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Abstract— This paper proposes a model predictive control
(MPC) algorithm for Linear Parameter Varying (LPV) systems
with unknown bounded delay, subject to input constraints. To
deal with the delay, an optimization problem is formulated
by applying the equivalence property. Sufficient conditions are
derived in terms of linear matrix inequalities (LMIs) using
relaxation matrices, satisfying the terminal inequality. The
proposed MPC algorithm with the conditions guarantees the
asymptotic stability of the closed-loop system. A numerical
example is presented to illustrate the effectiveness of the
proposed method.

I. INTRODUCTION

Linear Parameter Varying (LPV) systems have received

considerable attention in recent years due to their applicabil-

ity in many practical situations [1]-[7]. One of advantages of

LPV system is the capability to express nonlinear systems

into linear systems with the time varying parameters of

affine functions. Many researchers proposed various control

methods to express these parameters as polytopic [2]-[4]

or structured feedback representation [5]-[7]. With these

representations, model predictive control (MPC), also known

as moving or receding horizon control, has been suggested

as an effective technique to control LPV systems due to its

ability to describe their time-varying behaviors. Moreover,

in company with many practical applications especially in

chemical process control, such as petrochemical, pulp, and

paper control, many studies of MPC for LPV systems have

been published, continuously [3]-[7].

Although MPC technique has some powerful properties,

for example, guaranteed stability, good tracking performance,

and input-output constraint handling, the time delay ex-

isting in a system is an essential factor which should be

considered. This is why the time delay is inevitable in

practical as well as can be a main factor of performance

degradation and instability. However, there exist only a few

MPC methods that consider time-delayed LPV system [9]-

[10]. In [9], authors proposed a parameter-dependent state-

feedback controller for LPV system with parameter-varying

time delay and proved the stability by using parameter-

dependent Lyapunov functionals. Also, a delay-scheduled

state-feedback controller was designed in [10] by introducing

a new model transformation turning a time-delay system
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into the uncertain LPV systems. Even though they showed

significant efficiencies of their controller, there are still some

drawbacks as follows; First, both assumed that the delay is

represented as a known function of a parameter vector or is

approximately known in real-time. But it is difficult to know

the prior information of the delay in practical situations.

Second, in their methods, there exists the limitation to apply

input constraints which is demanded when controlling many

practical plants. Hence, such a controller that can overcome

the drawbacks mentioned above is needed with MPC method

that enables to effectively handle constraints.

Motivated by these discussions, in this paper, we present

an MPC method for polytopic state delayed LPV system

having unknown bounded delay and input constraint. To deal

with the unknown delay, we represent two different optimiza-

tion problems, and then we solve original one by using the

equivalence property between two different problems. The

infinite-horizon min-max optimization problem is formulated

as a minimization of the upper bound of cost function to

design a state feedback MPC law. At the end, we derive

sufficient conditions which guarantee the asymptotic stability

of the closed loop system, including not only the input

constraint but also a new condition for the cost monotonicity

which is derived by using relaxation matrices.

The rest of this paper is organized as follows. Section II

provides the problem statement and preliminary. Section III

presents main results for the derived sufficient conditions in

terms of LMIs, proof of feasibility, and stability for proposed

MPC algorithm. Section IV shows simulation results to

demonstrate its effectiveness of the proposed method. Fi-

nally, Section V concludes this paper with a summarization.

Throughout this paper, Rn and Rn×m denote the n-

dimensional Euclidean space and the set of all n×m ma-

trices, respectively. ∗ in symmetric matrices represents the

abbreviated off-diagonal block. For symmetric matrices X

and Y , the notation X ≥ Y and X > Y mean that X −Y

is positive semidefinite and positive definite, respectively.

Finally, we denote ‖x‖W = xT W x for a vector x.

