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Abstract— This paper presents an Iterative Learning Con-
trol (ILC) algorithm for iterative parameter update in a
semi-active system. The ILC law is designed to minimize a
cost function, for example, the mean squared tracking error.
First, a parametrized lifted domain representation of a linear
parameter-varying system is developed explicitly. Based on this
lifted domain representation and a cost function, gradient-
based laws for the parameter update from iteration to iteration
are proposed. Stability, monotonicity, steady state error, and
robustness properties of these algorithms are presented. Finally,
an application of the proposed algorithm is illustrated through
the simulation of a plastic blow molding system.

Index Terms— Iterative Learning Control, Semi-Active Sys-
tems

I. INTRODUCTION

Iterative Learning Control (ILC) is based on the idea that
the performance of a system which executes the same task
multiple times can be improved by learning from the previous
executions (trials) of the same task. Such a strategy has
the advantage of overcoming imperfect knowledge of the
dynamics of the structure to achieve near perfect tracking
through repetition. In this technique, the error and input
signals from previous trials are stored in memory and used to
modify the current input signal. ILC has been widely used
in control of repetitive processes because of its simplicity
of design, analysis and ease of implementation. The first
rigorous formulation of ILC was developed by Arimoto
[1] for robotic manipulators. Since then, ILC has found
application in a wide variety of manufacturing processes.
An interesting area that has seen little research is the use of
ILC for update of parameters in a system. This is particu-
larly because during the learning transient, the system may
become unstable within a trial. However, in the case of semi-
active systems, this problem is alleviated since we restrict
ourselves to modulation of parameters associated with rate
of dissipation of energy in the system.

The use of semi-active systems for vibration control has
been well known to members of the dynamics and vibration
communities. In particular, it has been used successfully for
disturbance rejection. In a fully active system, energy can
be supplied to the overall system from a controlled actuator.
A semi-active system is one in which energy can only be
removed but with a controlled rate of removal. There have
been several investigations into the control of systems using
semi-active means. In the civil engineering community, first
Electrorheological (ER) dampers [2] and subsequently Mag-
netorheological (MR) dampers [3] were examined for use in
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seismic response reduction. The MR dampers are currently
favored because of their greater actuation capabilities. In the
vehicle dynamics community, semi-active suspensions were
intensely scrutinized as attractive options to expensive and
complex fully active suspensions [4]. The types of semi-
active suspensions included ER and MR fluid actuators as
well as variable orifice dampers. An example of such a
system is a blow molding system, where the plunger follows
a desired profile. This profile depends on the part to be
molded and the resistance to motion is also dependent on
the same. By adjusting the damping coefficient dynamically,
the plunger motion can be controlled in a semi-active regime.
We use this system to demonstrate the semi-active parameter
learning algorithm.

Traditionally ILC algorithms are designed to iteratively
update input control signals to achieve or optimize some
performance objective [5]. On the other hand, in semi-active
ILC the performance objective is optimized by iteratively
updating controllable parameters in the system, such as
variable-damping dashpots, variable-stiffness springs, and
potentiometers. The parameter update law is derived from
a gradient-based optimization scheme. In order to obtain the
gradient, closed form expressions of the cost function in
terms of the controllable parameters are necessary. To this
end, we first propose a lifted domain input-output implicit ex-
pression involving the controllable parameters. The gradient-
based parameter update laws from iteration to iteration can
then be obtained to guarantee cost function decrease. We
present three alternate learning laws: (a) P-type, (b) Inverse-
type, and (c) Adjoint-type. The choice of learning law
depends on the availability of model information. We also
present stability, monotonicity, and steady state performance
results for these learning laws.

This paper is organized as follows. Section II presents the
set up and framework for lifted domain analysis of the semi-
active ILC problem. Section III introduces gradient-based
ILC algorithms for the semi-active ILC problem. Section IV
discusses an example application of the proposed method
to blow molding. Finally, in Section V conclusions and
discussion of the semi-active ILC algorithm are presented.

