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Abstract— This paper presents the mean-square filtering
problem for incompletely measured polynomial system states,
confused with white Poisson noises, over linear observations.
The problem is treated proceeding from the general expression
for the stochastic Ito differential of the optimal estimate and the
error variance. As a result, the Ito differentials for the optimal
estimate and error variance corresponding to the stated filtering
problem are first derived. The procedure for obtaining a closed
system of the filtering equations for any polynomial system
state with white Poisson noises over linear observations is then
established, which yields the explicit closed form of the filtering

equations in the particular case of a third-order state equation.
In the example, performance of the designed optimal filter is
verified against the conventional mean-square polynomial filter
designed for systems with white Gaussian noises.

I. INTRODUCTION

It is well known that the mean-square optimal solution

of the filtering problem for nonlinear state and observation

equations confused with Gaussian white noises is given

by the Kushner equation for the conditional density of an

unobserved state with respect to observations [1]. There are

a very few known examples of nonlinear systems where the

Kushner equation can be reduced to a finite-dimensional

closed system of filtering equations for a certain number

of lower conditional moments. The most famous result, the

Kalman-Bucy filter [2], is related to the case of linear state

and observation equations, where only two moments, the

estimate itself and its variance, form a closed system of

filtering equations. Some other mean-square nonlinear finite-

dimensional filters can be found in [3], [4], [5]. There also

exists a considerable bibliography on robust filtering for the

linear and nonlinear systems corrupted with white Gaussian

noises (see, for example, [6]–[23] and references therein).

On the other hand, the number of publications about mean-

square filtering for systems with white Poisson noises is

relatively small. It is known that the mean-square filter for

linear systems with white Poisson noises coincides with

the Kalman-Bucy filter [24], [25]. A few results related

to nonlinear Poisson systems can be found in [26]-[32].

However, the mean-square filters for nonlinear polynomial

systems with white Poisson noises, similar to those obtained

in [33], [34], [35], have not been yet designed.

This paper presents the optimal finite-dimensional filter for

incompletely measured polynomial system states, confused
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with white Poisson noises, over linear observations. De-

signing the mean-square filter for polynomial systems with

white Poisson noises presents a significant advantage in the

filtering theory and practice, since it enables one to address

the mean-square estimation problems for nonlinear system

states confused with other than Gaussian white noises. The

optimal filtering problem is treated proceeding from the

general expression for the stochastic Ito differential of the

optimal estimate and the error variance ([25], Section 5.10).

As the first result, the Ito differentials for the optimal

estimate and error variance corresponding to the stated

filtering problem are derived. Next, a transformation of the

observation equation is introduced to reduce the original

problem to the one with an invertible observation matrix. It is

then proved, using the technique of representing the superior

moments of a Poisson random variable as functions of its

expectation and variance, that a closed finite-dimensional

system of the optimal filtering equations with respect to a

finite number of filtering variables can be obtained for a

polynomial state equation and linear observations with an

arbitrary observation matrix. In this case, the corresponding

procedure for designing the optimal filtering equations is

established. Finally, the closed system of the optimal filtering

equations with respect to two variables, the optimal estimate

and the error variance, is derived in the explicit form in the

particular case of a third-order state equation.

In the illustrative example, performance of the designed

optimal filter is verified for a third-order bi-dimensional

state over scalar linear observations against a conventional

mean-square filter for stochastic polynomial systems with

white Gaussian noises. The simulation results show a definite

advantage in favor of the designed optimal filter. Indeed, it

can be observed that the estimation error produced by the

optimal filter rapidly reaches and then maintains the zero

mean value. On the contrary, the estimation error given by

the conventional mean-square filter for stochastic polynomial

systems with Gaussian noises behaves unstably and diverges

to infinity before the asymptotic time of the reference state.

