
  

  

Abstract—This paper develops generalized analytical first and 

second order transfer functions for the nonlinear second order 

system. A periodic input is also conducted to characterize the 

overall system response from the fundamental components. The 

proposed analytical solution provides more understanding of the 

influence of each linear and nonlinear component on the overall 

system behavior.  

I. INTRODUCTION  

any nonlinear dynamical systems can be analyzed with 

a simple mass-spring-damper system as a second order 

single degree of freedom (SDOF) model. Linearization 

provides a generalized solution given by a convolution 

integral in the case of time domain or by a transfer function 

in the case of s-domain. Classical linear metrics such as 

damping ratio and natural frequency or their equivalent 

transfer function’s poles and zeros characterize the system’s 

behavior. Unfortunately, linearization is restricted to small 

variations or first order derivatives. Even the use of the 

interpolation concepts to build a global linear parameter-

varying model does not help in rendering some nonlinear 

phenomena such as limit cycle.  

Looking for a method that one can use to extend the linear 

theory analysis to characterize the behavior of the nonlinear 

systems class, Volterra theory is the best choice primarily 

because of its underlying analytical framework or the so-

called Volterra kernels. Volterra theory dates back to 1887 

with the first encompassing publication appearing in 1927 

and later in 1958 and it has been widely applied to model 

many dynamical systems [1]-[2]. For the second order 

SDOF system, more specifically, Refs.[3]-[9] developed 

higher order transfer functions or Volterra kernels of such a 

system but for specific test cases with no generalized 

conclusion. Previously in Refs. [10]-[11], the authors 

provided the desired generalized conclusion by developing 

analytical Volterra kernels to understand the influence of 

each linear and nonlinear system’s parameters on the overall 

behavior of the nonlinear second order SDOF system. The 

main purpose of this paper is to construct the equivalent 

generalized frequency-domain analysis. 

The rest of the paper is organized as follows: Section II 

briefly describes the mathematical foundation of Volterra 
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theory and the algorithm to develop Volterra kernels or the 

high order transfer functions. A parametric study of the 

generic shapes of the first and second order transfer 

functions are set forth in Section III. In Section IV, a 

sinusoidal frequency response is developed. Section V gives 

a numerical example to show the merit of the developed 

analyses. Finally, in Section VI, the work is concluded.  

II. VOLTERRA THEORY 

The nonlinear state x œ R
n 

and output y œ R
p
 model 

accounting for input u œ R
m 
and time varying characteristics, 

for general dynamical systems, is 

( ) ( )( )
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where vectors f œ R
n
 and g œ R

p
 denote the system 

nonlinearities. Volterra theory represents the input-output 

relation of a nonlinear system as an infinite sum of multi-

dimensional convolution integrals [1].  

 
( ) ( ) ( )

( ) ( ) ( )

( ) ii
k

k

i

k

i
ik

k

i
ikkk

ii
k

k

i
kk

dffuffufffffH

fUfHfY

dtuhty

∑ ∫ ∫ ∫ ∏∑∑

∑ ∫ ∫ ∫ ∏

∞

=

∞ ∞ ∞ −

=

−

=

−

=
−

∞

=

∞ ∞ ∞

=








 −






 −

+=

−⋅=

20 0 0

1

1

1

1

1

1
121

1

1 0 0 0 1
21

,,...,,....          

,...,,.... τττττ
 

(2) 

In Eq. (2), ( )kkh τττ ,...,, 21  is the k
th
 order Volterra kernel and 

( )kk sssH ,...,, 21 is the k
th
 transfer function order where 
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In order to develop the kernels from the differential 

equation, variational expansion method is used. This method 

assumes the state vector derivative x&  is expandable as an 

infinite power series as 
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where ⊗ is Kronecker product. The matrix ijK
~

 represents 

the derivatives of the vector function f(x,u) with respect to 

x
(i)
 and u

j
 at point (xo,uo). The input u is generalized to be 

αu(t), where α is any arbitrary constant. In this case, the 

response x(t) can be expanded in terms of α as 

∑
∞

=
=

1i
i

i xx α  (5) 

By substituting in Eq. (4) and rearranging  according to the 

coefficients of equal α
i 
( i = 1,2,… ), a set of differential 

equations is generated as  
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Equation (6) represents the system as an infinite set of 

differential equations. The original nonlinearity of the 

system is broken into a sequence of pseudo-linear time 
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invariant (PLTI) systems, which are solvable. The input of 

each PLTI system is a nonlinear function of all previous 

system states and the input u. More details about this method 

are given in Ref. [11]. 

