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Abstract— In this paper, a finite horizon H
∞ control problem

is solved for a class of linear quantum systems using a dynamic
game approach for the case of delayed measurements. The
methodology adopted involves an equivalence between the
quantum problem and an auxiliary classical stochastic problem.
Then, the finite horizon H

∞ control problem for the class
of linear quantum systems under consideration is solved for
the case of delayed measurements by solving the finite horizon
H

∞ control problem for an equivalent stochastic H
∞ control

problem using some results from a corresponding deterministic
problem following a dynamic game approach.

I. INTRODUCTION

Most work on tracking and filtering is built on the as-

sumption that measurements are immediately available to an

agent. However, it is not difficult to conceive of situations

in which measurements are subject to non-negligible delays.

The manner in which measurements are delayed, provides

a fundamental distinction between different classes of such

problems. The problem of constant delay involves every

measurement being delayed by the same constant lag. In

this way, measurements are never observed out of sequence:

they are simply and consistently late. Such behavior could

be induced, for example, by a constant bandwidth restriction

in a sensor network. In contrast, random delays provide

for a number of possibilities, including that measurements

are delayed with a constant probability but a fixed lag, or

a constant probability and a random lag. Such problems

could arise as a result of intermittent bandwidth restrictions

on a sensor network. All modes of random delay have the

potential to cause out-of-sequence measurements.

This paper aims to extend the finite horizon H∞ control

problem developed in [1] to the case of delayed measure-

ments. The methodology adopted involves an equivalence

between the quantum problem and an auxiliary classical

stochastic problem. Then, by solving the finite horizon H∞

control problem for an equivalent classical stochastic system

using results from a corresponding deterministic problem

following a dynamic game approach, the finite horizon H∞

control problem is solved for the case of delayed measure-

ments. The proofs of all of the theorems and lemmas will

be given in the journal version of this paper.

This work was completed with the support of a University of New South
Wales Postgraduate Award and the Australian Research Council.

II. PROBLEM FORMULATION

A. The Plant Model

We consider a class of linear quantum dynamical systems

described in the Heisenberg picture by a set of quantum

stochastic differential equations; see [2] and [3]. Also, we

assume that the available information at time t is y[0,t−θ] =
yt−θ where θ > 0 is a time delay. The system is described

by the following continuous time-varying quantum stochastic

differential equations (QSDEs) defined on the finite time

interval [0, tf ] and by the delayed time-varying quantum

measurement equation for the measured output:

dx(t) = A(t)x(t)dt +B(t)du(t) +D1(t)dw(t)

+Gv(t)dv(t);

dy(t− θ) = C(t− θ)x(t − θ)dt+N1(t− θ)dw1(t− θ)

+L(t− θ)dv(t − θ);

z(t) = H(t)x(t) +G(t)βu(t) +M(t)βw(t); (1)

where

H(t)TG(t) = 0;H(t)TH(t) = Q(t);

G(t)TG(t) = I;M(t) = 0. (2)

The initial system variables x(0) = x0 consist of operators

(on an appropriate Hilbert space) satisfying the commutation

relations: [xj(0), xk(0)] = 2iΘjkwhere Θ is a real antisym-

metric matrix with components Θjk; see [2]. Also, we write

φq(t) = x(t) for 0 ≤ t < θ. Moreover, we assume that the

state of the quantum system is Gaussian with mean x̌0 ∈ R
n

and covariance matrix Y0; e.g., see [4]. Then 〈x0〉 = x̌0 and

Y0 =
1

2

〈

(x0 − x̌0)(x0 − x̌0)
T + ((x0 − x̌0)(x0 − x̌0)

T )T
〉

.

(3)

Here, 〈.〉 denotes quantum expectation; e.g., see [5]. In the

sequel, we will fix Y0 but x̌0 will be taken as part of the

disturbance. Also, A(t) ∈ R
n×n, B(t) ∈ R

n×nu , D1(t) ∈
R

n×nw , Gv(t) ∈ R
n×nv and (n, nw, nu and nv are positive

integers) for all t ∈ [0, tf ]. Also, x(t) = [x1(t) · · ·xn(t)]
T

is a vector of self-adjoint possibly noncommutative system

variables; e.g., see [2] for more details. Furthermore, C(t) ∈
R

ny×n, N1(t) ∈ R
ny×nw1 , L(t) ∈ R

ny×nv , H(t) ∈ R
nz×n,

G(t) ∈ R
nz×nu , M(t) ∈ R

nz×nw and (ny, nz and nw1

are positive integers) for all t ∈ [0, tf ]. The quantity dw(t)
represents the input variables or disturbances, du(t) is the
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control input, y(t − θ) is the delayed classical measured

output and z(t) is the controlled output.

We assume that dw(t) = βw(t)dt + dw̃(t) where w̃(t)
is the noise part of w(t) and βw(t) is assumed to be a

square integrable classical disturbance signal. The set of all

such βw(t) is denoted W . Also, we assume that dw1(t) =
βw1

(t)dt + dw̃1(t) where w̃1(t) is the noise part of w1(t)
and βw1

(t) is assumed to be a square integrable classical

disturbance signal. The set of all such βw1
(t) is denoted

W1. The noise w̃(t) is a vector of classical and quantum

Wiener processes with Ito table Fw̃ and commutation matrix

Tw̃ which are defined below. Also, the noise w̃1(t) is a vector

of classical and quantum Wiener processes with Ito table

Fw̃1
and commutation matrix Tw̃1

which are defined below.