The paper is organized as follows. Section 2 presents the

filtering problem statement for incompletely measured poly-

nomial system states, confused with white Poisson noises,

over linear observations. The Ito differentials for the optimal

estimate and the error variance are derived in Section 3. A

transformation of the observation equation is then introduced

to reduce the original problem to a one with an invertible

observation matrix. Section 3 also establishes the procedure

for obtaining a closed system of the filtering equations

for any polynomial system state with white Poisson noise,
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which yields the explicit result in the case of a third-order

state equation. Performance of the obtained optimal filter is

verified in Section 4. The simulation results show a definite

advantage in favor of the designed optimal filter against

the conventional mean-square polynomial filter for stochastic

polynomial systems with white Gaussian noises.

II. FILTERING PROBLEM FOR INCOMPLETELY

MEASURED POLYNOMIAL STATES OVER LINEAR

OBSERVATIONS

Let (Ω,F,P) be a complete probability space with an

increasing right-continuous family of σ -algebras Ft , t ≥ t0,

and let (W1(t),Ft , t ≥ t0) and (W2(t),Ft , t ≥ t0) be independent

centralized Poisson processes. The Ft-measurable random

process (x(t),y(t)) is described by a nonlinear differential

equation with a polynomial drift term for the system state

dx(t) = f (x, t)dt + b(t)dW1(t), x(t0) = x0, (1)

and a linear differential equation for the observation process

dy(t) = (A0(t)+A(t)x(t))dt +B(t)dW2(t). (2)

Here, x(t) ∈ Rn is the state vector and y(t)∈ Rm is the linear

observation vector, m ≤ n. The initial condition x0 ∈ Rn is

a Poisson vector such that x0, W1(t) ∈ Rp, and W2(t) ∈ Rq

are independent. The observation matrix A(t) ∈ R m×n is not

supposed to be invertible or even square. It is assumed that

B(t)BT (t) is a positive definite matrix, therefore, m ≤ q.

All coefficients in (1)–(2) are deterministic functions of

appropriate dimensions.

The nonlinear function f (x, t) is considered polynomial of

n variables, components of the state vector x(t) ∈ Rn, with

time-dependent coefficients. Since x(t) ∈ Rn is a vector, this

requires a special definition of the polynomial for n > 1.

In accordance with [33], a p-degree polynomial of a vector

x(t) ∈ Rn is regarded as a p-linear form of n components of

x(t)

f (x, t) = a0(t)+a1(t)x+a2(t)xxT + . . .+ap(t)x . . .p times . . .x,
(3)

where a0(t) is a vector of dimension n, a1 is a matrix of

dimension n×n, a2 is a 3D tensor of dimension n×n×n, a p

is an (p+ 1)D tensor of dimension n× . . .(p+1) times . . .× n,

and x × . . .p times . . .× x is a pD tensor of dimension n×
. . .p times . . .× n obtained by p times spatial multiplication

of the vector x(t) by itself. Such a polynomial can also be

expressed in the summation form

fk(x, t) = a0 k(t)+∑
i

a1 ki(t)xi(t)+∑
i j

a2 ki j(t)xi(t)x j(t)+ . . .

+ ∑
i1...ip

ap ki1...ip
(t)xi1(t) . . .xip(t), k, i, j, i1 . . . ip = 1, . . . ,n.

The estimation problem is to find the optimal estimate x̂(t)
of the system state x(t), based on the observation process

Y (t) = {y(s), t0 ≤ s ≤ t}, that minimizes the conditional

expectation of the Euclidean 2-norm

J = E[(x(t)− x̂(t))T (x(t)− x̂(t)) | FY
t ]

at every time moment t. Here, E[z(t) | F Y
t ] means the

conditional expectation of a stochastic process z(t) = (x(t)−
x̂(t))T (x(t)− x̂(t)) with respect to the σ - algebra FY

t gener-

ated by the observation process Y (t) in the interval [t0, t]. As

known [25], this optimal estimate is given by the conditional

expectation

x̂(t) = m(t) = E(x(t) | FY
t )

of the system state x(t) with respect to the σ - algebra F Y
t

generated by the observation process Y (t) in the interval

[t0, t]. As usual, the matrix function

P(t) = E[(x(t)−m(t))(x(t)−m(t))T | FY
t ]

is the estimation error variance matrix.

