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Abstract— For a high-performance 6-DOF Active Vibration
Isolation System (AVIS), the vibration isolation performance
(transmissibility) is the most important criterion and the
disturbance rejection performance (compliance) has lower pri-
ority. The strategy of combining modal decomposition and
frequency-shaped sliding surface control is applied based on
the measurement scheme of relative displacement and payload
absolute acceleration. Modal decomposition decouples the six
modes and calculates the equivalent sensor noises for each
mode. The designed performances, transmissibility and sen-
sitivities to the two sensor noises, depend solely on the sliding
surface design. The sliding surface is optimized for each mode
with predefined constraints which are derived from common
industrial requirements. The regulator is designed to realize
the designed transmissibility for each mode and to achieve
low compliance. The numerical example of the sliding surface
optimization gives better result than the manual design. This
strategy designs the four performances step by step and iterative
design is not necessary.

I. INTRODUCTION

In the semiconductor industry, wafer scanners used to

produce integrated circuits, demand an Active Vibration Iso-

lation System (AVIS) with six Degrees-Of-Freedom (DOF)

to support and to inertially fix the payload despite of all

disturbances, including floor vibrations and directly applied

forces. As integrated circuit details up to nanometer accuracy

are being written with a light source, the requirements posted

on the AVIS are quite demanding. The payload of such an

AVIS weights a few thousand kilograms. The 6-DOF AVIS

based on pneumatic isolators [8], which compensates the

payload gravity by pressurized air, is currently applied in

the industry. The 6-DOF AVIS based on electromagnetic

isolators, which compensates the payload gravity by passive

permanent magnetic force, is also feasible [9] and being

investigated [2] as an alternative.

The objective of the AVIS control is to minimize the

payload absolute displacement (the terminology absolute

indicates that this physical variable is with respect to an

inertially fixed reference). However, neither floor absolute

displacement nor payload absolute displacement is directly

measurable by any industrial sensors. Integration of absolute

velocity/acceleration signal is not feasible because of the

limited performance of the industrial sensors. Therefore, the

relative displacement (payload displacement with respect to

the floor) and the payload absolute acceleration [1], [11]

are measured for control. The AVIS control methodology

based on this measurement scheme is studied to achieve both

vibration isolation and direct disturbance force rejection.

The conventional strategy [11] is to apply the skyhook

control [5] to the decoupled system. The skyhook control

is able to reduce or even remove the resonance peak but

vibration isolation improvement at low frequencies is dif-

ficult. The H∞ control [1] can be directly applied to solve

the Multi-Input-Multi-Output (MIMO) problem. It depends

on the weighting filters design to optimize the closed-loop

performance. But this design process is complicated and

usually requires many iterations to complete. Besides, the H∞

controller usually has high order which limits its application.

A strategy combining modal decomposition and the

frequency-shaped sliding surface control based on the mea-

surement scheme of relative displacement and payload ab-

solute velocity has been proposed [4]. Robust skyhook per-

formance is experimentally validated using a 1-DOF setup.

But the sliding surface design is based on ideal feedback

signals wherein neither sensor noises nor sensor dynamics

are considered. In our previous work [3], the pole placement

method is proposed to design the sliding surface but manual

pole placement is quite cumbersome.

In this paper, the sliding surface is designed by solving

an optimization problem, which is formulated according to

vibration isolation requirements, floor vibration strength, and

sensor performances. Both optimized vibration isolation per-

formance and disturbance rejection are to be realized by the

regulator design. The 6-DOF AVIS model, the sensor models,

modal decomposition, and the performance requirements are

described in Section II. The frequency-shaped sliding surface

control is described more generally in Section III. The sliding

surface design by optimizing the vibration isolation is given

in Section IV. This work is concluded in Section V.

II. PROBLEM STATEMENT

A. 6-DOF AVIS Model

The simplified schematic of the AVIS in a wafer scanner

is illustrated in Fig. 1. The base-frame is mounted on the

floor. We assume that the payload, the base-frame, and

all mounting connections are rigid. The payload absolute

displacement vector and the relative displacement vector are

denoted by
e−→q and

b−→q , respectively. They are defined as

e−→q = [eqx,
eqy,

eqz,
eqφ ,

eqθ ,
eqψ ]

T , (1)

b−→q = [bqx,
bqy,

bqz,
bqφ ,

bqθ ,
bqψ ]

T , (2)

where the subscript x, y, and z denote the three Cartesian axes

and φ , θ , and ψ denote the roll, pitch, and yaw rotations. The

superscripts e and b denote the coordinate systems fixed to

an inertial fixed reference and the base-frame, respectively.