Similarly, we also assume that du(t) = βu(t)dt + dũ(t)
where ũ(t) is the noise part of u(t) and βu(t) is a self-

adjoint adapted process generated by a classical controller.

The noise ũ(t) is a vector of classical and quantum noises

with Ito matrix Fũ and commutation matrix Tũ. Also, the

vector dv(t) represents any additional noise in the plant. It

has an Ito matrix Fv and commutation matrix Tv. We assume

that βu(t) = 0 for 0 ≤ t < θ. The non-negative symmetric

Ito matrices Fw̃, Fw̃1
, Fũ, Fv and the commutation matrices

Tw̃, Tw̃1
, Tũ and Tṽ are as defined in [1].

Note that (1) can also be rewritten as

dx(t) = A(t)x(t)dt +B(t)βu(t)dt +D(t)β̌w(t)dt

+Gvt
(t)dvt(t);

dy(t− θ) = C(t− θ)x(t − θ)dt+N(t− θ)β̌w(t− θ)dt

+Lt(t− θ)dvt(t− θ);

z(t) = H(t)x(t) +G(t)βu(t) +M(t)βw(t); (4)

where D(t) =
[

D1(t) 0
]

, N(t) =
[

0 N1(t)
]

,

Gvt
(t) =

[

B(t) D(t) Gv(t)
]

, dvt(t) =








dũ(t)
dw̃(t)
dw̃1(t)
dv(t)









, Lt(t) =
[

0 N(t) L(t)
]

and

β̌w(t) =

[

βw(t)
βw1

(t)

]

. This implies D(t)N(t)T = 0.

B. The Controller Model

We consider a classical controller K of the following form

with a delay θ on the finite time interval [0, tf ]:

dψ(t) = Fc(t)ψ(t)dt +Gc(t)dy(t− θ)

+F̃c(t)ψ(t− θ)dt;

ψ(0) = ψ0; ψ(t) = φ̌(t) for 0 ≤ t < θ;

βu(t) = Hc(t)ψ(t) for t ≥ θ (5)

where ψ(t) is the classical controller state. Here, Fc(t) ∈
R

nc×nc , Gc(t) ∈ R
nc×ny , F̃c(t) ∈ R

nc×nc and Hc(t) ∈
R

nu×nc (nc is a positive integer). The set of admissible

controllers K will be denoted by M. These are controllers of

the form (5) under which the closed-loop system defined by

(1) and (5) has a solution for every β̂w(.) =
(

x̌0, β̃w(t)
)

∈

R
n ×W ×W1 where β̃w(t) =

[

βw(t)
βw1

(t− θ)

]

.

C. The Closed-Loop System

The closed-loop system is obtained by making the identifi-

cation βu(t) = Hc(t)ψ(t) and interconnecting equations (1)

and (5) to give a quantum-classical system described by the

following quantum-classical stochastic differential equations

dη(t) = Ã(t)η(t)dt + Ãθ(t)η(t − θ)dt+ B̃(t)dũ(t)

+D̃(t)β̃w(t)dt+ D̃(t)dw̌(t) + G̃v(t)dṽ(t);

η0 = η(0);

z(t) = H̃(t)η(t) (6)

where

η(t) =

[

x(t)
ψ(t)

]

, Ã(t) =

[

A(t) B(t)Hc(t)
0 Fc(t)

]

,

Ãθ(t) =

[

0 0

Gc(t)C(t− θ) F̃c(t)

]

, B̃(t) =

[

B(t)
0

]

,

D̃(t) =

[

D1(t) 0
0 Gc(t)N1(t− θ)

]

, β̃w(t) =
[

βw(t)
βw1

(t− θ)

]

, G̃v(t) =

[

Gv(t) 0
0 Gc(t)L(t− θ)

]

,

dṽ(t) =

[

dv(t)
dv(t− θ)

]

, dw̌(t) =

[

dw̃(t)
dw̃1(t− θ)

]

and

H̃(t) =
[

H(t) G(t)Hc(t)
]

. Such quantum stochastic

differential equations with time delays have been used

previously in the control literature, for instance see [6].

Let G̃vt
(t) =

[

B̃(t) D̃(t) G̃v(t)
]

and dṽt(t) =




dũ(t)
dw̌(t)
dṽ(t)



. Hence, the closed-loop system (6) becomes

dη(t) = Ã(t)η(t)dt + Ãθ(t)η(t− θ)dt + D̃(t)β̃w(t)dt

+G̃vt
(t)dṽt(t); η0 = η(0);

z(t) = H̃(t)η(t). (7)

D. The cost function

We take the overall disturbance as β̂w(t) =
(

x̌0, β̃w(t)
)

.

We therefore have to determine, whether, under the given

measurement scheme, the upper value of the game

inf
K∈M

sup
β̂w∈Rn×W×W1

Lγ(K, β̂w)

with cost function

Lγ(K, β̂w) =
〈

x(tf )TQfx(tf )
〉

+

∫ tf

0

〈

z(t)T z(t)
〉

dt

−γ2x̌T
0Q0x̌0 − γ2

∫ tf

0

β̃w(t)T β̃w(t)dt

=
〈

x(tf )TQfx(tf )
〉

+

∫ tf

0

〈

x(t)TQ(t)x(t)
〉

dt

+

∫ tf

0

〈

βu(t)Tβu(t)
〉

dt− γ2x̌T
0 Q0x̌0

−γ2

∫ tf

0

β̃w(t)T β̃w(t)dt (8)

is bounded, and to obtain a corresponding min-sup controller.