The proposed solution to this optimal filtering problem

is based on the formulas for the Ito differential of the

conditional expectation E(x(t) | F Y
t ) and its variance P(t)

(cited after [25]) and given in the following section.

III. OPTIMAL FILTER FOR INCOMPLETELY MEASURED

POLYNOMIAL STATES OVER LINEAR OBSERVATIONS

The optimal filtering equations could be obtained using the

formula for the Ito differential of the conditional expectation

m(t) = E(x(t) | FY
t ) in case of the linear drift term A0(t)+

A(t)x(t) in the observation equation (see [25])

dm(t)=E( f (x, t) |FY
t )dt+E(x(t)[A(t)(x(t)−m(t))]T |FY

t )×

(B(t)BT (t))−1(dy(t)− (A0(t)+A(t)m(t)), (4)

where f (x, t) is the polynomial drift term in the state

equation. The equation (4) should be complemented with

the initial condition m(t0) = E(x(t0) | FY
t0
).

Trying to compose a closed system of the filtering equa-

tions, the equation (4) should be complemented with the

equation for the error variance P(t). For this purpose, the

formula for the Ito differential of the variance P(t) =
E((x(t)−m(t))(x(t)−m(t))T | FY

t ) in case of the linear drift

term A0(t)+A(t)x(t) in the observation equation could be

used (cited again after [25]):

dP(t) = (E((x(t)−m(t))( f (x, t))T | FY
t )

+E( f (x, t)(x(t)−m(t))T ) | FY
t )+ b(t)bT (t)

−(E(x(t)(x(t)−m(t))T | FY
t )AT (t)×

(B(t)BT (t))−1A(t)E((x(t)−m(t))xT (t)) | FY
t ))dt.

Using the variance formula P(t) = E((x(t)−m(t))xT (t)) |
FY

t ), the last equation can be represented as

dP(t) = (E((x(t)−m(t))( f (x, t))T | FY
t )

+E( f (x, t)(x(t)−m(t))T ) | FY
t )+ b(t)bT (t)

−P(t)AT (t)(B(t)BT (t))−1A(t)P(t))dt. (5)

The equation (5) should be complemented with the initial

condition P(t0) = E[(x(t0)−m(t0))(x(t0)−m(t0))
T | FY

t0
].

The equations (4) and (5) for the optimal estimate m(t)
and the error variance P(t) form a non-closed system of

the filtering equations for the nonlinear state (1) over linear
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observations (2). The non-closeness means that the system

(4),(5) includes terms depending on x, such as E( f (x, t) |F Y
t ),

and E((x(t)−m(t)) f T (x, t)) | FY
t ), which are not expressed

yet as functions of the system variables, m(t) and P(t).
As shown in [34], [35], a closed system of the filtering

equations for a system state (1) with polynomial drift over

linear observations can be obtained in case of Gaussian

white noises in the state and observation equations. In

the considered case of Poisson white noises, the following

transformations are introduced.

First, note that the matrix A can always be assumed a

matrix of complete rank, m, which is equal to the dimension

of the linearly independent observations y(t) ∈ Rm; if not so,

excessive linearly dependent observations, corresponding to

linearly dependent rows of the matrix A, must be removed

from consideration. In doing so, the number of Poisson pro-

cesses in the observation equations can also be reduced to m,

the dimension of independent observations, by summarizing

and re-numerating the Poisson processes in each observation

equation (2). Therefore, the matrix B can always be assumed

a square matrix of dimension m×m, such that B(t)BT (t) is

a positive definite matrix (see Section 2 for this condition).

Next, the new matrices Ā(t) and B̄(t) are defined as follows.