The two vectors are related by

b−→q =
e−→q −

e−→ρ , (3)
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Fig. 1. Simplified schematic of the 6-DOF AVIS in a wafer scanner.

where
e−→ρ is the base-frame displacement vector. The control

input to the 6-DOF AVIS is denoted by a wrench vector

−→wa = [ fax, fay, faz, taφ , taθ , taψ ]
T , (4)

where f denotes the force and t denotes the torque. The dis-

turbance wrench vector is denoted by −→wd . Each isolator can

be modeled by springs and dampers. The 6-DOF equation

of motion for the payload has a linearized form

M ¨e−→q +D
˙b−→q +K

b−→q =−→wd −
−→wa, (5)

where M, D, and K are the mass matrix, the damping matrix,

and the stiffness matrix, respectively. For the 6-DOF AVIS,

we assume proportional damping: D = αM + β K (α and

β are constants). The dashed rectangular in Fig. 2 shows

the diagram of the 6-DOF model according to (5). I is the

6×6 identity matrix. The transformation matrices mTTT a, bTTT s,

and eTTT s are determined by the allocations of the actuators,

displacement sensors, and acceleration sensors, respectively.

The subscripts/superscripts s and a denote the corresponding

sensor spaces and the actuator space, respectively. The sub-

script/superscript m denote the coordinate system fixed to the

payload. The three matrices can be calculated by geometry.

B. Sensor Models

The vectors
s̃−→q and

s̃−→a contains the output signals

of the six displacement sensors and the six acceleration

sensors, respectively. The vectors
s−→q and

s−→a denote the

true displacement and acceleration signals, respectively. The

displacement sensor usually have very high bandwidth (in

the order of 104 Hz). For this reason, the sensor dynamics

are negligible at the interested frequencies (up to the order

of 100 Hz). The vector which contains the six displacement

sensor noise, denoted by −→nq , is assumed to be independent

of
s−→q so that

s̃−→q is derived by

s̃−→q =
s−→q +−→nq. (6)

There are many types of acceleration sensors. The ac-

celerometer based on piezoelectric effect is capable of ac-

celeration measurement from zero frequency up to a certain

resonant frequency ωa (in the order of 103-104 Hz). At low

frequencies, the sensor dynamics are negligible except there

is usually a DC bias which can be classified as a part of

the sensor noise. The accelerometer noise, denoted by −→na , is

Fig. 2. Modal decomposition of the 6-DOF AVIS model.

assumed to be independent of
s−→a . The relation between

s̃−→a
and

s−→a is
s̃−→a =

s−→a +−→na. (7)

Both (6) and (7) are illustrated in Fig. 2.

C. Modal Decomposition

Modal decomposition of a multi-DOF AVIS is described

in [4], [8]. Vibration isolation performance of an AVIS is

significantly affected by the sensor dynamics and noises. This

subsection describes the modal decomposition of a 6-DOF

AVIS considering the sensor dynamics and noises.

Assume that M is non-singular, (5) is equivalent to

¨e−→q +M−1D
˙b−→q +M−1K

b−→q = M−1−→wd −M−1−→wa. (8)

Apply the eigenvalue decomposition to the matrix M−1K, we

have

M−1K =VWV−1, (9)

where V is a 6×6 matrix containing the linearly independent

eigenvectors and W is a 6× 6 diagonal matrix containing

the corresponding eigenvalues. Define the modal coordinates
−→
ξA =V−1e−→q and

−→
ξR =V−1b−→q , then (8) yields

−̈→
ξA +V−1M−1DV

−̇→
ξR +W

−→
ξR =V−1M−1(−→wd −

−→wa). (10)

Substitute D = αM + β K, −→ud = V−1M−1−→wd , and −→ua =
V−1M−1−→wa into (10), we have

−̈→
ξA +(αI+βW)

−̇→
ξR +W

−→
ξR =−→ud −

−→ua . (11)

Fig. 2 shows the control diagram of the 6-DOF AVIS with

modal decomposition. The block C is a 6 × 6 diagonal

transfer matrix to be designed. The equivalent diagram of

Fig. 2 is shown in Fig. 3. The vector
−→
ηA is defined as the

second time derivative of the vector
−→
ξA.

−̃→
ηA is the measured

−→
ηA with noises.

−̃→
ηA =

−→
ηA +

−→eη , where −→eη =V−1eTTT s
−→na . (12)
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Fig. 3. Equivalent diagram of the modal decomposition.

