0(t) − θp =
∑N

i=1 βi[θi(t) − θp] =
∑N

i=1 βiθ̃i(t).
More specifically, let an additional identification model Σ0

be set up as

Σ0 : ẋ0(t) = Amx0(t) + [A0(t)−Am]xp(t) + bu(t) (7)

with parameter vector θ0(t). Let the initial condition of θ0(t)
be θ0(t0) =

∑N

i=1 βiθi(t0). Further, let the adaptive law

governing the adjustment of θ0(t) be

θ̇0(t) =
N
∑

i=1

θ̇i(t)βi = −
N
∑

i=1

xp(t)b
TPei(t)βi

= −xp(t)b
TP

∫ t

t0

Φ(t, τ)b

[

N
∑

i=1

βiθ̃
T
i (τ)

]

xp(τ)dτ

= −xp(t)b
TPe0(t).

(8)

The law is observed to be identical to that of the N real

models. Therefore, any arbitrary convex combination of the

N models can be considered as a virtual model with the

same properties as the real models.

Comment: From the error equation (6) with ini-

tial conditions ei(t0) = 0, it follows that ei(t) =
∫ t

t0
Φ(t, τ)bθ̃Ti (τ)xp(τ)dτ where Φ(t, τ) = eAm(t−τ) is the

transition matrix of ėi = Amei.

The above discussion concerning virtual models defined

as the convex combination of the N real models leads to the

following theorem in this section, which was first introduced

in [1]. Let the initial values of the parameter vectors θi(t0)
be chosen such that Sθ ⊂ K(t0) where K(t0) is the convex

hull of the set {θi(t0)}, i.e. θp ∈ K(t0).

Comment: If θp ∈ R
n, N = n+1 is sufficient to satisfy the

above condition. In practice N can be chosen to be greater

than (n+ 1) for convenience or efficiency.

Theorem 1: If N adaptive identification models described

in (5) are adjusted using adaptive laws (4) with initial

conditions θi(t0) and initial states xi(t0) = xp(t0), and if

the plant parameter vector θp lies in the convex hull K(t0)

of θi(t0) (i ∈ Ω), then θp lies in the convex hull K(t) of

θi(t) (i ∈ Ω) for all t ≥ t0.

Proof: Since θp lies in the convex hull of

θi(t0) (i ∈ Ω), it follows that it satisfies the

equation θp =
∑N

i=1 αiθi(t0),
∑N

i=1 αi = 1, αi ≥ 0.
Assuming that a virtual model θ0(t) is initiated with

θ0(t0) = θp, it follows that θ0(t) = θp for all

t ≥ t0 if it is adjusted adaptively using (8). Therefore

θp = θ0(t0) = θ0(t) =
∑N

i=1 αiθi(t) for all t ≥
t0. �

From Theorem 1 it follows that if θp lies in the convex

hull K(t0), it also lies in the convex hull K(t). If it lies

outside the convex hull, it remains outside the convex hull,

and if it lies on the boundary of the convex hull, it will

remain on the boundary of the convex hull, for all t ≥ t0. A

crucial assumption made in deriving the above results is that

all the identification models have initial conditions xi(t0) =
xp(t0) so that ei(t0) = 0. Since it was assumed that xp(t) is

accessible, all models can be chosen to satisfy this condition.

III. SECOND LEVEL ADAPTATION

Speed, accuracy, stability, and robustness are the features

sought after in any efficient adaptive system. If the indirect

approach is used, this depends upon the speed and accuracy

with which the unknown plant parameter vector θp can be

determined.

A. Second Level Adaptation

In the previous section it was shown that the plant param-

eter vector θp can be expressed as θp =
∑N

i=1 αiθi(t0) =
∑N

i=1 αiθi(t)t ≥ t0 for
∑N

i=1 αi = 1 and αi ≥ 0.