III. ANALYTICAL TRANSFER FUNCTIONS 

For the nonlinear second order SDOF system, assuming 

the quadratic and bilinear terms are enough to capture 

system nonlinearity in a certain neighborhood [14]-[16], the 

system is defined below. 
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where ωn is the undamped natural frequency, ζ  the damping 

ratio, k2 the secondary stiffness constant, c2 the secondary 

damping constant, and ck the bilinear stiffness-damping 

constant. In previous research [10], the author developed an 

analytical solution of such a system using Volterra model. 

The solution is given as  
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The expressions of h1(t) and h2(τ1,τ2) have been omitted from 

the current paper and they are given in Ref. [10]. Applying 

the Laplace transform given in Eq. (3), the equivalent 

transfer functions are 
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The frequency response of the first transfer function is 

considered by replacing s by ωj as 
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The generic shape of the first kernel magnitude is shown in 

Figure 1. The frequency histories of M1 start at value 

2
1 / no kM ω= , while at ω  tends to infinity, the value of M1 

tends to zero. There is a maximum peak defined by 

22
max1

12 ζζω −
=

n

k
M  at 221 ζωω −= n

l
c  (9) 

This resonance peak exists only when 707.00 ≤≤ ζ . In the 

case of 707.02/1 ≈>ζ , this resonance diminishes.  

 
Figure 1 Generic shape of the first transfer function magnitude 

The second transfer function has three components. The 

magnitudes and phases of these three components are  
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The magnitude of the three components: quadratic position 

component ( )212 ,ωωqp
M , bilinear position-rate component 

( )212 ,ωωbpr
M , and quadratic rate component ( )212 ,ωωqr

M are 

two-dimensional surfaces as functions of ω1 and ω2. Figures 

2-8 show an example of each component at ωn = 5 rad/s with 

different damping ratios ζ = {0.1, 0.4, 0.8}. There are some 

similarities among the shape of these surfaces. All the 

surfaces tend to zero when ω1 and ω2 tend to infinity. For a 

certain value of the damping ratio, there is a family of 

maximum points located on a line crossing the edges at {
i
emaxω , 0} and {0, i

emaxω }, while crossing the diagonal line at 

{ i
d max1ω , i

d max1ω }, where i = {qp, bpr, qr}. 

On the other hand, there are some dissimilarities among 

these surfaces. Unlike the bilinear position-rate magnitude 

( ) 00,020 =bprM  and quadratic rate magnitude ( ) 00,020 =qrM , the 
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quadratic position magnitude has a non-zero value

( ) 62
220 /0,0 n

bpr kkM ω= . In the case of the quadratic position 

magnitude surface ( )212 ,ωωqpM , there are two critical 

damping ratios 21.01 =qp
cζ  and 707.02 =qp

cζ . If qp
c10 ζζ << , the 

surface ( )212 ,ωωqpM  has a family of maximum points in 

addition to the two single maximum and minimum values 

located on the diagonal line (see Fig. 2). When the value of 

ζ exceeds 21.01 =qp
cζ , the single maximum and minimum 

points on the diagonal line diminish (see Fig. 3). In the case 

of 707.02 => qp
cζζ , the family of the maximum point 

disappears and the surface ( )212 ,ωωqpM
 
has one global 

maximum point at the origin whereby 021 == ωω  (see 

Fig.4).  

 
Figure 2 Quadratic position kernel magnitude at ωn = 5 rad/s and ζ =0.1 

 
Figure 3 Quadratic position kernel magnitude at ωn = 5 rad/s and ζ =0.4 

 
Figure 4 Quadratic position kernel magnitude at ωn = 5 rad/s and ζ =0.8 

 

Both the bilinear position-rate magnitude surface

( )212 ,ωωbprM  and the quadratic rate magnitude surface 

( )212 ,ωωqrM
 

have only one critical damping ratio 

27.01 =bpr
cζ and 21.01 =qr

cζ . When the damping ratio ζ exceeds

27.01 =bpr
cζ , the single maximum and minimum points on 

the diagonal line disappear on the surface ( )212 ,ωωbprM (see 

Fig. 6), while when ζ > qr
c1ζ , the line presenting the family of 

maximum points and the single minimum point disappear on 

the surface ( )212 ,ωωqrM  (see Fig. 8).  