The vector
−̃→
ξR is the measured

−→
ξR with noises.

−̃→
ξR =

−→
ξR +

−→eξ , where −→eξ =V−1bTTT s
−→nq. (13)

D. Performance Requirements

There are four closed-loop performances. The transmis-

sibility T is the transfer from floor vibration to payload

vibration. The compliance C is the transfer from the directly

applied force to payload vibration. The sensitivity S is the

transfer from the acceleration sensor noise to payload vibra-

tion. The sensitivity R is the transfer from the displacement

sensor noise to the payload vibration. S and R are concerned

because they would affect |T|, the upper bound of |T|. All T,

C, S, and R for the 6-DOF AVIS are 6×6 transfer matrices.

Since the modal decomposition would theoretically keep the

off-diagonal entries zero, only the diagonal entries Ti, Ci,

Si, and Ri, ∀ i ∈ {1,2,3,4,5,6} are concerned. In this paper,

i denotes the index of the six modes by default.

The fundamental constraints are

1 Ti, Ci, Si, and Ri are all stable.

2 Interested frequency range is from zero up to the

order of 102 Hz.

3 |Ti(0)|= 1 (0 dB).

4
d|Ti(ω)|

dω ≤−40 dB/dec at high frequencies.

5 |Si(0)| = 0 (−∞ dB). This item is to filter the

acceleration sensor DC bias.

6 |Ci(0)|= 0 (−∞ dB) is preferred.

For all Ti, Ci, Si, and Ri, lower magnitude indicates better

performance. For Ti, lower cross-over frequency indicate

better performance. Note that it is impossible to simulta-

neously improve all performances at a certain frequency.

Among all the four performances, Ti is the most important

one. As industrial environments usually have vibrations at a

certain frequency, |Ti| is required to be smaller than some

desired value at these frequencies while its resonance peak

is minimized. Based on these requirements, the optimized

transmissibility is defined as follows.

Assume that the cut-off frequency of |Ti|, denoted by ωc,

has a required upper-bound, ω1. Assume that ωk and εk, ∀ k ∈
{0,1,2, ...,n} are predefined constants that satisfy

• ω0 < ωc.

• ω1 = ωc.

• ωk > ωc ∀ k ∈ {2,3, ...,n}.

• ε0 > 1.

• ε1 = 1.

• εk < 1 ∀ k ∈ {2,3, ...,n}.

Let a denote a set of controller parameters to be designed.

The transmissibility optimization is to find a set â which

minimizes the resonance peak of the transmissibility upper

bound under constraints.

â = min
a

sup
ω

|Ti(ω)|, (14)

under the constraints of

• |Ti(ω)| ≤ ε0, ∀ ω ≤ ω0.

• |Ti(ωk)| ≤ εk, ∀ k ∈ {1,2, ...,n}.

Note that the above constraints are the most common in-

dustrial requirements for a particular AVIS. The objective

of the AVIS control is to design the diagonal entries of

the controller C as in Fig. 3 for each mode so that all the

fundamental constraints are satisfied and the transmissibility

is optimized.

III. FREQUENCY-SHAPED SLIDING SURFACE CONTROL

The name ”frequency-shaped sliding surface” was given

by K.D. Young and U. Ozguner [6] in 1993. It is usually

applied to tracking control, in which, a measurable signal

is to be minimized. It has been applied to AVIS control by

L. Zuo and J.J.E. Slotine [4] in 2004. Therein, the sliding

surface was designed for ideal absolute velocity signals.

This section describes the optimal sliding surface design of

a certain order based on the feedback scheme of relative

displacement and absolute acceleration. The corresponding

regulator design is also discussed.

The AVIS control methodology using frequency-shaped

sliding surface takes two steps to design the controller C

as in Fig 3. The diagram of the controller C is shown

in Fig. 4. The first step is to design the frequency-shaped

sliding surface, which is defined by the equation
−→σi = 0,

where
−→σ = [σ1,σ2,σ3,σ4,σ5,σ6]

T . The blocks ΛR and ΛA

are two transfer matrix designed to shape the sliding surface

for the corresponding mode. The sliding surface design

(ΛR and ΛA) determines the designed performances (the

designed transmissibility Td , the designed accelerometer-

noise sensitivity Sd , and the designed displacement-sensor-

noise sensitivity Rd). The designed sliding surface and the

original AVIS form a new system. The second step is to

design the regulator R for this new system to keep
−→σ zero

and to fulfill the requirements of the compliance. As a result

of the modal decomposition, all of these transfer matrices,

ΛR, ΛA, Td , Sd , Rd , and R are 6 × 6 diagonal matrices.