The matrix Ā(t) ∈ Rn×n is obtained from A(t) ∈ Rm×n by

adding n−m linearly independent rows such that the result-

ing matrix Ā(t) is invertible. The matrix B̄(t)∈ Rn×n is made

from the matrix B(t) ∈ Rm×m by placing B(t) in the upper

left corner of B̄(t), defining the other n−m diagonal entries

of B̄(t) equal to infinity, and setting to zero all other entries

of B̄(t) outside the main diagonal or outside the submatrix

B(t). In other words, B̄(t) = diag[B(t),β I(n−m)×(n−m)], where

β = ∞, and I(n−m)×(n−m) is the identity matrix of dimension

(n −m)× (n −m). Thus, the new observation equation is

given by

dȳ(t) = (Ā0(t)+ Ā(t)x(t))dt + B̄(t)dW2(t), (6)

where ȳ(t) ∈ Rn, Ā0(t) = [AT
0 (t),0n−m]

T ∈ Rn, and 0n−m is a

vector of n−m zeros.

The key point of the introduced transformation is that the

new observation process ȳ(t) is physically equivalent to the

old one y(t), since the fictitious last n−m components of

ȳ(t) consist of pure noise in view of infinite intensities of

Poisson white noises in the corresponding n−m equations,

and the first m components of ȳ(t) coincide with y(t). In

addition, the entire observation matrix Ā(t) is invertible, and

the matrix (B̄(t)B̄T (t))−1 ∈ Rn×n exists and equals to the

n× n – dimensional square matrix, whose upper left corner

is occupied by the submatrix (B(t)BT (t))−1 ∈ Rm×m and all

other entries are zeros.

In terms of the new observation equation (6), the filtering

equations (4) and (5) take the form

dm(t) = E( f (x, t) | FY
t )dt +P(t)ĀT (t)(B̄(t)B̄T (t))−1

(dȳ(t)− (Ā0(t)+ Ā(t)m(t))dt), (7)

dP(t) = (E((x(t)−m(t))( f (x, t))T | FY
t )+

E( f (x, t)(x(t)−m(t))T ) | FY
t )+ b(t)bT (t)

−P(t)ĀT (t)(B̄(t)B̄T (t))−1Ā(t)P(t))dt. (8)

with the initial conditions m(t0) = E(x(t0) | FY
t0
) and P(t0) =

E[(x(t0)−m(t0)(x(t0)−m(t0)
T | FY

t0
].

Since the new observation matrix Ā(t) is invertible for

any t ≥ t0, the random variable x(t)−m(t) is conditionally

Poisson with respect to the new observation process ȳ(t),
and therefore with respect to the original observation process

y(t), for any t ≥ t0 (see [25]). Hence, the following consid-

erations are applicable to the filtering equations (4),(5).

If the function f (x, t) is polynomial function of the state x

with time-dependent coefficients, the expression of the terms

E( f (x, t) |FY
t ) in (7) and E((x(t)−m(t)) f T (x, t)) |FY

t ) in (9)

would also include only polynomial terms of x. Then, those

polynomial terms can be represented as functions of m(t)
and P(t) using the following property of a Poisson random

variable x(t)−m(t): all its odd conditional moments can be

represented as functions of the variance P(t). For example,

m1 = E[(x(t)− m(t)) | Y (t)]= 0, m2 = E[(x(t) − m(t))2 |
Y (t)], m3 = E[(x(t)−m(t))3 | Y (t)] are equal to P, m4 =
E[(x(t)−m(t))4 | Y (t)]=3P2 +P, ... etc. After representing

all polynomial terms in (7) and (9), that are generated upon

expressing E( f (x, t) | FY
t ), and E((x(t)−m(t)) f T (x, t)) | FY

t )
as functions of m(t) and P(t), a closed form of the filtering

equations would be obtained.

Finally, in view of definition of the matrices Ā(t) and

B̄(t) and the new observation process ȳ(t), the filtering

equations (7),(9) can be written again in terms of the original

observation equation (2) using y(t), A(t), and B(t)

dm(t) = E( f (x, t) | FY
t )dt +P(t)AT (t)(B(t)BT (t))−1×

(dy(t)− (A0(t)+A(t)m(t))dt), (10)

dP(t) = (E((x(t)−m(t))( f (x, t))T | FY
t )

+E( f (x, t)(x(t)−m(t))T ) | FY
t )+ b(t)bT (t)

−P(t)AT (t)(B(t)BT (t))−1A(t)P(t))dt, (11)

with the initial conditions m(t0) = E(x(t0) | FY
t0
) and P(t0) =

E[(x(t0)−m(t0))(x(t0)−m(t0))
T | FY

t0
].