II. PROBLEM STATEMENT

Consider the following discrete polytopic LPV systems

whose system matrices A(p(k)), Ā(p(k)),B(p(k)) are affine

functions of a parameter vector p(k):

x(k +1) = A(p(k))x(k)+ Ā(p(k))x(k−d)+B(p(k))u(k)

x(k) = Φ(k), k ∈ [−d∗,0] (1)
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subject to input constraints

−ū ≤ u(k) ≤ ū, ū > 0, for all k ∈ [0,∞) (2)

where A(p(k)) = ∑L
l=1 pl(k)Al , Ā(p(k)) = ∑L

l=1 pl(k)Āl ,

B(p(k)) = ∑L
l=1 pl(k)Bl . x(k) ∈ Rn is the state vector, u ∈ Rm

is the control input, and Φ(k) ∈ Rn is the initial condition.

d is an unknown constant integer representing the number

of delay units in the state, but assumed 0 ≤ d ≤ d∗ with a

known integer d∗, and the time-varying parameter vectors

p j(k) belong to a convex polytope, i.e.

L

∑
l=1

pl(k) = 1, 0 ≤ pl(k) ≤ 1, l = 1,2, · · · ,L. (3)

Then, it is clear that as p(k) varies inside its polytope, the

LPV system matrices vary inside a corresponding polytope

Ω whose vertices consist of L local system matrices.

[A(p(k)),Ā(p(k)),B(p(k))] ∈ Ω

= Co{[A1, Ā1,B1], [A2, Ā2,B2], ..., [AL, ĀL,BL]} (4)

where Co denotes the convex hull.

Our goal is to design a state-feedback controller u(k) =
K(k)x(k + j|k) by MPC strategy to stabilize (1). To obtain

such a controller, we consider the following optimization

problem at each time instant.

min
u(k+ j|k), j≥0

max
[A(p(k)),Ā(p(k)),B(p(k))]∈Ω

J∞(k) (5)

subject to

J∞(k) ,
∞

∑
j=0

‖x(k + j|k)‖Q +‖u(k + j|k)‖R , (6)

x(k + j +1|k) =A(k + j)x(k + j|k)+ Ā(k + j)x(k + j−d|k)

+B(k + j)u(k + j|k), (7)

−ū ≤ u(k + j|k) ≤ ū, j ∈ [0,∞) (8)

where J∞(k) is the infinite horizon quadratic cost function

with the given symmetric constant matrices Q > 0 and R >
0; x(k+ j|k) and u(k+ j|k) denote predicted variables of the

state and input at time instant k, respectively. We define a

quadratic function to compute the control input u(k)

V (x(k + j|k),P(k),Pd(k),d)

, ‖x(k + j|k)‖P(k) +
d

∑
i=1

‖x(k + j− i|k)‖Pd(k), (9)

j ≥ 0 where P(k) and Pd(k) are any positive definite sym-

metric matrices.

At each instant k, it is assumed that (9) satisfies the

following robust stability constraint for all states and control

inputs of the system (1) as follows:

△V =V (x(k + j +1|k),P(k),Pd(k),d)

−V (x(k + j|k),P(k),Pd(k),d)

<− (‖x(k + j|k)‖Q +‖u(k + j|k)‖R (10)

This equation (10) is called the terminal inequality [11]

and is used to derive the sufficient condition for cost mono-

tonicity in the next section.

III. MAIN RESULTS

In this section, deriving a new sufficient condition for cost

monotonicity through relaxation matrix, we propose an MPC

algorithm which can make the closed loop system of the LPV

system (1) be asymptotically stabilized.

A. LMI condition for cost monotonicity using Relaxation

Matrices

Since the relaxation matrices allow the extended solution

range of LMIs conditions by reducing the upper bound

of worst-case functions [13], it can be a good method to

obtain sufficient conditions to stabilize LPV system [5]. The

condition is presented in the following Theorem 1.

Theorem 1: The terminal inequality (10) is satisfied for

any polytope [A(p(k)), Ā(p(k)),B(p(k))] ∈ Ω, if there exist

X(k), Y (k), Z(k), H(k), QT (k) = Q(k) > 0, and Qd(k) =
QT

d (k) > 0 satisfying the following LMI:





















−X(k)−X(k)T ĀlQd(k)−Y (k)
∗ −Qd(k)
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

(Al − I)Q(k)+BlH(k)−Z(k)+XT (k) XT (k)
Y T (k) Y T (k)

Z(k)+ZT (k) ZT (k)
∗ −Q(k)
∗ ∗
∗ ∗
∗ ∗

0 0 0

0 0 0

QT (k) QT (k)QT/2 HT (k)RT/2

0 0 0

−Qd(k) 0 0

∗ −I 0

∗ ∗ −(k)I





















< 0 (11)

where Q(k) , P−1(k), Qd(k) , P−1
d (k), and H(k) ,

K(k)Q(k) for each polytope [Al , Āl ,Bl ] with l = 1, ...,L.