Their ith diagonal entries are denoted by ΛRi, ΛAi, Tdi, Sdi,

Rdi, and Ri, respectively. Subsection III-A describes how

the sliding surface is related to the designed performances.

Subsection III-B describes why the designed performances

can be approximated to the closed-loop performances. The

way to suppress the compliance is also provided.

A. Sliding Surface Design

This subsection describes how the designed performances

(Tdi, Sdi, and Rdi) relate to the sliding surface ΛRi and ΛAi
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Fig. 4. Diagram of the frequency-shaped sliding surface controller.

Fig. 5. Frequency-shaped sliding surface control diagram for the ith mode.

for the ith mode. The closed-loop control diagram for the ith

mode is shown in Fig. 5. Based on the signal loop,

σi = ΛAi(ηAi + eηi)+ΛRi(ξRi + eξ i). (15)

The equation σi = 0 is therefore equivalent to

ΛAi(ηAi + eηi)+ΛRi(ξRi + eξ i) = 0. (16)

Substitute ηAi = ξAis
2 and ξRi = ξAi−ξGi into (16), we have

ΞAi

ΞGi

=
ΛRi

ΛAis2 +ΛRi

(
1−

Eξ i

ΞGi

)
−

ΛAi

ΛAis2 +ΛRi

Eηi

ΞGi

, (17)

where ΞAi, ΞGi, Eξ i, and Eηi are the Laplace transforms of

signals ξAi, ξGi, eξ i, and eηi, respectively. The three designed

performances, Tdi, Sdi, and Rdi are defined as

Tdi =−Rdi =
ΛRi

ΛAis2 +ΛRi

, Sdi =
−ΛAi

ΛAis2 +ΛRi

. (18)

According to (17), |Tdi| has an upper bound, |Tdi|:

|Tdi|= |Tdi|+

∣∣∣∣Rdi

Eξ i

ΞGi

∣∣∣∣+
∣∣∣∣Sdi

Eηi

ΞGi

∣∣∣∣. (19)

All of Tdi, Sdi, and Rdi can be realized by keeping σi

zero, which is the task of the regulator Ri.

B. Regulator Design

The sliding surface and the original plant form a new

system, Pni, shown by the shaded blocks in Fig. 5. The input

is uai and the output is σi. The transfer function is given by

Pni = (ΛAis
2 +ΛRi)Pi, where Pi =

1

s2 +(α +βWi)s+Wi

.

(20)

Note that σi is a intermediate variable of the overall con-

troller which is exactly known. The problem of keeping

σi zero is a regulator problem, in which, the measurable

output is to be kept zero. In [4], the switching control with

a boundary layer design is applied to keep σi zero without

any chatter. An adaptive algorithm is applied to deal with the

plant parametric uncertainties. The adaptive algorithm is not

necessary for the regulator design under the assumption that

the plant parameters are known with reasonable accuracy. If

the switching control is to be applied as the regulator, the

boundary layer controller should be carefully designed to

avoid the algebraic control loop. Since the boundary layer

design relies on linear design tools [10], the regulator design

stays in the linear framework no matter the switching control

is applied or not. Therefore, the regulator Ri is assumed as a

linear transfer function in this study. In this case, the closed-

loop performances can be calculated.

The four closed-loop performances are calculated based

on the diagram in Fig. 5.

Ti =
ΛRi +

(α+βWi)s+Wi

Ri

1
PiRi

+ (α+βWi)s+Wi

Ri
+ΛAis2 +ΛRi

, (21a)

Ci =

1
Ri

1
PiRi

+ (α+βWi)s+Wi

Ri
+ΛAis2 +ΛRi

, (21b)

Ri =
−ΛRi

1
PiRi

+
(α+βWi)s+Wi

Ri
+ΛAis2 +ΛRi

, (21c)

Si =
−ΛAi

1
PiRi

+ (α+βWi)s+Wi

Ri
+ΛAis2 +ΛRi

. (21d)

The upper bound of |Ti| due to the sensor noises, |Ti|, is

calculated as

|Ti|= |Ti|+

∣∣∣∣Ri

Eξ i

ΞGi

∣∣∣∣+
∣∣∣∣Si

Eηi

ΞGi

∣∣∣∣. (22)

If the regulator has such a high gain that the conditions

1

PiRi

+
(α +βWi)s+Wi

Ri

≪ ΛAis
2 +ΛRi, (23a)

(α +βWi)s+Wi

Ri

≪ ΛRi. (23b)

are valid, Ti, Si and Ri converges to Tdi, Sdi, and Rdi,

respectively. Subsequently, (22) converges to (19). Further

more, higher regulator gain also reduces |Ci|. Note that the

conditions (23) are required to be valid only at interested

frequencies. The regulator gain has to be low at high fre-

quencies to deal with possible unmodeled flexible modes.