Furthermore, a closed form of the filtering equations

is obtained from (10) and (11) for a third-order function

f (x, t) in the equation (1), as follows. It should be noted,

however, that application of the same procedure would result

in designing a closed system of the filtering equations for any

polynomial function f (x, t) in (1).

A. Optimal Filter for Third-Order Polynomial State

Let the function

f (x, t) = a0(t)+ a1(t)x+ a2(t)xxT + a3(t)xxxT (12)

be a third-order polynomial, where x is an n-dimensional

vector, a0(t) is an n-dimensional vector, a1(t) is a n× n-

dimensional matrix, a2(t) is a 3D tensor of dimension n×
n× n, a3(t) is a 4D tensor of dimension n× n× n× n.
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In this case, the representations for E( f (x, t) | F Y
t ) and

E((x(t)−m(t))( f (x, t))T | FY
t ) as functions of m(t) and P(t)

are derived as follows

E( f (x, t) | FY
t ) = a0(t)+ a1(t)m(t)+ a2(t)m(t)mT (t)+

a2(t)P(t)+ 3a3(t)m(t)P(t)+ a3(t)m(t)m(t)mT (t)+ (13)

a3(t)P(t)∗ 1,

E( f (x, t)(x(t)−m(t))T ) | FY
t )+E((x(t)−m(t))( f (x, t))T |

FY
t ) = a1(t)P(t)+P(t)aT

1 (t)+ 2a2(t)m(t)P(t)+

a2(t)P(t)∗ 1+(a2(t)(2m(t)P(t)+P(t)∗ 1))T+ (14)

a3(t)[(P(t)∗ (1∗ 1T))+ 3P(t)P(t)+ 3m(t)mT(t)P(t)+

3(m(t)P(t))∗ 1T ]+ (a3(t)[(P(t)∗ (1∗ 1T))+ 3P(t)P(t)+

3m(t)mT (t)P(t)+ 3(m(t)P(t))∗ 1T ])T .

Here, the vector 1 is an n-dimensional vector with all its

components equal to 1, and the vector a3P(t) ∗ 1 ∈ Rn and

matrices a3(t)P(t) ∗ 1 ∗ 1T ∈ Rn×n and a3(t)m(t)P(t) ∗ 1T ∈
Rn×n are defined as

(a3(t)P(t)∗ 1)i = ∑
j,k,l

a3 i jkl(t)Pjk(t)1l , i = 1, . . . ,n,

(a3(t)P(t)∗1∗1T)i j = ∑
h,k,l

a3 ihkl(t)Phk(t)1l1 j, i, j = 1, . . . ,n,

(a3(t)m(t)P(t)∗ 1T )i j = ∑
h,k,l

a3 ihkl(t)mh(t)Pkl(t)1 j,

i, j = 1, . . . ,n.

Substituting the expression (13) in (10) and the expression

(14) in (11), the filtering equations for the optimal estimate

m(t) and the error variance P(t) are obtained

dm(t) = (a0(t)+ a1(t)m(t)+ a2(t)m(t)mT (t)+ a2(t)P(t)+

3a3(t)m(t)P(t)+ a3(t)m(t)m(t)mT (t)+ a3(t)P(t)∗ 1+

P(t)AT (t)(B(t)BT (t))−1[dy(t)− (A0(t)+A(t)m(t))dt],

m(t0) = E(x(t0) | FY
t )), (15)

dP(t) = (a1(t)P(t)+P(t)aT
1 (t)+ 2a2(t)m(t)P(t)+

a2(t)P(t)∗ 1+(a2(t)(2m(t)P(t)+P(t)∗ 1))T+

a3(t)[(P(t)∗ (1∗ 1T))+ 3P(t)P(t)+ 3m(t)mT(t)P(t)+

3(m(t)P(t))∗ 1T ]+ (a3(t)[(P(t)∗ (1∗ 1T))+ 3P(t)P(t)+

3m(t)mT (t)P(t)+ 3(m(t)P(t))∗ 1T ])T + b(t)bT (t))dt−

P(t)AT (t)(B(t)BT (t))−1A(t)P(t)dt. (16)

P(t0) = E((x(t0)−m(t0))(x(t0)−m(t0))
T | FY

t )).