Proof: At first, let us define the difference between

x(k+1) and x(k), i.e. δx(k) , x(k+1)−x(k). Then, we can

rewrite the system equation (1) for a polytope [Al , Āl ,Bl ], ap-

plying state feedback controller u(k) = K(k)x(k), as follows

[

Al +BlK(k)− I Āl −I
]





x(k)
x(k−d)
δx(k)



 = 0. (12)

The following equality is always satisfied for nonzero

relaxation matrices Θ1(k), Θ2(k), and Θ3(k) ∈ Rn×n.





x(k)
x(k−d)
δx(k)





T 



Θ1(k)
Θ2(k)
Θ3(k)





[

Acl Āl −I
]





x(k)
x(k−d)
δx(k)



 = 0 (13)
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where Acl(k) = Al + BlK(k)− I. By using (13), we derive

a new sufficient condition satisfying the terminal inequality

(10) for LPV system (1).

The terminal inequality (10) can be rewritten as

△V (k) =‖x(k + j +1|k)‖P(k) −‖x(k + j|k)‖P(k)

+
d

∑
i=1

‖x(k + j +1− i)‖Pd(k) −
d

∑
i=1

‖x(k + j− i)‖Pd(k)

=‖x(k + j +1|k)‖P(k) −‖x(k + j|k)‖P(k)

−‖x(k + j−d|k)‖Pd(k) +‖x(k + j|k)‖Pd(k) (14)

For notational simplicity, let us define x = x(k+ j|k), xd =
x(k + j − d|k), and δx = x(k + j + 1|k)− x(k + j|k). Then,

(14) can be rewritten as

△V (k) =(x+δx)T P(k)(x+δx)

− xT P(k)x− xT
d P(k)xd + xT Pd(k)x

=





x

xd

δx





T 



Pd(k) 0 P(k)
0 −Pd(k) 0

P(k) 0 P(k)









x

xd

δx





<−





x

xd

δx





T 



Q +KT (k)RK(k) 0 0

0 0 0

0 0 0









x

xd

δx





(15)

Combining (13) with (15) through addition, we obtain the

following inequality,




Pd(k) 0 P(k)
0 −Pd(k) 0

P(k) 0 P(k)



+





Θ1(k)
Θ2(k)
Θ3(k)





[

Acl Āl −I
]

+
[

Acl Āl −I
]T





Θ1(k)
Θ2(k)
Θ3(k)





T

< −





Q +KT (k)RK(k) 0 0

0 0 0

0 0 0



 . (16)

Then, the inequality (16) can be rearranged as




Q +Pd(k) 0 0

0 −Pd(k) 0

0 0 P(k)





+





Θ1(k) 0 P(k)
Θ2(k) Pd(k) 0

Θ3(k) 0 0









Acl Āl −I

0 0 0

0 0 I





+





Acl Āl −I

0 0 0

0 0 I





T 



Θ1(k) 0 P(k)
Θ2(k) Pd(k) 0

Θ3(k) 0 0





T

+





KT (k)
0

0



R
[

K(k) 0 0
]

< 0 (17)

Let us define

Ξ(k) ,





0 0 Q(k)
0 Qd(k) 0

X(k) Y (k) Z(k)



 =





Θ1(k) 0 P(k)
Θ2(k) Pd(k) 0

Θ3(k) 0 0





−T

.

After pre- and post-multiplying ΞT (k) and Ξ(k) in the left-

hand side of (17), respectively, then we obtain





XT (k)
Y T (k)
ZT (k)



P(k)
[

X(k) Y (k) Z(k)
]

+





−X(k)−XT (k) ĀlQd(k)−Y (k)
∗ −QT

d (k)Pd(k)Qd(k)
∗ ∗

AclQ(k)−Z(k)+XT (k)
Y T (k)

Z(k)+ZT (k)+QT (k)[Q̄+Pd(k)]Q(k)



 < 0 (18)

where Q̄ = Q + KT (k)RK(k). Applying the Schur comple-

ments [14] to (18), the inequality can be equivalent to (11).