IV. OPTIMIZED SLIDING SURFACE

A. Sliding Surface Design

The two designed performances, Sdi and Tdi (|Tdi| =
|Rdi|), depend solely on the sliding surface design (ΛRi and

ΛAi) according to (18). The numerator polynomial and the

denominator polynomial of Λ j, j ∈ {Ai,Ri} are denoted by

N j and D j, j ∈ {Ai,Ri}, respectively. To satisfy the constraint

of Sdi(0) = 0, NAi can be designed as NAi = sN′
Ai, where N′

Ai

is another polynomial of s. Let DAi = DRi, (18) is simplified

to

Tdi =
NRi

N′
Ais

3 +NRi

, Sdi =
sN′

Ai

N′
Ais

3 +NRi

. (24)
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If Tdi is designed to have its lowest order, which is three,

N′
Ai has to be a constant. Further more, the highest order of

NRi is one if |Tdi| has a decreasing rate of -40 dB/dec at high

frequencies. Tdi have the following form.

Tdi =
a1s+ a0

a3s3 + a1s+ a0

, or Tdi =
a0

a3s3 + a0

, (25)

where a0, a1, and a3 are constant real numbers. In either

case, it is difficult to find such a set of real numbers to make

Tdi stable.

If the order of Tdi is designed to be four, Tdi and Sdi have

the following form.

Tdi =
a2s2 + a1s+ a0

a4s4 + a3s3 + a2s2 + a1s+ a0

, (26a)

Sdi =
a4s2 + a3s

a4s4 + a3s3 + a2s2 + a1s+ a0

, (26b)

where ak, ∀ k ∈ {0,1,2,3,4} are constant real numbers. They

can be determined by choosing of the four stable poles of Tdi

and Sdi. If the order of Tdi is further increased, the benefit

is more flexibility to design the two performances and the

trade-off is the increased order of the controller, which would

subsequently increase the computation power.

B. Sliding Surface Optimization

The Power Spectrum Density (PSD) of the sensor noises

(−→nq and −→na) can be experimentally measured [12] and sub-

sequently used to calculate the PSD of sensor noises for

each decomposed mode (eηi and eξ i). Similarly, the PSD

of the base-frame acceleration can also be experimentally

measured and subsequently used to calculate the PSD of

equivalent base-frame displacement for each mode (ηGi =
¨ξGi). The PSD ratios of the sensor noises over the base-frame

displacement vary with the frequency. These variations can

be described by two functions.

Gξ i(ω) =
Eξ i(ω)

ΞGi(ω)
, Gηi(ω) =

Eηi(ω)

ΞGi(ω)
. (27)

Note that both Gξ i(ω) and Gηi(ω) can be either transfer

functions or look-up tables. (19) can be reformed to

|Tdi(ω)|= |Tdi(ω)|(1+ |Gξ i(ω)|)+ |Sdi(ω)||Gηi(ω)|.
(28)

There are two ways to parameterize the cost function

|Tdi(ω)|. They are described as follows.

1) Pole Parameterization: Assume that Tdi takes the form

of (26), there are three possibilities of the four poles. Assume

that rk < 0,∀ k ∈ {1,2,3,4} are independent real variables,

the three possible combinations of the four stable poles are

• Four real poles (rk, ∀ k ∈ {1,2,3,4}).

• Two real poles (r1 & r2) and a conjugate pair (r3±r4 j).

• Two conjugate pairs (r1 ± r2 j and r3 ± r4 j).

In each case, |Tdi(ω)| can be numerically calculated ac-

cording to (28) and (26). The transmissibility optimization

problem is formulated as follows.

To find the set of four negative variables rk,∀ k ∈
{1,2,3,4} which minimizes sup |Tdi(ω)| under constraints

of

• |Tdi(ω)| ≤ ε0, ∀ ω ≤ ω0.

• |Tdi(ωk)| ≤ εk, ∀ k ∈ {1,2, ...,n}.