Here, Qf = QT
f ≥ 0, Q0 is a weighting matrix taken to be
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positive definite, Q(t) = Q(t)T ≥ 0 and 〈.〉 represents the

quantum and classical expectation over all initial variables

and noises; see [2], [3], [5]. The solution to this problem

can be obtained by an extension of the method used in [1]

for the continuous measurement case. Also, note that

〈

x(t)TQ(t)x(t)
〉

+
〈

βu(t)Tβu(t)
〉

=
〈

z(t)T z(t)
〉

=
〈

η(t)TR(t)η(t)
〉

since (2) are satisfied and H̃(t)T H̃(t) = R(t) ≥ 0. Also,

〈

x(tf )TQfx(tf )
〉

=

〈

η(tf )T

[

Q
1

2

f

0

]

[

Q
1

2

f 0
]

η(tf )

〉

=
〈

η(tf )T Q̂fη(t)
〉

where Q̂f =

[

Qf 0
0 0

]

≥ 0. Similarly,

x̌T
0Q0x̌0 = η̌T

0

[

Q
1

2

0

0

]

[

Q
1

2

0 0

]

η̌0 = η̌T
0 Q̂0η̌0

where Q̂0 =

[

Q0 0
0 0

]

≥ 0 and η̌0 = 〈η0〉.

Hence, the cost function (8) can be rewritten as

Lγ(K, β̂w) =
〈

η(tf )T Q̂fη(tf )
〉

+

∫ tf

0

〈

η(t)TR(t)η(t)
〉

dt

−γ2

{

η̌T
0 Q̂0η̌0 +

∫ tf

0

β̃w(t)T β̃w(t)dt

}

. (9)

E. Explicit Expression for Lγ

For the quantum-classical closed-loop system (7), we

define the covariance matrix P by

P (t) =
1

2

〈

η(t)η(t)T +
(

η(t)η(t)T
)T
〉

. (10)

Then,

dP (t) =
1

2

{

〈

dη(t)η(t)T
〉

+
〈

(

dη(t)η(t)T
)T
〉}

+
1

2

{

〈

η(t)dη(t)T
〉

+
〈

(

η(t)dη(t)T
)T
〉}

+
1

2

{

〈

dη(t)dη(t)T
〉

+
〈

(

dη(t)dη(t)T
)T
〉}

An expression for dP (t) using the quantum Ito rule is

dP (t) = Ã(t)P (t)dt + P (t)Ã(t)T dt+ Ãθ(t)P1(t)dt

+P2(t)Ã
T
θ dt+ D̃(t)β̃w(t)

〈

η(t)T
〉

dt

+ 〈η(t)〉 β̃w(t)T D̃(t)T dt+ B̃(t)Sũ(t)B̃(t)T dt

+D̃(t)Sw̌(t)D̃(t)T dt+ G̃v(t)Sṽ(t)G̃v(t)T dt

= Ã(t)P (t)dt + P (t)Ã(t)T dt+ Ãθ(t)P1(t)dt

+P2(t)Ã
T
θ dt+ D̃(t)β̃w(t)

〈

η(t)T
〉

dt

+ 〈η(t)〉 β̃w(t)T D̃(t)T dt

+G̃vt
(t)Sṽt

(t)Gvt
(t)T dt (11)

where

P1(t) =
1

2

〈

η(t− θ)η(t)T +
(

η(t)η(t − θ)T
)T
〉

;

P2(t) =
1

2

〈

η(t)η(t − θ)T +
(

η(t− θ)η(t)T
)T
〉

;

Sũ(t)dt =
1

2

〈

dũ(t)dũ(t)T +
(

dũ(t)dũ(t)T
)T
〉

;

Sw̌(t)dt =
1

2

〈

dw̌(t)dw̌(t)T +
(

dw̌(t)dw̌(t)T
)T
〉

;

Sṽ(t)dt =
1

2

〈

dṽ(t)dṽ(t)T +
(

dṽ(t)dṽ(t)T
)T
〉

;

Sṽt
(t)dt =

1

2

〈

dṽt(t)dṽt(t)
T +

(

dṽt(t)dṽt(t)
T
)T
〉

.

Note that Sṽt
(t)dt =





Sũ(t)dt 0 0
0 Sw̌(t)dt 0
0 0 Sṽ(t)dt



.

Also, we define

Sw̃(t)dt =
1

2

〈

dw̃(t)dw̃(t)T +
(

dw̃(t)dw̃(t)T
)T
〉

;

Sw̃1
(t)dt =

1

2

〈

dw̃1(t)dw̃1(t)
T +

(

dw̃1(t)dw̃1(t)
T
)T
〉

;

Sv(t)dt =
1

2

〈

dv(t)dv(t)T +
(

dv(t)dv(t)T
)T
〉

;

Ŝw̃(t)dt =
1

2

〈

dw̃(t)dw̃1(t− θ)T

+
(

dw̃1(t− θ)dw̃(t)T
)T
〉

;

S̃w̃(t− θ)dt =
1

2

〈

dw̃1(t− θ)dw̃(t)T

+
(

dw̃(t)dw̃1(t− θ)T
)T
〉

;

Ŝv(t)dt =
1

2

〈

dv(t)dv(t − θ)T

+
(

dv(t− θ)dv(t)T
)T
〉

;

S̃v(t− θ)dt =
1

2

〈

dv(t− θ)dv(t)T

+
(

dv(t)dv(t − θ)T
)T
〉

.