This can be expressed in matrix form as

[θ1(t), θ2(t), . . . , θN (t)]α = Θ(t)α = θp (9)

where α = [α1, α2, . . . , αN ]T and the columns of the (n ×
N) matrix Θ(t) are the parameter estimates θi(t). Equation

(9) can be used to determine the vector α. It was also stated

earlier that the minimum value that can be chosen for N

(so that the convex hull of {θi(t0)} (i ∈ Ω) contains Sθ) is

(n+ 1). In the following discussion, we use N = n+ 1 for

computing the value of α.

In equation (9), the vector θp is unknown. Subtracting θp
from both sides of the equation and noting that

∑n+1
i=1 αi =

1, we have the error equation

Θ̃(t)α = 0 (10)

where the columns of Θ̃(t) are θi(t)− θp = θ̃i(t).

Equation (10) cannot be used to determine α since

θ̃i(t) (i ∈ Ω) are unknown. However, more relevant for

our purposes, and easier to implement is the derivative of

equation (10) i.e.

˙̃Θ(t)α = 0. (11)
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The columns
˙̃
θi represent the adaptive laws and are read-

ily available from (4). Expressing α ∈ R
n+1 as α =

[ᾱT , αn+1]
T , where ᾱ ∈ R

n and ᾱ = [α1, α2, . . . , αn] it

follows from the convexity condition that the scalar αn+1 =
1−

∑n

i=1 αi. This permits equation (11) to be written as

M(t)ᾱ = ℓ(t) (12)

where the ith column of the matrix M(t) ∈ R
n×n is Mi(t) =

θ̇i(t)−θ̇n+1(t) and the vector ℓ(t) ∈ R
n is ℓ(t) = −θ̇n+1(t).

Comment: It is worth noting that the matrix M(t) is not

obtained by differentiation but is directly obtained from the

adaptive laws of the real models. It also underscores the

dependence of ᾱ on the rules by which the n parameters of

the real models are adjusted, rather than on their values.

Equation (12) may be made the starting point of a second

level adaptation method for estimating ᾱ. In such a case, an

estimation model is set up as M(t) ˆ̄α(t) = ℓ̂(t), where ˆ̄α(t)
is the estimate of ᾱ and is adjusted using the adaptively law

˙̄̂α(t) = −MT (t)ℓ̃(t) = −MT (t)M(t) ˆ̄α(t) +MT (t)ℓ(t). (13)

It is known a priori that the unique equilibrium sate is the

desired value ᾱ.

Comment: Since first level adaptation involves the real

identification models and the estimates θi(t), we refer to

the above as second level adaptation. The stability of such a

procedure is discussed later in the paper.

Comment: By introducing the concepts of virtual model

and second level adaptation, the identification of the un-

known parameter vector of a dynamical system is converted

into the identification of the unknown coefficient vector ᾱ.

Example 1: Figure 1 indicates the evolution of the param-

eter estimates (of θp) using both first level and second level

adaptation. A stable plant θp was chosen to be [−2,−2]T and

four real models θi(t) (i = 1, 2, 3, 4) were used to estimate

θp as described earlier. The initial location of the virtual

model can be chosen anywhere in K(t0), and was chosen to

have two different values in Figures 1(a) and 1(b) i.e. [5, 5]T

and [4, 4]T respectively. Second level adaptation was used,

as described earlier, to estimate ᾱ and hence the evolution

of the virtual models. The trajectories of the real models

are indicated in solid lines and those of virtual models in

dotted lines. In Figure 1(a), trajectories of the virtual model

(θ0(t)) and the real models θi(t) (i = 1, 2, 3, 4) are plotted

for 50 units of time. In Figure 1(b), an additional real model

θI(t) is initialized at the same point as the virtual model

θII(t) for comparison purposes. Trajectories in this figure are

plotted for 5 units of time. In both cases the convergence of

the virtual models are found to be faster and smoother than

those of the real models. The analytical justification for these

observations is discussed in the following section.