The above optimization problem can be solved numerically

in Matlab for each case of pole combinations. The final

optimal solution is the one with lowest sup |Tdi(ω)|.
2) Denominator Parameterization: Assume that Tdi takes

the form of (26), the constants ak, ∀ k ∈ {0,1,2,3} are used

as parameters and the constant a4 is set to one without

losing generality. The transmissibility optimization problem

is formulated as follows.

To find the set of four positive variables ak,∀ k ∈
{0,1,2,3} which minimizes sup |Tdi(ω)| under constraints

of

• |Tdi(ω)| ≤ ε0, ∀ ω ≤ ω0.

• |Tdi(ωk)| ≤ εk, ∀ k ∈ {1,2, ...,n}.

• ak > 0, ∀ k ∈ {0,1,2,3}.

• a2 − a1/a3 > 0.

• a1 − a3a0/(a2 − a1/a3)> 0.

The last three constraints are used to keep Tdi stable. They

are derived using the Routh-Hurwitz criterion.

C. Numerical Example

A simple numerical example of the optimization process

is given. Assume that

• Gξ i(ω) = 0.1 and Gηi(ω) = 0.2.

• ω0 = 0.01 Hz, ω1 = 0.5 Hz, ω2 = 10 Hz.

• ε0 = 1.1885 (1.5 dB), ε1 = 1 (0 dB), ε2 = 3.162×10−3

(-50 dB).

Using the pole parameterization, the initial values are set

as rk = −1, ∀ k ∈ {1,2,3,4}. Three results are obtained for

each combination of the four poles.

• Four real poles (rk =−1.3648, ∀ k ∈ {1,2,3,4}).

• Two real poles (r1 = r2 =−0.2609) and a conjugate pair

(−2.0004± 2.2374 j).

• Two conjugate pairs (r1 = r3 =−1.3648 and r2 = r4 =
0). This result is the same as the four real pole case.

Since the results of four real poles and two conjugate

pairs converge, there are only two different results left. The

corresponding |Tdi| curves are plotted in Fig. 6. The second

pole combination (two real poles and one conjugate pair)

gives the lowest peak of |Tdi| (3.1797 dB).

Using the denominator parameterization, the optimized

parameters are a3 = 4.4840, a2 = 11.1637, a1 = 4.6465, and

a0 = 0.6173. The corresponding |Tdi| curve is plotted in

Fig. 7. The peak value is 3.1522 dB, which is lower than

the pole parameterization method.

Note that the optimization process in Matlab does not

guarantee the existence of the solution. Therefore, the initial

values of the optimization process should satisfy all the

constraints. The two parameterization methods give different

results. This is because the optimization process in Matlab

does not guarantee global optimum. One way to further

improve the optimization performance is to iteratively run
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Fig. 6. Optimized |Tdi| using the pole parameterization. The solid line
(green) is the result of four real pole parameterization and the two conjugate
pair parameterization. The dashed line (red) is the result of two real poles
& a conjugate pair parameterization.
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Fig. 7. Optimized |Tdi| using the denominator parameterization.

the optimization process using the result of the previous op-

timization process as the initial values. But the improvement

gained by using this iteration is usually ignorably small in

practice. Nevertheless, the optimization process gives much

better result than the manual pole placement.

V. CONCLUSION

The strategy of combining modal decomposition and

frequency-shaped sliding surface control is applied to the

6-DOF AVIS with the measurement scheme of relative

displacement and payload absolute acceleration. The 6-DOF

AVIS can be decoupled by modal decomposition under the

condition of the proportional damping. If this condition is

not satisfied, static optimal decoupling [13] can be applied.

The frequency-shaped sliding surface control is described

more generally as a two-step control methodology. The

first step is to design the sliding surface based on the

measurement schemes of relative displacement and payload

absolute acceleration. The sliding surface can be designed by

numerically solving the transmissibility optimization prob-

lem based on the power spectrum of the modal sensor noises

and base-frame vibrations. The second step is to realize the

optimized performances by the regulator design. To realize

the optimized transmissibility, the regulator gain has to be

high enough at interested frequencies. The regulator gain

is preferred to be low at high frequencies to deal with the

possible time delay and unmodeled flexible modes.

This strategy is applicable to a class of multi-DOF AVIS.

The advantage with respect to the H∞ control is that the low

implementation cost and the straight-forward design process.

The transmissibility optimization process gives the best re-

alizable transmissibility under the conditions of performance

constraints, power spectrum of sensor noises, and power

spectrum of base-frame vibrations. This strategy is going to

be tested in experiments in the near future.
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