Table 1 shows all the critical frequencies wherein these 

maximum and minimum values are located. Note there is an 

approximation using Taylor expansion applied to most of 

these critical frequencies in Table 1. For example, in the 

cases of bpr
emaxω  and qr

emaxω , the approximation was applied as 

2422
max 11

3

2

3

2

3

1
ζωζζζωω −≈+−+−= nn

bpr
e  (11) 

 
Figure 5 Bilinear position-rate kernel magnitude at ωn = 5 rad/s and ζ =0.1 

 
Figure 6 Bilinear position-rate kernel magnitude at ωn = 5 rad/s and ζ =0.4 

 
Figure 7 Quadratic rate kernel magnitude at ωn = 5 rad/s and ζ =0.1 
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Figure 8 Quadratic rate kernel magnitude at ωn = 5 rad/s and ζ =0.4 

 
Table 1 Locations of optimal point on the nonlinear magnitude surfaces 

Critical Frequency Range 

2
max 21 ζωω −= n

qp
e  7.00 << ζ

 

2
max1

6

1

4

1
ζωω +≈ n

qp
d  

7.00 << ζ  

2
min

2

1
ζωω +≈ n

qp
d  

21.00 << ζ  

2
max2

3

14
1 ζωω −≈ n

qp
d  21.00 << ζ  

2
max 1 ζωω −≈ n

qbpr
e  10 << ζ

 

2
max1

6

2

4

1
ζωω +≈ n

bpr
d  

10 << ζ  

2
min 073.046.0 ζωω −≈ n

bpr
d  

27.00 << ζ  

2
max2

3

11
1 ζωω −≈ n

bpr
d  27.00 << ζ  

2
max

3

14
1 ζωω +=≈ n

qr
e  21.00 << ζ

 

2
max1

6

7

4

1
ζωω +≈ n

qr
d  

21.00 << ζ  

2
min 08.142.0 ζωω −≈ n

qr
d  

21.00 << ζ  

42
max2

27

80

3

8
1 ζζωω +−≈ n

qr
d  10 << ζ  

 

In order to simplify visualizing these surfaces, the 

diagonal line, whereby ω1 = ω2 = ω, is considered to 

characterize the entire surface. At low damping ratio, when
i
c10 ζζ << , where i = {qp, bpr, qr}, the diagonal line of all 

surfaces has two maximum values at i
d max1ω and i

d max2ω  in 

addition to a minimum value at i
d minω as shown in Fig. 9. If

i
c1ζζ > , the minimum value i

d minω  and one of the maximum 

point i
d max1ω  or i

d max2ω  disappear on all the surfaces, while 

the other maximum point stays as shown in Fig. 10. In the 

case of the quadratic position and bilinear position-rate 

components, the point i
d max1ω stays, while i

d max2ω disappears, 

while in the case of quadratic rate, i
d max1ω  disappears and 

i
d max2ω stays for i

c1ζζ >  (see Fig. 10). Figure 11 shows a 

special case of the quadratic position magnitude diagonal 

line at 707.02 => qp
cζζ , wherein all the maximum and 

minimum points diminish and the diagonal line starts at qpM0  

heading downward to settle at zero value when ω goes to 

infinity.  

 

 
Figure 9 Magnitude diagonal of the component i = {qp, bpr, qr} for ζ <  ζci  

 
Figure 10 Magnitude diagonal of the component i = {qp, bpr, qr} for ζ  >  ζci 

 
Figure 11 Magnitude diagonal of the component i = {qp, bpr, qr} for ζ  >  ζci 

There is no existence of any maximum or minimum peak 

on any of the phase surfaces ( )212 ,ωωφqp , ( )212 ,ωωφbpr , and 

( )212 ,ωωφqr . All the surfaces have their equivalent maximum 

value at 021 == ωω and they keep decreasing to achieve 

their equivalent minimum values at ∞== 21 ωω . Figure 12 

shows an example of the phase surface ( )212 ,ωωφqp  at ωn = 
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5rad/s and ζ = 0.3. The generic shape of the diagonal line 

can describe the phase surface as shown in Fig. 13. All the 

diagonal lines start by their maximum value 

( ) ( ) ( ) o
2

o
22 1800,0  ,900,0   ,00,0 −=== qrbprqp φφφ and they reach 

their minimum values ( ) ,360, o
2 −=∞∞qpφ ( ) o

2 270, −=∞∞bprφ
( ) o

2 540,  , −=∞∞qrφ . When nωω = , the value of the

( ) ( ) ( )( )∞∞+= ,0,05.0, 222
ii

nn
i φφωωφ , where i = {pq, bpr, qr}. The 

slope of ( ) ωωωφ d/, d 2 nn
i indicates the way that every diagonal 

line changes from its equivalent zero value to infinity value. 