By means of the preceding derivation, the following result

is proved.

Theorem 1. The optimal finite-dimensional filter for the

third-order state (1), where the third-order polynomial f (x, t)
is defined by (12), over the incomplete linear observations

(2), is given by the equation (15) for the optimal estimate

m(t) = E(x(t) | FY
t ) and the equation (16) for the estimation

error variance P(t) = E[(x(t)−m(t))(x(t)−m(t))T | FY
t ].

Thus, based on the general non-closed system of the

filtering equations (7),(9), it is proved that the closed system

of the filtering equations can be obtained for any polynomial

state (1) over incomplete linear observations (2). Further-

more, the specific form (15),(16) of the closed system of

the filtering equations corresponding to a third-order state

is derived. In the next section, performance of the designed

optimal filter for a third-order state over incomplete linear

observations is verified against a conventional mean-square

filter for stochastic polynomial systems with Gaussian noises,

obtained in [35].

IV. EXAMPLE

This section presents an example of designing the optimal

filter for a third-order bi-dimensional state and for over scalar

linear observations and comparing it to a conventional mean-

square filter for stochastic polynomial systems with Gaussian

noises [35].

Let the bi-dimensional real state x(t) satisfy the third-order

system

ẋ1(t) = x2(t), x1(0) = x10, (17)

ẋ2(t) = 0.1x3
2(t)+ψ1(t), x2(0) = x20,

and the scalar observation process be given by the linear

equation

y(t) = x1(t)+ψ2(t), (18)

where ψ1(t) and ψ2(t) are white Poisson noises, which

are the weak mean square derivatives of standard Poisson

process (see [25]). The equations (17),(18) present the con-

ventional form for the equations (1),(2), which is actually

used in practice [36], [37].

The filtering system (17),(18) includes two state compo-

nents x(t) = [x1(t),x2(t)]
T ∈ R2 and only one observation

channel y(t) ∈ R, measuring the state component x1(t). Note

that the observation matrix A = [1 0] ∈ R(1×2) is non-square

and, therefore, non-invertible. Moreover, the state nonlinear

component x2(t) is unmeasured. The filtering problem is

to find the optimal estimate for the third-order state (17),

using incomplete linear observations (18) confused with

independent randomly driven isolated disturbances modeled

as Poisson white noises.

Let us show how to calculate the coefficients of the

vector polynomial (3) for the system (17). Indeed, the matrix

coefficient a1 is a 2× 2 - matrix, equal to a1 = [0 1 | 0 0],
the 3D tensor coefficient a2 consists of zeros only, since the

quadratic or bilinear terms are absent in (17), and the 4D ten-

sor coefficient a3 has only one non-zero entry, a3 2222 = 0.1,

whereas its other entries are zeros. Therefore, according to

(15),(16), this only non-zero term should enter the equation

for m2, multiplied by 3m2P22 +m3
2 + P22, the equation for

P21 = P12, multiplied by 3m2
2P21 + 3P22P21 +P22 + 3m2P22 =

3m2
2P12+3P22P12+P22+3m2P22, in view of symmetry of the

variance matrix P, and the equation for P22, multiplied by

2P22 + 6P2
22+ 6m2P22 + 6m2

2P22.
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As a result, the filtering equations (15),(16) take the

following particular form for the system (17),(18)

ṁ1(t) = m2(t)+P11(t)[y(t)−m1(t)], (19)

