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Abstract— In this paper, we present iterative learning control
(ILC) algorithms for terminal control in multi-input multi-
output systems. The optimal ILC framework is investigated
for the formulations of single-terminal point and multiple
intermediate pass points tracking control. First, we consider an
initial learning control technique for one final output, before
sequentially exploring multiple terminal output-tracking via ini-
tial and changing inputs. The novel contribution of this work is
in the analysis of the terminal ILC algorithms, regardless of the
stability, monotonic convergence, and performance properties
in both cases. Illustrative examples are then provided to verify
the proposed approaches.

I. INTRODUCTION

Iterative learning control (ILC) is a control scheme that
refines the input sequences from trials in order to improve
the performance of repetitive operation systems. The prime
strategy of ILC algorithms is to update the control signal
using the information measured in previous iterations. As
such, the ILC controller achieves high tracking performance
in the presence of systems with model uncertainty and
repeatable disturbances. Another contribution of ILC theory
is to investigate the repetitive nature of a system that operates
repetitively. Since the ILC algorithm was initially proposed
by Arimoto [1], there have been numerous publications
and studies performed; a number of surveys [2]- [4] have
effectively covered the novel ideas and development of ILC
methodology.

Terminal iterative learning control (TILC) is a type of
control technique that focuses solely on the terminal point
of a system such that this point only tracks the given
desired output. TILC was first presented for rapid thermal
processing chemical vapor deposition in wafer fabrication
industry applications [5], where the ultimate control objective
is to control the deposition thickness at the end of the thermal
processing cycle. In [6], the plastic sheet surface temperature
control in thermoforming machine is controlled by tuning the
temperature setpoint of the heater. In addition, there has been
some research focused on the initial state learning for final
state control in both theoretical [7] and practical applications
[8]. The main approach of TILC in these studies has been
to update control signals using the terminal tracking error
alone, rather than the whole output trajectory tracking error.
Moreover, these investigations have shown that the approach
could achieve convergence in the iteration domain.

Authors are with the Distributed Control and Autonomous Systems
Laboratory, Department of Mechatronics, Gwangju Institute of Science and
Technology (GIST), Korea; Email: hyosung@gist.ac.kr

978-1-4577-0079-8/11/$26.00 ©2011 AACC

However, previous TILC research has typically only con-
sidered the final point; the existence of intermediate pass
points has not been studied well in ILC theory although many
systems require multiple target points to be tracked. For
example, satellite antennas need to be maneuvered to point
toward a desired ground location, which is determined from
the desired azimuth and elevation angles at given sampling
times [9]. For this problem, multiple point-to-point tracking
control was considered by developing a frequency-domain
framework in which the reference is updated between trials
in [10]. However, since the control problem is focused on
tracking multiple points during system operation—instead of
the whole trajectory at all time instants—the ILC approach,
which tracks a reference trajectory, is undesirable with re-
gards to control effort and energy. Moreover, it requires fur-
ther computational analysis to generate a reference trajectory
from given terminal points. These reasons are the primary
motivation for our development of a new TILC framework
for tracking multiple intermediate pass points.

The objective of this work is to explore TILC in not only
single but also multiple intermediate pass points tracking
controls. We attempt to generate a control signal from infor-
mation of the given pass points at given time instants rather
than for the whole trajectory. Specifically, we apply an initial
input learning technique to track one terminal point, because
of the potential to increase the smooth motion of systems and
reducing the effects of actuator limitations. Additionally, it is
not necessary to continuously apply control signals that lead
to more control efforts if the desired terminal output can be
reached with an appropriate initial control input. After that,
continuous control signals are generated to produce output
curves that track multiple pass points. The technique inves-
tigates only essential information at terminal points. Note
that our approach is based on the norm optimal ILC [11]-
[13], in which the ILC update law is obtained by minimizing
the cost function trial-by-trial. For these two problems, we
show that stability and convergence in the iteration domain
can be achieved and that the algorithms can produce superior
performance by selecting suitable parameters.