II. PROBLEM DEFINITION

Consider a single input single output (SISO) linear time-
invariant (LTI) continuous time (CT) system described by the

transfer function G(s) = B(s)
A(s) =

m

∑
i=0

bisi

sn+

n−1

∑
j=1

a js j
.The correspond-
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ing differential equation is therefore given by

m

∑
i=0

bi
diu
dt i =

dny
dtn +

n−1

∑
j=1

a j
d jy
dt j (1)

Henceforth, for notational simplicity we will refer to the n-th
derivative of a signal v as v(n). If we sample the input and
output signals at a sampling rate of Ts seconds, we have for
the time instant j :

bmu(m)( j)+bm−1u(m−1)( j)+ . . .+b1u(1)( j)+b0u( j) =

y(n)( j)+an−1y(m−1)( j)+ . . .+a1y(1)( j)+a0y( j) (2)

The lifted system formulation provides a method for
analyzing the behavior of linear sampled time repetitive pro-
cesses, such as ILC. This formulation exploits the finiteness
of the length of each trial to reduce the ILC problem into
a finite-dimensional design problem. The lifted form of the
output (input) vector is obtained by stacking all the sampled
outputs (inputs) over the entire (k-th) cycle, as shown below.

yk =
[

yk(0) yk(1) . . . yk(N−1)
]T (3)

uk =
[

uk(0) uk(1) . . . uk(N−1)
]T (4)

where N is the length (number of sampled time steps) of
each trial. Next, we will find an approximation of the lifted
vector forms for the derivatives of the output and input.

The Lifted Derivative Matrix D

The derivative of a signal v at step j can be determined (in
discrete time) by several alternate approximations (forward
difference (subscript f d), backward difference (bd), central
difference (cd), etc.):

v(1)f d ( j) =
1
Ts

(v( j+1)− v( j))

v(1)bd ( j) =
1
Ts

(v( j)− v( j−1))

v(1)cd ( j) =
1

2Ts
(v( j+1)− v( j−1))

Assuming zero-initial and final conditions, these expressions
are linear combinations of the signal (v). Therefore, in lifted
form the derivative of the signal v is:

v(1) = Dv (5)

D f d = 1
Ts


−1 1 0 . . . 0
0 −1 1 . . . 0
0 0 −1 1 . . .
0 . . . 0 −1 1
0 . . . 0 0 −1


Dbd = −DT

f d

Dcd = 1
2Ts


0 1 0 . . . 0
−1 0 −1 . . . 0
0 1 0 −1 . . .
0 . . . 1 0 −1
0 . . . 0 1 0



The second derivative can be determined by combining the
finite, backward, or central difference formulae twice:

v(2)( j) =
1

T 2
s
(v( j+1)−2v( j)+ v( j−1)) (6)

In terms of the lifted vectors, these equations can be written
as v(2) = DiD jv. The subscripts i and j refer to the type
of approximation used. If we use the same approximation
type twice, v(2) = D2

i v. This reasoning can be extended to
obtain approximations for lifted forms of higher derivatives
of the signal. If we choose the same approximation for all
the derivatives, then the approximation of an nth derivative in
lifted domain is Dn. It is important to note that these approx-
imations have the underlying assumption that the continuous
time signals are approximated by zero-order holds.

Lifted System Description

Based on the discussion above, we can now describe the
lifted formulation of the system shown in Equation 2 as:

bmu(m)+bm−1u(m−1)+ . . .+b1u(1)+b0u =

any(n)+an−1y(m−1)+ . . .+a1y(1)+a0y (7)
⇒ bmDmu+bm−1Dm−1u+ . . .+b1Du+b0u =

anDny+an−1Dn−1y+ . . .+a1Dy+a0y (8)

The lifted-system representation for the system in Equation
2 is therefore

y =
(
anDn +an−1Dn−1 + . . .+a1D+a0I

)−1(
bmDm +bm−1Dm−1 + . . .+b1D+b0I

)
u (9)

It is important to note that this lifted system representation
uses the transfer function instead of the impulse response
coefficients of the system [6].

Now, consider a linear differential equation with time-
varying coefficients, shown in Equation 10.

bm( j)u(m)( j)+bm−1( j)u(m−1)( j)+ . . .+b0( j)u( j) =

an( j)y(n)( j)+an−1( j)y(m−1)( j)+ . . .+a0( j)y( j) (10)

The corresponding lifted system representation for the sys-
tem (with zero initial and final conditions) is

y =
(
diag(an)Dn +diag(an−1)Dn−1 + . . .+diag(a0)I

)−1(
diag(bm)Dm +diag(bm−1)Dm−1 + . . .+diag(b0)I

)
u (11)

where

ai =
[

ai(0) ai(1) . . . ai(N−1)
]T (12)

b j =
[

b j(0) b j(1) . . . b j(N−1)
]T (13)

Note: In the above development we have dropped the
subscript k corresponding to the trial number for clarity.
Subsequently, we will add the subscript k to all trial-varying
lifted vectors (or matrices).
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III. GRADIENT-BASED SEMI-ACTIVE ILC

Consider the lifted system shown in Equation 11. We
assume that all parameters are constant other than the con-
trollable parameters (1) ap (associated with the pth derivative
of y) and (2) bq (associated with the qth derivative of u). The
lifted system equation can then be obtained from Equation
11 as

yk =
(
anDn + . . .+diag(ap,k)Dp + . . .+a0I

)−1(
bmDm +bm−1Dm−1 +diag(bq,k)Dq + . . .+b0I

)
u (14)