B. Stability

From the discussions in the previous section, any convex

combination of the real models θi(t) (i ∈ Ω) is a virtual
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−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

θ1(t0)θ2(t0)

θ3(t0) θ4(t0)

θp

θI(t0)

θI(t1)

θII(t1)

θII(t0)

Trajectory of Second Level Adaptation

Trajectory of First Level Adaptation
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Fig. 1: Trajectory of Second Level Adaptation

model. Depending on whether the convex combination is

time-invariant or time-varying, we will refer to the virtual

models as time-invariant virtual models or time-varying vir-

tual models respectively. As shown earlier, a time-invariant

virtual model has the same dynamical property as a real

model.

As stated earlier, using results in [12], that switching

between a finite number of real models (with a finite dwell

time) does not affect the stability of the overall system.

It directly follows that switching between a finite number

of time-invariant virtual models (with a finite dwell time)

will also be stable. Since the convex hull K(t) is a set of

uncountably infinitely many time-invariant virtual models,

the question naturally arises whether switching between this

set of time-invariant virtual models will also be stable.

Furthermore, when second level adaptation is used as in the

previous section, a time-varying virtual model is produced,
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and the stability of such a model needs to be established.

This question was discussed in [2] and a theoretical proof

was provided there. In the following we include the main

stability theorem in [2] for the sake of completeness.

Theorem 2: If the assumptions in Theorem 1 are satisfied,

and the control signal is generated algebraically based on the

plant parameter estimate

θ̄(t) = Projθ̄(t)∈Sθ

{

N
∑

i=1

αi(t)θi(t)

}

(14)

for nonnegative piecewise differentiable αi(t) which satisfy

the condition
∑N

i=1 αi(t) = 1, then the overall system is

asymptotically stable.

Comment: From the above theorem, any convex combi-

nation of the N estimates results in a control parameter

vector which assures stability. This decouples the stability

and performance issues, and αi(t) can be chosen primarily

to improve performance.

IV. SIMULATION STUDIES

We conclude the paper by considering simulation studies

on the adaptive control of an unstable second order system

with rapidly time-varying unknown parameters. Three differ-

ent methods are used for comparison, i.e. adaptive control

using (i) switching [9], (ii) switching and tuning [12], and

(iii) second level adaptation. In all cases measurement noise

with standard deviation σ = 0.1 was added to illustrate the

robustness properties of the methods. The unstable plant to

be controlled is described by equation (1) where n = 2 and

θp = [θp(1)(t), θp(2)(t)]
T is time-varying and unknown as

shown in Figure 2. More specifically, three types of time-

variations are included, i.e. small but rapid variation, large

but slow variation, and piecewise constant variation.

0 20 40 60 80 100
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0

5

10

θp(1)

0 20 40 60 80 100
−10

−5

0
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10

15

θp(2)

Fig. 2: Rapidly Time-Varying Plant Parameters

The reference model is stable with θm = [−6,−5]T and

has poles at −3 and −2. θp is known to belong to the set Sθ

where Sθ = [−15, 15] × [−15, 15] ∈ R
2. For convenience,

the convex hull K(t0) which contains Sθ is chosen to be the

same as Sθ, i.e. K(t0) = Sθ.

In method (i) 17 fixed models are uniformly distributed in

Sθ, in method (ii) 9 fixed models are uniformly distributed

in Sθ and 1 re-initialized adaptive model and 1 free-running

adaptive model are used, and in method (iii) only 3 adaptive

models are used. In each case the desired state variable xm1

(the first element of the state) and the corresponding state

xp1 of the plant are plotted together, and the output error is

plotted separately on the same scale in Figure 3. The plant

parameters and their corresponding estimates generated using

each method are given in Figure 4. The responses in the last

case are seen to be significantly better than the corresponding

responses in the first two methods.
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Fig. 3: Reference Output, Plant Output and Control Error

For The Three Methods
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Fig. 4: Plant Parameters and Corresponding Estimates For

The Three Methods
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