The less damping ratio the system has, the more increase in 

the value of the slope ( ) ωωωφ d/, d 2 nn
i    would be observed 

(see Fig. 13). The phase of the first transfer function is the 

same as in Fig. 13 starting with ( ) o00,0  , =lφ  and then 

heading downward to settle at ( ) o180, −=∞∞lφ . 

 
Figure 12 Quadratic position kernel magnitude at ωn = 5 rad/s and ζ =0.3 

 

Figure 13 Phase diagonal of the component i = {qp, bpr, qr} 

IV. STEADY SINUSOIDAL RESPONSE  

Following the same rationale of the linear theory, 

consider the sinusoidal response more specifically. If the 

input signal is a sinusoidal signal u(t) = sin(ωt), the  

approximate nonlinear response is computed from the two 

terms Volterra series as 
qrbprqp

xxxxx 2221 +++=
 

(12) 

The responses of the linear term x1 and the nonlinear 

components ,, 22
bprqp xx and qrx2 have two parts: transient 

response and steady periodic response. In order to describe 

the overall response, describing the steady periodic 

responses is considered herein. Using the time convolution 

integral or the frequency response in Eq. (2) leads to 

( )
( ) },,{      ,2sin

sin

222

1

qrbprqpitAKx

tAx

iii
dc

i
ss

llss

=++=

+=

φω

φω
 (13) 

 where 

222
2

2
2

2
2

2

22
2

2
2

1

2

1
                   

2

1

0                 
2

1

2

1
                   

2

1

ωl
i
dc

qrqr

i
dc

bprbpr

l
i
dc

qpqp

l

MAKMAA

KMAA

MAKMAA

AMA

==

==

==

=

 

The results in Eq. (13) show the relation between the 

magnitudes and the phases of the transfer functions and the 

individual response of each linear and nonlinear component 

in the systems. The linear term x1 has a steady sinusoidal 

response with the same input frequencyω  but with an 

amplitude ratio 1M  and phase shift lφ . Figure 14 shows the 

relation between the input u and the steady linear response x1 

as an ellipse. The aspect ratio of the ellipse is M1. Increasing 

the phase from zero to 180 deg rotates this ellipse counter 

clockwise from 45 deg to 315 deg as shown in Fig. 14.  

 
Figure 14 Linear periodic input-output relationship 

Unlike the first term, all the components i = {qp, bpr, 

qr}of the second term x2 are sine wave with double of the 

frequency of the input and a dc gain i
dcK in addition to a 

phase shift i
2φ and an amplitude ratio iM 20.5 . The relation 

between the input and these components’ outputs is shown 

in Fig. 15 as a Lissajous shape.  

 
Figure 15 Nonlinear periodic input-output relationship for i = {qp, bpr, qr} 
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V. NUMERICAL EXAMPLE 

Assume a force F = 5sin(ωdt) N excites a mass-spring-

damper system; mathematically defined by 

Fxxxxxxx +−++−−= 22
3.025.03.036.0 &&&&&  (25) 

The individual nonlinear components’ responses are shown 

in Fig.16.  Although all the nonlinear coefficients have 

almost the same value, from highest to lowest, the order of 

their oscillation’s amplitudes are:  quadratic rate, bilinear 

position-rate, and position quadratic component. All 

nonlinear components
 
oscillate with the same frequency 2ωd 

= 3.4 rad/s, while the linear term oscillates by a frequency 

ωd = 3.4 rad/s. Unlike the quadratic position and bilinear 

components, the quadratic rate component has a significant 

d.c gain with a value -0.093 m.  

 

 
Figure 16 Nonlinear components periodic responses 

Figure 17 shows the responses of  nonlinear simulation, 

linear-based model, and Volterra-based model. It is clear 

how Volterra-based model more accurately duplicates the 

steady response of the system than the linear-based model. 

The relation between the input and output is a pure ellipse. 

Adding the nonlinear components leads to an imperfection 

of this elliptical shape. This imperfection is observed when 

the output signal is not a single tone frequency signal. In the 

linear case, the center of the ellipse is the origin, while the 

center of the resultant imperfect ellipse of the Volterra 

model is non-zero. This non-zero origin is observed as a 

nonsymmetrical oscillation due to the d.c gain generated by 

the quadratic rate nonlinearity. 