The goal of the learning law is to iteratively adjust the
controlled parameters ap,k and bq,k after each iteration so
that a cost function J is minimized.

ap,k+1 = ap,k + γp,ksp,k (15)
bq,k+1 = bq,k + γq,ksq,k (16)

where sp,k and sq,k are the search directions. For a gradient-
based search, these must be chosen such that sT

p,k∇ap(J)+
sT

q,k∇bq(J)< 0 at each step k.
For tracking a reference trajectory yd , a typical quadratic

cost function is

J =
1
2
(yd−y)T (yd−y) =

1
2

eT e (17)

where yd is the desired trajectory to be tracked. The gradients
of the cost function with respect to the parameters ap and
bq at the kth iteration are[

∇ap J
∇bqJ

]
k
=

[
−Ak diag(Dpyk+1)

Ak diag(Dqu)

]
(18)

where Ak =
(
anDn + . . .+diag(ap,k)Dp + . . .+a0I

)−1. For
additional adjustable parameters, the extension is simple
(adding rows to the expression above). With an update law
of the form ap,k+1 = ap,k + δap,k and bq,k+1 = bq,k + δbq,k;
the error evolution equation becomes

ek+1 = ek +Akdiag(Dpyk+1)δap,k−Akdiag(Dqu)δbq,k (19)

The following observations are important:
1) The error evolution equation is linearly dependent on

δap,k and δbq,k.
2) The error evolution equation depends on yk+1. While

this is not realizable before implementation, this ex-
pression can be used for convergence and robustness
analysis.

Consider a general learning law of the form[
ap,k+1
bq,k+1

]
=

[
ap,k
bq,k

]
+

[
Lp,k
Lq,k

]
ek (20)

Claim: The learning law in Eq. 20 is monotonically stable
in the 2-norm sense [5] (i.e. ek→ 0ask→ ∞ and ‖ek+1‖2 <
‖ek‖2) if∥∥∥∥I−Ak

[
−diag(Dpyk+1) diag(Dqu)

][ Lp,k
Lq,k

]∥∥∥∥
2
< 1

(21)

Proof: Using the update law ( Eq. 20 ) and the error evolution
equation (Eq. 19), we get

ek+1 =

[
I−Ak

[
−diag(Dpyk+1) diag(Dqu)

][ Lp,k
Lq,k

]]
ek (22)

Therefore, for monotonic convergence in the 2-norm sense,
we need∥∥∥∥I−Ak

[
−diag(Dpyk+1) diag(Dqu)

][ Lp,k
Lq,k

]∥∥∥∥
2
< 1 (23)

Typical Learning Laws

We now present some typical semi-active learning laws
inspired by traditional ILC algorithms.

1. Proportional Learning Law

[
Lp,k
Lq,k

]
=

[
Kp
Kq

]
(24)

The proportional (P-type) learning law is simple for imple-
mentation but not guaranteed to be monotonically stable.

2. Adjoint Learning Law

[
Lp,k
Lq,k

]
=

1

2 ¯σ(Ak)
2

[
− 1

max(Dpyk+1)
diag(sign(Dpyk+1))

1
max(Dqu)diag(sign(Dqu))

]
AT

k (25)

This learning law does not require explicit knowledge of the
exact value of Dpyk+1 or Dqu, rather we need to know only
the sign and the maximum possible value of these signals,
which are more reasonable to obtain.

3. Inverse Learning Law

[
Lp,k
Lq,k

]
=

[
− 1

2max(Dpyk+1)
diag(sign(Dpyk+1))

1
2max(Dqu)diag(sign(Dqu))

]
Ak (26)

The inverse learning law can be implemented only when we
have knowledge of Ak. Further, typically Ak has very large
singular values because of the derivative action of Dm and
may cause amplification of high-frequency noise. However,
it guarantees monotonic stability of the error.

Convergence Rates and Steady State Performance

We now investigate convergence and steady state perfor-
mance of the semi-active parameter update law with a single
controllable parameter ap. Extensions to multiple parameters
are fairly straightforward but are omitted for brevity. With a
single controllable parameter, we have,

ek+1 =
[
I+Akdiag(Dpyk+1)Lp,k

]
ek = Fek (27)

If F is a strict contraction in the 2-norm sense, i.e., σ̄ (F)<
1, then ek → 0. This condition is standard for monotonic
stability in ILC [5]. We now present conditions under which
the adjoint and inverse laws for parameter update are mono-
tonically stable.