Note that,

Sw̌(t)dt =

[

Sw̃(t)dt Ŝw̃(t)dt

S̃w̃(t− θ)dt Sw̃1
(t− θ)dt

]

;

Sṽ(t)dt =

[

Sv(t)dt Ŝv(t)dt

S̃v(t− θ)dt Sv(t− θ)dt

]

.

Hence, we obtain the matrix differential equation

Ṗ (t) = Ã(t)P (t) + P (t)Ã(t)T + Ãθ(t)P1(t) + P2(t)Ã
T
θ

+D̃(t)β̃w(t)
〈

η(t)T
〉

+ 〈η(t)〉 β̃w(t)T D̃(t)T

+G̃vt
(t)Sṽt

(t)Gvt
(t)T . (12)

Note that P (0) = P0 = diag(Y0 + x̌0x̌
T
0 , 0).

We now find an expression for Lγ . In fact,
〈

η(tf )T Q̂fη(tf )
〉

=
1

2
tr
〈

Q̂f

(

η(tf )η(tf )T +
(

η(tf )η(tf )T
)T
)〉

= tr
(

Q̂fP (tf )
)

.
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On the other hand,
〈

η(t)TR(t)η(t)
〉

= tr (R(t)P (t)).

Hence,

Lγ(K, β̂w) = tr
(

Q̂fP (tf )
)

+

∫ tf

0

tr (R(t)P (t))dt

−γ2

{

η̌T
0 Q̂0η̌0 +

∫ tf

0

β̃w(t)T β̃w(t)dt

}

.

(13)

F. The Finite Horizon H∞ problem

We will consider, as the standard problem, the case where

x̌0 is a part of the unknown disturbance. Let
(

x̌0, β̃w(.)
)

:= β̂w(.) ∈ Ωq = R
n ×W ×W1. (14)

Lγ(K, β̂w) defined in (8) can be written in terms of the

closed-loop system variable η(t) as

Lγ(K, β̂w) =
〈

η(tf )T Q̂fη(tf )
〉

+

∫ tf

0

〈

η(t)TR(t)η(t)
〉

dt

−γ2

{

η̌T
0 Q̂0η̌0 +

∫ tf

0

β̃w(t)T β̃w(t)dt

}

= tr
(

Q̂fP (tf )
)

+

∫ tf

0

tr (R(t)P (t))dt

−γ2

{

η̌T
0 Q̂0η̌0 +

∫ tf

0

β̃w(t)T β̃w(t)dt

}

.

The disturbance attenuation problem to be solved is the

following:

Problem Pγ . Determine necessary and sufficient condi-

tions on γ such that the quantity

inf
K∈M

sup
β̂w∈Ωq

Lγ(K, β̂w)

is finite, and for each such γ find a controller K that achieves

the minimum. The infimum of all γ’s that satisfy these

conditions will be denoted by γ∗q .

III. AUXILIARY CLASSICAL STOCHASTIC AND

DETERMINISTIC SYSTEMS

The Auxiliary Classical Stochastic System

We define the following classical linear stochastic system

with delayed measurements

dξ(t) = A(t)ξ(t)dt +B(t)βu(t)dt+D1(t)βw(t)dt

+B(t)S
1/2
ũ (t)dũ(t) +D1(t)S

1/2
w̃ (t)dw̃(t)

+D1(t)Ŝ
1/2
w̃ (t)dw̃1(t− θ)

+Gv(t)S
1/2
v (t)dv(t)

+Gv(t)Ŝ
1/2
v (t)dv(t− θ); t ≥ 0;

dy(t− θ) = C(t− θ)ξ(t− θ)dt+N1(t− θ)βw1
(t− θ)dt

+N1(t− θ)S̃
1/2
w̃ (t− θ)dw̃(t)

+N1(t− θ)S
1/2
w̃1

(t− θ)dw̃1(t− θ)

+L(t− θ)S1/2
v (t− θ)dv(t − θ)

+L(t− θ)S̃1/2
v (t− θ)dv(t);

z(t) = H(t)ξ(t) +G(t)βu(t) (15)

where equations (2) are satisfied and ξ(0) = ξ0 is a Gaussian

random vector with mean x̌0 and covariance matrix Y0 and

ξ(t) = 〈φq(t)〉 = φ̃(t) for 0 ≤ t < θ.

A. Closed-Loop System

The classical controller K is given by (5) and the corre-

sponding closed-loop classical stochastic system is obtained

by making the identification βu(t) = Hc(t)ψ(t) and inter-

connecting equations (15) and (5) to give:

dµ(t) = Ã(t)µ(t)dt + Ãθ(t)µ(t− θ)dt

+B̃(t)S
1/2
ũ (t)dũ(t)

+D̃(t)β̃w(t)dt+ D̃(t)S
1/2
w̌ (t)dw̌(t)

+G̃v(t)S
1/2
ṽ (t)dṽ(t); µ(0) = µ0;

z(t) = H̃(t)µ(t) (16)

where µ(t) =

[

ξ(t)
ψ(t)

]

.

Note that the existence of solutions to stochastic differen-

tial equations with time delays has been studied extensively

in the literature, for instance see [7], [8] and [9].