The remainder of this paper is organized as follows.
In Section II, we provide some background of terminal
controls. Section III then considers a single terminal point
with initial input learning. Multiple intermediate pass points
control problems are subsequently examined in Section 1V,
by applying both an initial learning control input and a
continuous control signal. Finally, simulation results are
given in Section V, and Section VI concludes this work.

3651



II. BACKGROUND
This section provides the problem setup of TILC control
for a single terminal point and multiple pass points.
Consider a discrete time linear system
Axk(t) + Buk(t)
Cay(t) (D

rp(t+1) =
yr(t) =

where k is the iteration index, and t = 0,1,2..., N is the
sampling time index. Matrices A, B, and C' are time invariant
with appropriate dimensions; this system is a multi-input
multi-output (MIMO) system that has z,(t) € RP,u, (t) €
R™, and y, (t) € R™. Moreover, we assume that the system
is both controllable and observable.

From linear control theory, the output of the system at the
N-th sample time in the k-th iteration is given as

tn—1
yk(tn) = CAN 2 (0) + C Y AT Bug(j). ()
j=0
Also, in this paper, the initial state condition is assumed
to be constant for all iterations; moreover, it is possible
to assume that z, (0) = O without loss of generality. The
goal of TILC is to track terminal points during system
operation by generating an optimal control signal through
trials. After each trial, the outputs at the given terminal points
are measured; consequently, the input is updated from an ILC
learning law.

During the tracking of a single terminal point ¢ that has
its desired output is y4(¢x ), the input signal is constant at all
sampling times in the same iteration, i.e., ug(t;) = ug for
t; ={0,1,2,...,N}. As a result, the output of the terminal
point can be described by

yr(tn) = Pyug, (3)

where Py is the system matrix at the N-th terminal point,

such that
tny—1

Py=C Z AtN=IT1R, 4)
j=0
Note that the system matrix Py is full rank, because the
system is both controllable and observable.

On the other hand, the terminal control task that has
intermediate pass points between the initial point and the
terminal point is relatively more challenging. In this case,
a control signal is generated such that the produced output
curves go through the given pass points iteratively. We define
these points at each time instant as ¢,%,,...,%,;,;, where
0 <t <ty < .. <ty <ty, and the desired outputs
at these points are

ya(t1),ya(te), ...

And in the k-th iteration, the output at the ¢-th intermediate
point is calculated as

yYa(tar)-

ti—1

yr(t:) = C > A7 Buy(j). (5)

Jj=0

III. INITIAL ITERATIVE LEARNING FOR SINGLE
TERMINAL POINT
In this section, we consider the initial learning control
strategy for tracking the N-th terminal point. To investigate
the norm optimal ILC approach, we suggest a performance
index with respect to the terminal point, such that

J(uky1) = €f41 (En)Qerya (tn)
+ (ugs1 — uk)TR(u;H_l —ug) + u£+15uk+1,

(6)

where ), R, and S are real symmetric positive definite
matrices with appropriate dimensions, and the error at the
terminal is

er(tn) = ya(tn) — yr(tn). (N

Here, the control signal at the (k+ 1)-th trial can be attained
by differentiating vector J(ug,1) with respect to ugy1;
setting this derivative equal to zero yields

—P§Q€k+1(t]\r) + R(uk+1 — Uk) + Sup1 = 0. ()
Then, the control input is iteratively computed as
(PNQPN + R+ S)ug1 = Rug + PyQua(tn).  (9)

Since PX;QPN + R+ S is nonsingular, (9) can be rewritten
by the following ILC rule

g1 = Lyug + Laya(tn), (10

where
L, = (PYQPy+R+S)™'R, (11
Lq= (PLQPy + R+ S)"'PLQ. (12)

The linear iterative system (10) is asymptotically stable
(AS) if it generates inputs through trials that are bounded
for all iterations, and u,, = klim u,, exists. Furthermore,

. . — 00
the system is AS if

p(L,) <1, (13)

where p(L,,) is the spectral radius of L,, [3]. As a result, we
obtain the following stability property of the ILC law (10).

Theorem 3.1: For the linear system (1), the ILC learning
algorithm

uk+1 = Lyug + Laya(tn) (14)

is asymptotically stable for all symmetric positive definite
matrices @, R, and S.