This completes the proof.

B. Model Predictive Controller Design

To obtain the upper bound of the cost function (6), the

terminal inequality (10) is added from j = 1 to j = ∞,

requiring x(∞|k) = 0 or V (x(∞|k)) = 0, as follows

J∞(k) ≤V (x(k|k),P(k),Pd(k),d). (19)

Then, the original min-max problem (5) can be trans-

formed into the following problem

P(P(k),Pd(k),d) : min
K(k),P(k),Pd(k)

V (x(k|k),P(k),Pd(k),d)

s.t. (7), (8),and (11). (20)

However, this problem cannot directly solved due to the

unknown delay d. We present a fact and an assumption to

deal with the delay.

Fact 1: Let us consider the following two optimization

problems:

(Q1,X1,Y1) = arg min
Q,X ,Y

‖x‖Q +α

s.t. 0 ≥ F1(Q,X ,Y ), ...,0 ≥ Fn(Q,X ,Y ) (21)

(Q2,X2,Y2) = arg min
Q,X ,Y

‖x‖Q +β

s.t. 0 ≥ F1(Q,X ,Y ), ...,0 ≥ Fn(Q,X ,Y ) (22)

where Q, Xand Y denote optimization variables; α and β
denote constant terms; Fi(Q,X ,Y ) denote functions of Q,

Xand Y . The difference of the two optimization problems is

only α and β . Then, if one of the two problems is solvable,

so is the other. Moreover, minimizing arguments of the two

problems are identical, that is, Q1 = Q2, X1 = X2 and Y1 =Y2.

Assumption 1: The matrix Pd(k) > 0 in P(P(k),Pd(k),d)
is fixed to a constant matrix P̄d at all time instants k.

Remark 1: This assumption will make the solution of

the optimization problem more conservative. But it will be

relaxed in the next section.

Using Fact 1 and Assumption 1, the problem

P(P(k),Pd(k),d) is equivalent to P(P(k), P̄d ,d
∗), which

is called the equivalence property of P(P(k),Pd(k),d) and
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P(P(k), P̄d ,d
∗). In addition, we can observe the feasibility

of P(P(k),Pd(k),d) and the closed-loop stability.

(Feasibility) Under Assumption 1, suppose that a feasible

control sequence u(k + j|k), j ≥ 0 is a feasible control of

P(P(k), P̄d ,d
∗) at time k. Then, at the next time k +1, the

following control sequence can be chosen as

u(k + j +1|k +1) = u∗(k + j +1|k), j ≥ 0. (23)

This shows the problem P(P(k), P̄d ,d
∗) has a feasible so-

lution at time k+1, satisfying the input constraint (8) at time

k + 1. Hence, by induction, if the problem P(P(k), P̄d ,d
∗)

is feasible at time k, then the problem is feasible at all time

instants to be greater than k. Also, u(k+ j|k), j ≥ 0 becomes

a feasible control sequence for the problem P(P(k), P̄d ,d) at

time k. Moreover, by the equivalence property, the solution

of P(P(k), P̄d ,d
∗) is one of P(P(k),Pd(k),d).

(Closed-loop Stability) P∗(k) and P∗(k +1) are also opti-

mal for P(P(k), P̄d ,d) by the equivalence, where P∗(k) and

P∗(k +1) are the optimal values of P(P(k), P̄d ,d
∗) at time

k and k +1, respectively.

Since P∗(k + 1) is optimal while P∗(k) is only feasible

at time k + 1, the following inequality is obtained from

optimality

V (x(k +1|k +1),P∗(k +1), P̄d ,d)

≤V (x(k +1|k +1),P∗(k), P̄d(k),d). (24)

Then, using the terminal inequality (10) and x(k+1− i|k+
1) = x(k +1− i|k) with i = 1, ...,d, we have

V (x(k +1|k +1),P∗(k +1), P̄d ,d)−V (x(k|k),P∗(k), P̄d ,d)

≤−(‖x(k|k)‖Q +‖u(k|k)‖R). (25)

After summing (25) from k = 0 to k = i−1, it yields

V (x(i|i),P∗(i), P̄d ,d)+
i−1

∑
k=0

[‖x(k|k)‖Q +‖u(k|k)‖R ]

≤V (x(0|0),P∗(0), P̄d ,d) (26)

Therefore, x(i) = x(i|i) and u(i) = u(i|i) must go to zero as

i goes to infinity, since the left hand side of (26) is bounded

above by the constant V (x(0|0),P∗(0), P̄d ,d). This means the

feasible MPC from P(P(k), P̄d ,d
∗) robustly asymptotically

stabilizes the closed-loop system.