The closed-loop system (16) can also be rewritten as

dµ(t) = Ã(t)µ(t)dt + Ãθ(t)µ(t− θ)dt+ D̃(t)β̃w(t)dt

+G̃vt
(t)S

1/2
ṽt

(t)dṽt(t); µ(0) = µ0;

z(t) = H̃(t)µ(t) (17)

where Sṽt
(t)dt =





Sũ(t)dt 0 0
0 Sw̌(t)dt 0
0 0 Sṽ(t)dt



.

B. Cost Function

We define the classical cost function

L̂(K, β̂w) = E
(

ξ(tf )TQfξ(tf )
)

+

∫ tf

0

E
(

z(t)T z(t)
)

dt

where Qf = QT
f ≥ 0 and

L̂γ(K, β̂w) = E
(

ξ(tf )TQfξ(tf )
)

+

∫ tf

0

E
(

z(t)T z(t)
)

dt

−γ2

{

x̌T
0Q0x̌0 +

∫ tf

0

β̃w(t)T β̃w(t)dt

}

(18)

where E(.) denotes the classical stochastic expectation.

C. An Explicit Expression for the Closed-Loop Cost Func-

tion

For the stochastic closed-loop system (17), we define the

covariance matrix

P̃ (t) = E(µ(t)µ(t)T ). (19)

Using the classical Ito rule, we can write

dP̃ (t) = E(dµ(t)µ(t)T )+E(µ(t)dµ(t)T )+E(dµ(t)dµ(t)T ).
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Note that

E
(

ξ(t)TQ(t)ξ(t)
)

+ E
(

βu(t)Tβu(t)
)

= E
(

z(t)T z(t)
)

= E
(

µ(t)TR(t)µ(t)
)

since the equations (2) are satisfied and H̃(t)T H̃(t) =
R(t) ≥ 0.

Also,

E
(

ξ(tf )TQfξ(tf )
)

= E

(

µ(tf )T

[

Q
1

2

f

0

]

[

Q
1

2

f 0
]

µ(tf )

)

= E
(

µ(tf )T Q̂fµ(t)
)

where Q̂f =

[

Qf 0
0 0

]

≥ 0.

Similarly,

x̌T
0 Q0x̌0 = µ̌T

0

[

Q
1

2

0

0

]

[

Q
1

2

0 0

]

µ̌0 = µ̌T
0 Q̂0µ̌0

where Q̂0 =

[

Q0 0
0 0

]

> 0 and µ̌0 = E(µ0).

Hence, the cost function (18) can be rewritten as

L̂γ(K, β̂w) = E
(

µ(tf )T Q̂fµ(tf )
)

+

∫ tf

0

E
(

µ(t)TR(t)µ(t)
)

dt

−γ2

{

µ̌T
0 Q̂0µ̌0 +

∫ tf

0

β̃w(t)T β̃w(t)dt

}

.

(20)

D. Equivalence Between P (.) and P̃ (.)

Theorem 3.1: Given any admissible controller K ∈ M

and any β̃w(.) ∈ W×W1, the covariance matrices P (t) given

by (10) and P̃ (t) given by (19) are equal for all t ∈ [0, tf ].
As a consequence of Theorem 3.1, the resulting quantum

closed-loop system (6) and the resulting stochastic closed-

loop system (16) will have the same cost values for all

disturbance inputs β̃w(t) ∈ W × W1; i.e, Lγ(K, β̂w) will

have the same value as L̂γ(K, β̂w).

E. Reformulation of the Auxiliary Classical Stochastic

Closed-Loop System

In this subsection, we reformulate the stochastic worst case

performance problem for the closed-loop system. The closed-

loop system (17) can also be rewritten as:

dµ(t) = Ã(t)µ(t)dt + Ãθ(t)µ(t− θ)dt+ D̃(t)β̃w(t)dt

+dvn(t);

z(t) = H̃(t)µ(t) (21)

where dvn(t) = G̃vt
(t)S

1/2
ṽt

(t)dṽt(t). We now assume

that the initial condition random variable µ(0) = µ0 for

the closed-loop system (21) is normal with mean m and

covariance matrix R0. The stochastic process vn(t) has zero

mean and covariance matrix R1(t). We assume that the

process vn(t) is independent of µ0 and that the matrices

R0 and R1(t) are symmetric and nonnegative definite for all

t ∈ [0, tf ].
1) Reformulating the Closed-Loop Cost Function:: Let

J̌γ(K, β̂w) = −L̂γ(K, β̂w)

= E
(

µ(tf )T Q̃fµ(tf )
)

+

∫ tf

0

E
(

µ(t)T R̃(t)µ(t)dt
)

+γ2

(
∫ tf

0

β̃w(t)T β̃w(t)dt+ µ̌T
0 Q̂0µ̌0

)

(22)

where Q̃f = Q̃T
f = −Qf ≤ 0 and R̃(t) = R̃(t)T =

−R(t) ≤ 0.

Also, we define

Ĵγ(K, β̃w)

= E
(

µ(tf )T Q̃fµ(tf )
)

+

∫ tf

0

E
(

µ(t)T R̃(t)µ(t)dt
)

+γ2

(
∫ tf

0

β̃w(t)T β̃w(t)dt

)

.

We want to minimize J̌γ(K, β̂w) over β̂w(.) which is

equivalent to maximizing L̂γ(K, β̂w) over β̂w(.).
Using Theorem 3.1, P (.) and P̃ (.) are equal. Thus, min-

imizing J̌γ(K, β̂w) over β̂w(.) is equivalent to maximizing

Lγ(K, β̂w) over β̂w(.).
By taking x̌0 as a part of the unknown disturbance, the

quantum cost function Lγ(K, β̂w) defined in Problem Pγ is

equal to the stochastic cost function L̂γ(K, β̂w) since P (.)
and P̃ (.) are equal.