Proof: Considering inverse of the nonsingular matrix
Lu’

Lt =

u

R YPLQPy+R+S)
I+ R 'PLQPy + R7'S. (15)

It is then obvious that R™'PLQPy + R™1S is positive
definite; consequently, the matrix L, ! has its all eigenvalues
greater than 1, as shown in the following.

Consider a positive definite matrix M and an identity
matrix /. If we define the eigenvalues of the matrices M
and (I + M) as \(M) and A(I + M), respectively, then

AT + M) = \NM) + 1. (16)
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Since A(M) > 0, then \(I + M) > 1. Therefore, L!
has all eigenvalues greater than 1. Accordingly, it leads to
the conclusion from the inverse eigenvalue theorem in linear
algebra [14],

p(Ly) = max |\;(Ly,)| < 1. (17)

u
However, the concept of AS is not strongly stated in ILC
applications due to the inherently large transient growth
possibility, which is one of main obstacles in ILC design.
Hence, another strong concept in ILC is the monotonic
convergence condition. Briefly, let us provide the background
ideas and conditions for monotonic convergence.

The ILC algorithm is referred to as monotonically conver-
gent if ||uoy — w1 || < luse — uyl| such that 0 < y < 1
[3]. In the learning algorithm (10), ~ is defined as v = || L,,|| ,
which is the largest singular value of L,. Accordingly,
we consider another of the selected weighting matrices to
guarantee the monotonic convergence of the law.

Lemma 3.1: For the linear system (1), the ILC learning
algorithm

Up41 = Lyug + Laya(tn) (18)

guarantees monotonic convergence if the weighting matrices
are chosen as Q = gI, R =rI, and S = sI, where ¢, r, and
s are real positive parameters.

Proof: Applying the contraction mapping theorem with

ug+1 = f(uk),

[f(ua) = flu)ll = [[Lulur — w2
< o(Ly) llur —uefl.  (19)
where the largest singular value of L, is defined as
o(L,) =/ p(LiL,). (20)

Moreover, with @ = ¢I, R = r1, and S = s, the learning
matrix L, is symmetric positive definite, L1 = L,. Since
the eigenvalues of L? are the squares of the eigenvalues of
L,, then

p(LiL,) = Vp(Lu)?
= p(Ly). @1
And the result of Theorem (3.1) leads to
o(L,) <1, (22)
and the final result is given. [ ]

As a consequence of the convergence property, the control
signal at the steady state is calculated from (10) as

(I — Ly) " Laya(tn)
= (PYQPy+ S)_l PEQya(ty).

Hence, the converged error e, = lim ey is
k—o0

Uso -

(23)

oo = Ya(tn) — PNUoo
= [I - Pn(PYQPy + S) ' PYQ] ya(tn). (24)

From the steady state error, we can see that the steady
state error depends on the relationship between matrices )
and S. Specifically, if @ is large compared to S, component-
wise, then the error is small. Moreover, the smallest possible
error, e, = 0, requires .S = 0.

IV. ILC FOR MULTIPLE INTERMEDIATE PASS
POINTS

In the multiple intermediate pass points problem, there
are given desired outputs yq(t1),yq(t2),...,ya(trr) at time
instants t1,%o,...,ty during system operation. The control
task is to then construct a learning law that drives the outputs
through, or at least close to, these points. In conventional
control schemes, a reference trajectory ¥y, is built such that
Yres passes the desired points at ¢,t,,...,t;,. In this case,
we can design a controller that incorporates the system model
to thereby track the given trajectory. However, in this work,
we attempt to design a new ILC formulation that focuses on
only information obtained from the given pass points rather
than use a reference trajectory.

A. Initial Learning

As a initial attempt, we apply the same approach as the
tracking single terminal point case. Hence, if the control
signal is maintained constant as initial iterative learning, the
output at the i-th pass points can be given as

yr(ti) = Pyuy, (25)
where
t;—1
Pi=C) A"I7'B. (26)
j=0
The error at the i-th point is then computed as
er(ti) = ya(ti) — Prus. (27)

Next, we consider a norm optimal TILC performance index

that incorporates multiple pass points ¢;,%,,...,%,,, such
that
M
T(urs1) = Y el (t)Qierra(t:)
(28)

+ (urg1 — k) R(upgr — ug) + uf g Sugpa,

where (); is the weighting matrix at the ¢-th terminal point.