C. MPC algorithm for polytopic time-delayed LPV system

Although we showed the asymptotic stability of the

closed-loop system, it is still conservative due to the fixed

P̄d . Therefore, we relax the conservatism by presenting an

MPC algorithm, which can update P̄d , for the polytopic time-

delayed LPV system.

The algorithm is summarized as follows;

Step 1: (Initialization) at time k = 0, find K(k) and P(k)
by solving the optimization problem P(P(k),Pd(k),d

∗), and

set P̄d = Pd(0) and flag=1.

Step 2: (Generic) at time k ≥ 0, find K(k) and P(k) by

solving the optimization problem P(P(k),Pd(k) = P̄d ,d
∗),

and set K∗(k) = K(k) and P∗(k) = P(k).

Step 3: Find K(k) and Pd(k) by solving the optimiza-

tion problem P(P(k) = P∗(k),Pd(k),d
∗). If Pd(k) < P̄d , set

K∗(k) = K(k), P̄d = Pd(k), flag=flag+1. Otherwise, go to Step

5.

Step 4: If flag ≤ rn, go to Step 2. Otherwise, go to Step 5.

Here rn is a given fixed integer that represents the maximum

repetition number of Step 2 and Step 3.

Step 5: Apply the state-feedback control u(k) = K∗(k)x(k)
to the system.

Step 6: At the next time, set flag = 1 and repeat Step 2 to

Step 5.

Updating Pd in Step 3 with the closed-loop stabil-

ity mentioned above guarantees that once the problem

P(P(k), P̄d ,d
∗) is feasible at k = 0, the MPC from the

previous algorithm robustly asymptotically stabilizes the

system.

Despite the guarantee of the stability, the size of rn

can cause computational burden. Hence, the selection of rn

can be an important factor in terms of trade-off between

performance and computational burden.

Finally, we complete the algorithm with Theorem 2.

Theorem 2: The optimization problem P(P(k),Pd(k),d
∗)

can be solved by this semidefinte program;

min
γ(k),H(k),Q(k),Qd(k),X(k),Y (k),Z(k)

γ(k)

(27)

subject to




















−X(k)−X(k)T ĀlQ̄d(k)−Y (k)
∗ −Q̄d(k)
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗

(Al − I)Q̄(k)+BlH(k)−Z(k)+XT (k) XT (k)
Y T (k) Y T (k)

Z(k)+ZT (k) ZT (k)
∗ −Q̄(k)
∗ ∗
∗ ∗
∗ ∗

0 0 0

0 0 0

Q̄T (k) Q̄T (k)QT/2 H̄T (k)RT/2

0 0 0

−Q̄d(k) 0 0

∗ −γ(k)I 0

∗ ∗ −γ(k)I





















< 0, (28)















1 xT (k|k) xT (k−1|k) · · · xT (k−d∗|k)
x(k|k) Q̄(k) 0 · · · 0

x(k−1|k) 0 Q̄d(k) · · · 0
...

...
...

. . .
...

x(k−d∗|k) 0 0 · · · Q̄d(k)















> 0,

(29)
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and

[

G(k) H(k)
HT (k) Q̄(k)

]

≥ 0, Gii(k) ≤ ū2
i (k). (30)

where, for each polytope [Al , Āl ,Bl ] with l = 1, ...,L, Q̄(k) ,

γ(k)P−1(k) > 0, Q̄d(k) , γ(k)P−1
d (k) > 0, H̄(k) , K(k)Q̄(k),

Gii(k) is the ith diagonal entry of G(k), and ūi is the ith

element of ū.