Hence, minimizing J̌γ(K, β̂w) over β̂w(.) is equivalent to

maximizing Lγ(K, β̂w) over β̂w(.) in Problem Pγ .

The Auxiliary Classical Deterministic System

We now consider a deterministic system corresponding to

the auxiliary classical stochastic system (15) defined as:

ξ̇(t) = A(t)ξ(t) +B(t)βu(t) +D1(t)βw(t);

ξ0 = x̌0;

y(t− θ) = C(t− θ)ξ(t− θ) +N1(t− θ)βw1
(t− θ);

z(t) = H(t)ξ(t) +G(t)βu(t) (23)

where equations (2) are satisfied. Also, ξ(t) = φ̃(t) for 0 ≤
t < θ.

The deterministic closed-loop system corresponding to the

auxiliary stochastic closed-loop system (17) is given by

µ̇(t) = Ã(t)µ(t) + Ãθ(t)µ(t− θ) + D̃(t)β̃w(t); µ0 = m

z(t) = H̃(t)µ(t). (24)

Note that the solution to these deterministic differential

equations with time delay has been studied extensively in

the literature, for instance see [10].
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The standard problem we consider is the case where x̌0

is a part of the unknown disturbance. The set of admissible

controllers K will be denoted by M. These controllers are

of the form given by (5) and such that the problem defined

by (23) and (5) has a unique solution for every x̌0 and every

β̃w(.) ∈ W ×W1.

We also introduce the extended cost function

L̃γ(K, β̂w) = ξ(tf )TQfξ(tf ) +

∫ tf

0

z(t)T z(t)dt

−γ2

(
∫ tf

0

β̃w(t)T β̃w(t)dt+ x̌T
0 Q0x̌0

)

= ξ(tf )TQfξ(tf )

+

∫ tf

0

(

ξ(t)TQ(t)ξ(t) + βu(t)Tβu(t)
)

dt

−γ2

(
∫ tf

0

β̃w(t)T β̃w(t)dt+ x̌T
0 Q0x̌0

)

where Q0 is a weighting matrix, taken to be positive definite

and γ > 0.

Also, L̃γ(K, β̂w) can be rewritten in terms of the closed-

loop variable µ(t) and µ̂(t) as

L̃γ(K, β̂w) = µ(tf )T Q̂fµ(tf ) +

∫ tf

0

µ(t)TR(t)µ(t)dt

−γ2

(
∫ tf

0

β̃w(t)T β̃w(t)dt + µ̌T
0 Q̂0µ̌0

)

.

(25)

The corresponding disturbance attenuation problem to be

solved is the following:

Problem P̃γ . Determine necessary and sufficient condi-

tions on γ such that the quantity

inf
K∈M

sup
β̂w∈Ωq

L̃γ(K, β̂w)

is finite, and for each such γ find a controller K (or family

of controllers) that achieves the minimum. The infimum of

all γ’s that satisfy these conditions will be denoted by γ∗c .

IV. AN EQUIVALENT DETERMINISTIC WORST CASE

PERFORMANCE PROBLEM FOR THE CLOSED-LOOP

SYSTEM

A. The Closed-Loop System and the performance index

In the deterministic case, the closed-loop system corre-

sponding to (23) and (5) is given by (24). Also, the closed-

loop deterministic performance index is given by

J̃γ(K, β̃w) = µ(tf )T Q̃fµ(tf ) +

∫ tf

0

µ(t)T R̃(t)µ(t)dt

+γ2

∫ tf

0

β̃w(t)T β̃w(t)dt.

(26)

B. Solution to the Deterministic Worst Case Performance

Problem

The deterministic worst case performance problem can be

stated as follows:

Problem: Consider the closed-loop deterministic system

described by (24). Find an admissible strategy β̃w(.) such

that the cost function (26) is minimized.

We define the following Riccati partial differential equa-

tions

Π̇(t) + Ã(t)T Π(t) + Π(t)Ã(t) + Ãθ(t)
TQ(t,−θ)T

+Q(t,−θ)Ãθ(t) + Π(t)S(t)Π(t) + R̃(t) = 0;

∂Q(t, ξ̃)

∂t
+
∂Q(t, ξ̃)

∂ξ̃
= −

[

Ã(t)T + Π(t)S(t)
]

Q(t, ξ̃)

−Ãθ(t)
TR(t,−θ, ξ̃);

∂R(t, ξ̃, s)

∂t
+
∂R(t, ξ̃, s)

∂ξ̃
+
∂R(t, ξ̃, s)

∂s
(27)

= −Q(t, ξ̃)TS(t)Q(t, s)

where ξ̃ ∈ [0, θ], s ∈ [0, θ] and

Π(tf ) = Q̃f ;

Π(t) = Q(t, 0);

Q(t, ξ̃) = R(t, 0, ξ̃);

R(t, ξ̃, s) = R(t, s, ξ̃)T ;

Q(tf , ξ̃) = 0;

R(tf , ξ̃, s) = 0;

S(t) = −γ−2D̃(t)D̃(t)T ;

R̃(t) = −H̃(t)T H̃(t). (28)

Theorem 4.1: The deterministic linear quadratic problem

(24)-(26) has a finite solution for every initial condition µ0 =
m if and only if the Riccati partial differential equations (27)

with the terminal conditions (28) have solutions on [0, tf ].
If the deterministic linear quadratic problem has a solution,

then it is unique and the optimal disturbance signal β̃w(t) is

given by

β̃∗
w(t) = −γ−2D̃(t)T

(

Π(t)µ(t) +

∫ θ

0

Q(t, ξ̃)Ãθ(t)

µ(t− θ − ξ̃)dξ̃
)

.