Note that the primary objective here is to generate control
signals that produce an output that minimizes errors at all
terminal points iteratively. The ILC algorithm is generated
from (28) by differentiating J(u1); setting this differenti-
ation to zero then produces

M M
(Z PTQ;P, + R+ S> U1 = Ruy + Z PTQiyalts).

i=1 h=1
(29)
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M

Next, since Y PiTQiPi + R + S is nonsingular, (29) can be
i=1

rewritten as

o —1

Upyy = (Z PiTQiPi+R+S> Ruy,

J 30

M M

- <Z P'Q;P;+ R+ S) > Pl Quyalts).
=1

i=1

Accordingly, a theorem can be formulated to analyze the
stability of the update algorithm.

Theorem 4.1: For the linear system (1), the ILC learning
algorithm (30) for tracking multiple pass points is asymptot-
ically stable for symmetric positive definite matrices @, R,
and S.

Proof: Since PTQ;P; is positive definite with all pass
points t;,t,,...,t,,, the result can be shown in the same
way as Theorem (3.1). |

To show the effectiveness of investigating the initial learn-
ing for tracking multiple pass points, the performance at each
point is subsequently analyzed. First, the steady state control
signal achieved from (30) is

M -1 M
Uoo = (Z PIQiP; + S) > PrQiyalt:). (31
=1

i=1

After that, the converged error of the terminal points at the
i—th sampling time is as follows:

eoo(ti) = ya(t:) — Pitico. (32)
Therefore, the steady state error of the terminal point depends
on the other terminal pass points, in addition to the weighting
matrices ; and S. Moreover, the weighting matrix @; in the
relationship with other terminal weighting matrices describes
how important it is that the output curve yo.(t;) goes close
to the desired output y4(t;). Thus, this technique only could
achieve desirable performance at all points under certain
conditions of given pass points.

B. Iterative Learning using Continuous Control Input

When there are a large number of given intermediate pass
points, the initial learning approach has inherent drawbacks
in achieving performance at all points. For this reason, we
develop a new ILC framework in which the control signal is
time continuous.

First, we formulate the N-sample sequence of inputs in a
super-vector framework as

we=[dF0) wF(1) ... JLWN-1)]1". @33

Then, we define p;(t) as

CAt—t=1B ift < t;
pilt) = {

0 ife>t

By these formulations, the output at the ¢-th time instant is
expressed as

= pju (34)

where p; is expressed as
T
pi = [ p:i(0) pi(1) pi(N—-1) ]".

Therefore, the cost function for the problem of tracking
multiple intermediate pass points ¢, %,,...,1;; can now be
formulated as

(35)

M
J = Zef(ti)Qiek(m +up,Su,,,
=1 (36)
T
+ (uk+1 - uk) R (uk,Jrl — uk)
where

en(ti) = ya(ti) — P} Wps (37)

and R, S, @; are symmetric positive definite matrices.

To work with multiple pass points, we define the super
vector forms of system matrix P and the desired output at
pass points y4 as

[yl () ud (t2)

[ p{ Py ... pY;

vl (ta) 17 (38)
(39)

Ya =
P = 1"

Note that different p;(¢) vanish at different times, thus the
set of functions p;(t) with ¢ = 1,2,..., M are linearly
independent. As such, the cost function (36) can be rewritten
as

J=ys— Puk+1]T Q [y, — Pug ]
+uf 1 Su,,, + (wppq — uk)TR (0 q —uy)

where Q = diag(Q1,Q2, ..., Q). Consequently, the con-
troller in the (k + 1)-th trial is attained from the differential
condition, leading to

(40)

—PTQ (yd —Pugr1) + R(ugyg — uk) + Sup41 =0.