Proof: Minimizing V (x(k|k),P(k),Pd(k),d
∗) is equiva-

lent to

min
γ(k),K(k),P(k),Pd(k)

γ(k)

subject to ‖x(k|k)‖P(k) +
d∗

∑
i=1

‖x(k− i|k)‖Pd(k) ≤ γ(k). (31)

Let us define Q̄(k) = γP−1(k) > 0 and Q̄d(k) = γP−1
d (k) >

0. Then, by using Schur complement, the conditions (28)

and (29) are derived with performing some procedure as in

Theorem 1 and from the constraints of (31), respectively.

The input constraint (8) can be easily casted into (30) by

applying the so called invariant ellipsoid [11]. So details are

omitted.

IV. NUMERICAL EXAMPLE

In this section, a numerical example is presented to

illustrate the performance of the proposed MPC algorithm

for LPV system. The example is called a backing up control

of a computer simulated truck-trailer and well-known as a

difficult problem due to its nonlinearities and unstability

even without delay [12], [15]. Therefore, it is appropriate to

show the effectiveness of our MPC algorithm. Using Euler’s

first-order approximation with sampling time T = 0.1, we

transform the nonlinear time delay system with the time-

delayed LPV system (1). The time-varying parameter of the

LPV system is caused by the nonlinear function sin(·) of the

original system. Then, the system is described as follows

x(k +1) = A(p(k))x(k)+ Ā(p(k))x(k−d)+B(p(k))u(k)
(32)

where

[A(p(k)),Ā(p(k)),B(p(k))] ∈ Ω

, Co{[A1, Ā1,B1], [A2, Ā2,B2]}, (33)

A1 =





1.0509 0 0

−0.0509 1 0

0.0509 −0.4 1



 , Ā1 =





0.0218 0 0

−0.0218 0 0

0.0218 0 0



 ,

A2 =





1.0509 0 0

−0.0509 1 0

0.0810 −0.6366 1



 , Ā2 =





0.0218 0 0

−0.0218 0 0

0.0347 0 0



 ,

B1 =





−0.1429

0

0



 ,and B2 = B1.

Simulation parameters are as follows; the initial value

of the state is x(0) =
[

0.5π 0.75π −5
]T

, Q =
diag(10,10,10), R = 1, d = 4, d∗ = 10, and rn = 1. Even

though larger rn shows better performance, it causes the com-

putational burden when applied to practical cases. Therefore,

by setting rn = 1, we relax the burden. The variables x1, x2,

x3, and u mean angle difference between the truck and the

trailer, angle of the trailer, y-coordinate of the rear end of

the trailer and steering angle, respectively; x1 is assumed to

be perturbed by time-delay; ū = π/2.5714.
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Fig. 1. States of the controlled polytopic delayed LPV system with
proposed MPC method (x1:solid, x2:dashdotted, x3:dashed)
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Fig. 2. Input trajectory (solid line) with input constraint u(k) ≤ ū =
π/2.5714 (dotted line)

From Fig. 1 to Fig. 3, we can observe that the proposed

MPC algorithm for polytopic time-delayed LPV system

works well to asymptotically stabilize the system. Fig. 1

shows that all system states go to zero despite the unknown

bounded time delay. The control input is depicted in Fig.

2 and not able to exceed its upper bound ū, which means

that the input constraint (8) is held. Moreover, we can easily

see that the upper bound of infinite horizon cost function

γ(k) is monotonically decreasing (Fig. 3). It results from the

720



0 50 100 150 200
0

1

2

3

4

5

6

7
x 10

6

Iteration

C
o
s
t,

 γ

Cost, γ

Fig. 3. Upper bound of cost, γ(k)

sufficient condition (29) derived by using relaxation matrices,

satisfying the terminal inequality.

V. CONCLUSION

This paper proposed a robust MPC algorithm for polytopic

state delayed LPV system having the unknown bounded de-

lay and input constraints. We solved the original optimization

problem by using the equivalence property between two

different optimization problems to deal with the unknown

delay. Moreover, we designed the state feedback controller

from the min-max optimization problem which is formulated

as a minimization of upper bound of infinite horizon cost

function. With the newly proposed sufficient condition for

the cost monotonicity using relaxation matrices, the pro-

posed MPC algorithm asymptotically stabilized the polytopic

delayed LPV system with input constraints. A numerical

example showed its effectiveness.
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