Moreover,

J̃γ(K, β̃∗
w) = min

β̃w∈W×W1

J̃γ(K, β̃w)

= mT Π(0)m0

+mT

∫ θ

0

Q(0, ξ̃)Ãθ(0)µ(θ − ξ̃)dξ̃

+

[

∫ θ

0

µ(θ − ξ̃)T Ãθ(0)TQ(0, ξ̃)T dξ̃

]

m

+

∫ θ

0

∫ θ

0

µ(θ − s)T Ãθ(0)TR(0, s, ξ̃)

Ãθ(0)µ(θ − ξ̃)dsdξ̃.
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V. A RELATIONSHIP BETWEEN Ĵγ(K, β̃w) AND J̃γ(K, β̃w)

The following theorem shows the relationship between the

optimum values of the stochastic cost function Ĵγ(K, β̃w)
and the deterministic cost function J̃γ(K, β̃w) where m ∈
R

(n+nc) defines the initial condition of the deterministic

system (24) and the mean of the initial condition in the

stochastic system (21). Let

V̂ (m) = inf
β̃w∈W×W1

Ĵγ(K, β̃w) (29)

and

Ṽ (m) = inf
β̃w∈W×W1

J̃γ(K, β̃w). (30)

Theorem 5.1: Given any m ∈ R
(n+nc), the infimum

V̂ (m) in the stochastic case is related to the corresponding

infimum Ṽ (m) in the deterministic case by the following

equation

V̂ (m) = Ṽ (m) + α (31)

where α is independent of m and depends on the variances

of the noises.

VI. SOLUTION TO THE STOCHASTIC WORST CASE

PERFORMANCE PROBLEM

The stochastic worst case performance problem can be

stated as follows:

Problem: Consider the closed-loop stochastic system de-

scribed by (21). Find an admissible strategy β̃w(.) ∈ W×W1

such that the following cost function is minimized

Ĵγ(K, β̃w) = E
(

µ(tf )T Q̃fµ(tf )
)

+

∫ tf

0

E
(

µ(t)T R̃(t)µ(t)dt
)

+γ2

(
∫ tf

0

β̃w(t)T β̃w(t)dt

)

.

Theorem 6.1: Assume that the Riccati partial differen-

tial equations (27) with the terminal conditions (28) have

solutions on [0, tf ]. Then, the minimal value of the cost

function in the stochastic worst case performance problem

(32) satisfies

min
β̃w∈W×W1

Ĵγ(K, β̃w)

≥ mT Π(0)m+ E

(

µT
0

∫ θ

0

Q(0, ξ̃)Ãθ(0)µ(θ − ξ̃)dξ̃

)

+E

([

∫ θ

0

µ(θ − ξ̃)T Ãθ(0)TQ(0, ξ̃)Tdξ̃

]

µ0

)

+E

(

∫ θ

0

∫ θ

0

µ(θ − s)T Ãθ(0)TR(0, s, ξ̃)

Ãθ(0)µ(θ − ξ̃)dsdξ̃
)

+α1 (32)

where

α1 = tr(Π(0)R0) +

∫ tf

0

tr(R1(t)Π(t))dt. (33)

Also, the optimal signal β̃w(t) is given by

β̃∗
w(t) = −γ−2D̃(t)T

(

Π(t)µ(t) +

∫ θ

0

Q(t, ξ̃)Ãθ(t)

µ(t− θ − ξ̃)dξ̃
)

.

In that case, Π(t) is the solution of Riccati partial differential

equations (27), R0 is the covariance matrix of µ0 and R1(t)
is the covariance matrix of vn(t).

Theorem 6.2: The stochastic linear quadratic control

problem has a finite solution, for every initial condition µ0 =
m, if and only if the Riccati partial differential equations (27)

with the terminal conditions (28) have solutions on [0, tf ].

VII. EQUIVALENCE BETWEEN THE DETERMINISTIC

WORST CASE PERFORMANCE PROBLEM AND THE

STOCHASTIC WORST CASE PERFORMANCE PROBLEM

The following theorems lead to the equivalence between

the deterministic worst case performance problem and the

stochastic worst case performance problem.

Theorem 7.1: In the deterministic case, J̃γ(K, β̃w) has a

finite infimum over β̃w ∈ W ×W1 for all m ∈ R
(n+nc) if

and only only if γ > γ̂.

Theorem 7.2: In the stochastic case, Ĵγ(K, β̃w) has a

finite infimum over β̃w ∈ W × W1 for all m ∈ R
(n+nc)

if and only if γ > γ̂.

Theorem 7.3: Ĵγ(K, β̃w) has a finite infimum over β̃w ∈
W ×W1 for all m ∈ R

(n+nc) if and only if J̃γ(K, β̃w) has

a finite infimum over β̃w for all m ∈ R
(n+nc).