And the ILC algorithm is derived as @

(PTQP + R+ S) up41 = Ruy, + P Qyy. (42)
Also, since PTQP + R + S is positive definite,

L, = (PTQP+R+S) 'R 3)

Ly = (PTQP+R+8S) 'PTQys.  (44)

The following theorem illustrates the results of this approach.
Theorem 4.2: For the linear system (1), the ILC learning
algorithm

up+1 = Lyug + Ly (45)
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is asymptotically stable for all symmetric positive definite
matrices Q, R and S.

Moreover, if matrices R,S, and Q;, where i =
1,2,..., M are positive definite diagonal matrices, then the
algorithm achieves monotonic convergence.

Proof: The learning algorithm is presented in the lift
domain notation of the discrete system. However, the result
is still based on the result of Theorem (3.1). |

The steady state input and erorrs are given from (42) as

u,, = (PTQPy +S) " PQy,. (46)
The steady state error €., = yq — Puy is shown as
e — [I ~P(PTQP+8)"" PTQ] va. (47

Hence, Q and S decide the performance of the tracking
technique. In practical applications, there is always the case
that the importances of particular points are different. As
a result, the entries of the matrix Q decide how different
performance the points are achieved.

Furthermore, the advantage of this approach can primarily
be seen in the computational cost analysis, in which the
system matrix P in the update law has the size nM x mM
rather than nN X mN when tracking the whole trajectory.
Note that in many applications, N could be much larger than
M; thus, in comparison to operating the ILC controller for
N time instants, it is expected that the control energy in
tracking M terminal pass points is smaller.

V. SIMULATION

To illustrate the ideas presented in this paper, consider the
discrete-time system

05 0035 0.025
zt+1) =] 00255 06 —099 |z,(t) 48)
0.75  0.03  0.025
+(02 02 0.0)" u)
ye®) = (1.0 0.0 1.0 )a,(t). (49)

where the system operates on an interval ¢ € [0, 20].

In the first simulation in Fig.1, the ILC law for tracking
the single terminal point yg; = 2 at ¢ = 20 is used with
weighting parameters () = 15, R = 0.7 and S = 0.3. The
figure shows the superior performance and fast convergence
of the errors in the iteration domain. As a second simulation
example Fig.2 shows the output curves which are produced
from initial learning algorithm to control 3 pass points.
Although the errors achieve convergence, the performances
are dependence at given points.

In the next simulation, we demonstrate multiple pass
points TILC using continuous control signals in Fig.3. A
set of 10 points in the interval [0, 20] was selected. The ILC
law is conducted with Q = ¢gI, R = rI and S = sI where
the scalar gains are chosen as ¢ = 50,7 = 5 and s = 0.1.
It is shown in Fig.3 that the convergence is obtained after 8
iterations with the converged error is approximate to zero.

By comparison, the final simulation tests an ILC algorithm
which tracks a reference trajectory instead of points. First,

Iterations

— - — 2nd iteration
—— 20th iteration
O Desired Points

Fig. 1: Initial learning for single terminal point

a trajectory which goes through given points is generated
from an interpolation splines technique. Then, an ILC law
is made with this trajectory and the same scalar gains of
diagonal weighting matrices. Fig.4 shows the performance
almost the same as in Fig.3. Hence, our approach which
does not require generating trajectory could obtain a similar
result of tracking a trajectory.

Ouiput Curves

Time

Fig. 2: Initial learning for multiple pass points

Moreover, we calculate the converged control energy in

both cases. For our approach, the cost is calculated as
1

Sl = 19.72, (50)

while the trajectory tracking techinque requires the larger
cost of 21.05.
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Iterations

— - — 2nd iteration
— 20thteration
O Desired Points

Fig. 3: Convergence of the first output’s errors

VI. CONCLUSION

In this paper, we have formulated and analyzed the TILC

problem in single and multiple pass points for MIMO

[4]

systems. It was found here that the optimal TILC scheme
provided a suitable framework for obtaining asymptotic

stability and monotonic convergence properties. Moreover,

[5]

the approach utilized only essential information at terminal

points instead of the whole trajectory, which enabled us to

[6]

improve the ILC controller, with respect to reducing the

complexity and computational effort.

[7]

A notable future work will be to extend the tracking

multiple pass points problem in nonlinear systems, which

[8]

occurs in applications such as point-to-point controls in
robotics.
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