 
Figure 17 Overall periodic response 

VI. CONCLUSION 

This work offers a procedure to develop closed-form 

expressions for the second order system’s kernels, which in 

turn leads to expressions for the sinusoidal input time 

response. The spring-mass-damper example shows the 

capability of a Volterra-based model to release the source of 

differences between nonlinear and linear responses, 

specifically steady offset value, differences oscillation 

frequency, and phasing shift. 

REFERENCES 
[1] Rugh, J. W., +onlinear System Theory: The Volterra/Wiener 

Approach. John Hopkins University Press, 1981. 
[2] Volterra, V., Theory of Functionals and of Integral and Integro-

Differential Equations. Dover, New York, 1958. 

[3] Prazenica,  R., and Kurdila, A., “Multiwavelet Constructions and 
Volterra Kernel Identification,” Nonlinear Dynamics Journal, Vol. 43, 

No. 3, 2006, pp. 277–310. 

[4] Marzocca, P., Nichols, J., Milanese, A., Seaver, M., and Trickey, S., 
“Second-order spectra for quadratic nonlinear systems by Volterra 

functional series: Analytical description and numerical simulation,” 

Mechanical Systems and Signal Processing Journal, Vol. 22, No. 8, 
2008, pp. 1882-1895. 

[5] Schurer, H., and Slump, H. and Herrmann, E.,” Second order Volterra 
Inverses for Compensation of Loudspeaker Nonlinearity,” IEEE ASSP 

Workshop on Applications of Signal Processing to Audio and 

Acoustics, 15-18 Oct. 1995, New York, USA . 
[6] Kwon, J., Paik, I., and Chang, S., “Nonlinear Frequency Domain 

Analysis of Flexible Offshore Structures Using Volterra Series.” 

KSCE Journal of Civil Engineering, Vol. 9, No. 5, 2005, pp. 391-401. 
[7] Marzocca, P., Librescu, L., and Silva, W., “Aeroelastic Response of 

Nonlinear Wing Sections Using a Functional Series Technique,” 

AIAA Journal, Vol. 40, No. 5, 2002, pp. 813–824. 
[8] Marzocca, P., Silva, W., and Librescu, L., “Nonlinear Open-/Closed-

Loop Aeroelastic Analysis of Airfoils via Volterra Series,” AIAA 

Journal, Vol. 42, No. 4, 2004, pp. 673– 686. 
[9] Wouw, N., Nijmwijer, H., and Campen , D., “A Volterra Series 

Approach to the Approximation of Stochastic Nonlinear Dynamics,” 

Nonlinear Dynamics Journal, Vol. 27, No. 4, 2002, pp. 397-409. 
[10] Omran, A., and Newman, B., “Nonlinear Analytical Multi-

Dimensional Convolution Solution of the Second Order System,” 

Journal of Nonlinear Dynamics, to Appear-DOI: 10.1007/s11071-010-
9764-9. 

[11] Omran A.  and Newman B., “Nonlinear Cause-Effect Analysis for a 

Second Order System using Volterra Kernels,”ACC2010, IEEE 
American Control Conference, Baltimore, Maryland, June 30  - July 

2,2010. 

[12] Omran A. and Newman B., “Analytical Response for the Prototypic 
Nonlinear Mass-Spring-Damper System,” ESDA2010 Proceedings of 

the ASME 10th Biennial Conference on Engineering System Design 

and Analysis, Istanbul, Turkey, July 12-14, 2010. 
[13] Omran A. and Newman B., “Analytical Nonlinear Analysis 

Methodology for Reduced Aircraft Dynamical Systems,” ICAS2010 

Annual International Council of the Aeronautical Sciences 
Conference, Nice, France, September 19-24, 2010.  

[14] Omran A. and Newman B., “Aircraft Volterra Parameter-Varying 

Modeling Approach,” AIAA Atmospheric Flight Mechanics 
Conference and Exhibit, Toronto, Ontario, Canada, August 2-5, 2010. 

[15] Omran, A. and Newman, B., “Piecewise Global Volterra Nonlinear 

Modeling and Characterization for Aircraft Dynamics,” Journal of 
Guidance, Control, and Dynamics, Vol. 32, No. 3, May-June 2009, 

pp. 749-759. 

[16] Omran A., and Newman B., “Global Aircraft Dynamics Using 
Piecewise Volterra Kernels,” AIAA Atmospheric Flight Mechanics 

Conference and Exhibit, Honolulu, HI, USA, August 18-21., 2008. 

 

 

 

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

F (N)

x
 (
m
)

x
2
qp

x
2
bpr

x
2
qr

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

F (N)

x
 (
m
)

Nonlinear

Linear

Volterra

826