VIII. EQUIVALENCE BETWEEN THE QUANTUM WORST

CASE PERFORMANCE PROBLEM AND THE

DETERMINISTIC WORST CASE PERFORMANCE PROBLEM

Let

Jγ(K, β̃w) = −Lγ(K, β̃w)

=
〈

η(tf )T Q̃fη(tf )
〉

+

∫ tf

0

〈

η(t)T R̃(t)η(t)
〉

dt

+γ2

{
∫ tf

0

β̃w(t)T β̃w(t)dt

}

. (34)

The following theorem leads to the equivalence between the

quantum worst case performance problem and the determin-

istic worst case performance problem.

Theorem 8.1: In the quantum case, Jγ(K, β̃w) has a finite

infimum over β̃w ∈ W × W1 for all m ∈ R
(n+nc) if and

only if J̃γ(K, β̃w) has a finite infimum over β̃w ∈ W ×W1

for all m ∈ R
(n+nc).

IX. SOLUTION TO THE FINITE HORIZON H∞ CONTROL

PROBLEM FOR DELAYED MEASUREMENT SYSTEMS

In order to solve the finite horizon quantum H∞ problem

for delayed measurement systems, we now introduce the fol-
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lowing GRDE (Generalized Riccati Differential Equations):

Ṡ(t) + S(t)A(t) +A(t)TS(t) − S(t)
(

B(t)B(t)T

−γ−2D(t)D(t)T
)

S(t) +Q(t) = 0;S(tf ) = Qf ; (35)

Σ̇(t) = A(t)Σ(t) + Σ(t)A(t)T − Σ(t)
(

C(t)E(t)−1C(t)

−γ−2Q(t)
)

Σ(t) +D(t)D(t)T ; Σ(0) = Q−1
0 ; (36)

L̇(t) = A(t)L(t) + L(t)A(t)T + γ−2L(t)Q(t)L(t)

+D(t)D(t)T ;L(t− θ) = Σ(t− θ); (37)

K(t)A(t) +A(t)TK(t) + γ−2K(t)D(t)D(t)TK(t)

+Q(t) − γ2C(t)TE(t)C(t) = 0;

K(t− θ) = γ2Σ(t− θ)−1 (38)

Ẇ (t) +W (t)A(t) +A(t)TW (t) + γ−2W (t)D(t)

D(t)TW (t) +Q(t) = 0;W (t− θ) = K(t− θ); (39)

d

dt
ΨL(t) =

(

A(t) + γ−2L(t)Q(t)
)

ΨL(t)

+ΨL(t)
(

A(t− θ) + γ−2Σ(t− θ)Q(t− θ)
)

; (40)

dL(t)

dt
= A(t)L(t) + L(t)A(t)T + γ−2L(t)Q(t)L(t)

+D(t)D(t)T , t < θ, L(0) = Q−1
0 ; (41)

dL(t)

dt
= A(t)L(t) + L(t)A(t)T + γ−2L(t)Q(t)L(t)

+D(t)D(t)T − γ−2ΨL(t) (42)
(

Σ(t)C(t)TE(t)−1C(t)Σ(t)
)

|t−θΨL(t),

t > θ (43)

where E(t) = N(t)N(t)T .

In addition, we introduce the following conditions

∀t ∈ [−θ, 0], Σ(t) = Q−1
0 , x̃(t) = 0; (44)

∀τ ∈ [0, tf ], ρ (L(τ)S(τ)) < γ2 (45)

where

˙̃x(t) =
(

A(t) +W (t)−1Q(t)
)

x̃(t) +B(t)βu(t),(46)

x̃(t− θ) = x̌(t− θ);

˙̌x(t) =
(

A(t) + γ−2Σ(t)Q(t)
)

x̌(t)

+Σ(t)C(t)TE(t)−1(y(t) − C(t)x̌(t))

+B(t)û(t),

x̌(0) = 0; (47)

û(t) = −B(t)TS(t)
[

I − γ−2Σ(t)S(t)
]−1

x̌(t).(48)

A. Solution to the Finite Horizon H∞ Control Problem for

the Quantum System

Let

û1(t) = −B(t)TS(t)
(

I − γ−2L(t)S(t)
)−1

x̃1(t); (49)

˙̃x1(t) =
[

A(t) + γ−2L(t)Q(t)
]

x̃1(t) +B(t)û1(t)

+ΨL(t)Σ(t − θ)C(t− θ)T

×E(t− θ)−1 [y(t− θ) − C(t− θ)x̃1(t− θ)] .

(50)

Theorem 9.1: Consider the disturbance attenuation prob-

lem with delayed output measurement with a fixed delay θ

given by Pγ . Let the infimum of the feasible attenuation

levels be γq . If

(a) Equation (35) has a solution over [0, tf ],
(b) Equation (36) has a solution over [0, tf − θ],
(c) for every τ ∈ [0, tf ], equation (37), with Σ(t) extended

to negative values of t as in (44), has a solution over

[τ − θ, τ ] satisfying (45),

then necessarily γ ≥ γq, and an optimal controller achieving

the attenuation level γq is given by (49) with L(τ) given by

(37) or (41) and (42) and x̃(τ) by (46) or (50).

If any one of conditions (a)-(c) above fails, then γ ≤ γq .

X. CONCLUSION

This paper shows that solving the finite horizon H∞

control problem for delayed measurement systems is equiv-

alent to solving a corresponding classical deterministic

continuous-time problem with imperfect delayed state mea-

surements. From this, the solution to the finite horizon

quantum H∞ control problem for delayed measurement

systems can be obtained in terms of GRDEs.
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