ṁ2(t) = 0.1m3
2(t)+ 0.3P22(t)m2(t)+ 0.1P22(t)+

P12(t)[y(t)−m1(t)],

with the initial condition m(0) = E(x(0) | y(0)) = m0,

Ṗ11(t) = 2P12(t)−P2
11(t), (20)

Ṗ12(t) = 1.1P22(t)+ 0.3m2
2(t)P12(t)+ 0.3m2(t)P22(t)+

0.3P22(t)P12(t)−P11(t)P12(t),

Ṗ22(t) = 1+ 0.2P22(t)+ 0.6m2
2(t)P22(t)+ 0.6m2(t)P22(t)+

0.6P2
22(t)−P2

12(t),

with the initial condition P(0) = E((x(0)− m(0))(x(0)−
m(0))T | y(0)) = P0.

The estimates obtained upon solving the equations (19)–

(20) are compared to the estimates satisfying the conven-

tional mean-square polynomial filter equations for the third-

order state (17) over the incomplete linear observations (18)

(see [35]):

ṁk1(t) = mk2(t)+Pk11(t)[y(t)−mk1(t)], (21)

ṁk2(t)= 0.1m3
k2(t)+0.3Pk22(t)mk2(t)+Pk12(t)[y(t)−mk1(t)],

with the initial condition m(0) = E(x(0) | y(0)) = m0,

Ṗk11(t) = 2Pk12(t)−P2
k11(t), (22)

Ṗk12(t) = Pk22(t)+ 0.3m2
k2(t)Pk12(t)+ 0.3Pk22(t)Pk12(t)−

Pk11(t)Pk12(t),

Ṗk22(t) = 1+ 0.6m2
k2(t)Pk22(t)+ 0.6P2

k22(t)−P2
k12(t),

Numerical simulation results are obtained solving the sys-

tems of filtering equations (19)–(20), and (21)–(22). The

obtained values of the estimates m1(t), m2(t), mk1(t), and

mk2(t) satisfying the equations (19), and (21), respectively,

are compared to the real values of the state variables x1(t)
and x2(t) in (17).

For each of the two filters (19)–(20) and (21)–(22), and

the reference system (17)–(18), involved in simulation, the

following initial values are assigned: x10 = −2.5, x20 =
−0.35, m10 = −14.6, m20 = −1.38, P110 = 20, P120 = 0.9,

P220 = 0.06. Realizations of white Poisson noises ψ1(t)
and ψ2(t) in (21) are generated using the Simulink chart

suggested in [38].

The following graphs are obtained: graphs of the errors

between the reference state components x1(t) and x2(t),
satisfying the equations (17), and the optimal filter estimate

components m1(t) and m2(t), satisfying the equations (19),

are shown in Figs. 1 and 2; graphs of the errors between

the reference state components x1(t) and x2(t), satisfying the

equations (17), and the conventional mean-square polynomial

filter estimate components mk1(t) and mk2(t), satisfying the

equations (21), are shown in Figs. 3 and 4. It can be observed

that the estimation error given by the optimal filter rapidly

reaches and then maintains near-zero values. This presents

a definitive advantage of the designed optimal filter. On

the contrary, the estimation error given by the conventional

mean-square polynomial filter diverges to infinity at T =
1.7842.
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Fig. 1. Graph of the error between the real state x1(t), satisfying (17), and
the optimal filter estimate m1(t), satisfying (19), in the entire simulation
interval [0,2].
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Fig. 2. Graph of the error between the real state x2(t), satisfying (17), and
the optimal filter estimate m2(t), satisfying (19), in the entire simulation
interval [0,2].

Note that the optimal filtering error variance P(t) does not

converge to zero as time tends to the asymptotic time point,

since the polynomial dynamics of third order is stronger

than the quadratic Riccati terms in the right-hand side of

the equations (20).

Thus, it can be concluded that the obtained optimal filter

(19)–(20) for a bi-dimensional third-order state over incom-

plete linear observations yields definitely better estimates

than the conventional filter for polynomial systems with

Gaussian noises.
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