3647



Adjoint Learning Law For the adjoint learning case

F = I− 1
σ̄(Ak)2 Akdiag

(
|Dpyk( j)|

max(Dpyk( j))

)
AT

k (28)

If min(|Dpyk( j)|)
max(Dpyk( j)) > λ > 0 and the condition number

of Ak = σ(Ak)
σ̄(Ak)

= κ (Ak), then, the convergence rate

σ̄ (F) < 1− λκ (Ak)
2 < 1. Note that λ is scaled measure

of the smallest value of the pth derivative of y. In other
words, if the term |Dpyk( j)| > 0, then the contraction is
strict and hence ek → 0. Intuitively, this makes sense since
the controllable parameter ap affects the dynamics of the
system through the corresponding derivative of the output.

Inverse Learning Law For the inverse learning case, we
have

F = I−Akdiag
(
|Dpyk( j)|

max(Dpyk( j))

)
A−1

k (29)

Defining λ and κ(Ak) as in the adjoint case, we get the
convergence rate σ̄ (F)< 1−λκ (Ak)< 1.

The key observation from the above analysis is that
the semi-active learning laws can provide monotonic
convergence to zero steady state error if the output
derivative corresponding to the controllable parameter
stays bounded away from zero and has known sign.

Robustness of Gradient-based ILC Laws

For the problem described in the previous section, one may
argue that the optimal solution may be obtained through a
one step computation

ap,opt = (diag(Dpyd))
−1 ((bmDm +bm−1Dm−1 + . . .+b0I

)
u−(

anDn + . . .+diag(ap,k)Dp + . . .+a0I
)

yd
)

However, this computation will yield suboptimal solutions
in the presence of model uncertainty. On the other hand, the
iterative nature of the gradient-based learning laws provide
robustness to model uncertainty as long as the stability
criterion established in Equation 21 is satisfied. Therefore,
the repetitive refinement of the optimal variation profile of
a controllable parameter results in enhanced robustness of
the learning system over a one-shot purely model-based
computation of the optimal profile.

IV. APPLICATION: POSITION PROFILE CONTROL FOR
BLOW MOLDING

Figure 1 shows a schematic of a typical plastic blow
molding system. The plunger follows a specified pressure-
position profile yd to generate the molded part. Typically, the
blow molding system produces thousands of identical parts
per hour. As a result of this repetitiveness of the molding
process, ILC-type algorithms have been successfully imple-
mented (see, for example [8]) for performance enhancement
in these systems. These investigations have focused on active
control methods.

In this section, we investigate the use of a semi-active
learning algorithm for controlling the plunger position

Fig. 1. SCHEMATIC OF BLOW MOLDING SYSTEM (FROM [7])

through adjustment of a system parameter. The plunger
system in Figure 2 represents a simplified model of the blow
molding system. The mass and spring constant are fixed,
where as the damping may be controlled through a semi-
active element (a controlled-orifice dashpot). The resistance
to the plunger varies based on the part being blow molded.
This resistance is denoted by fr. The plunger moves down by

Fig. 2. SCHEMATIC OF VARIABLE-DAMPING SYSTEM.

gravity and its position profile is controlled by changing the
damping coefficient dynamically. The objective is to follow
the reference trajectory yd without any closed loop control
or actuation, just by using gravity and changing the damping
coefficient as the plunger moves down.

We make the following assumptions about the system:
1) y is measurable: position output.
2) v = ẏ is measurable: velocity output.
3) Known parameters: m, K, and b ∈ [bl ,bu]. b can be

controlled/ changed while m and K are fixed.
4) The sampling rate is Ts seconds.
The semi-active plunger system dynamics can be described

through the differential equation

mÿ(t)+b(t)ẏ(t)+Ky(t) = mg− fr(t) (30)

, where m = 30 kg is the mass of the plunger, K = 1 N/m is
the spring constant, and fr(t) is chosen to vary between 10
and 50 N [9]. The range for controllable damping coefficient
was chosen to be 10 Ns/m to 10000 Ns/m.

The lifted plant system is represented by the equation:(
mD2 +diag(b)D+KI

)−1 y = mg1− fr (31)
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where 1 is a vector of ones and g is gravitational acceleration.
We define our cost function as

J =
1
2
(yd−y)T (yd−y) (32)

We use the gradient-based semi-active learning law:

bk+1 = bk + γksk (33)

We investigate and compare the performance of a P-type
and an inverse-type learning law for this system. Figure 3
shows a plot of the reference trajectory yd to be followed.
Following a similar derivation to the one presented in Section
III, we have

∇b(J) =
[(

mD2 +diag(b)D+KI
)−1

(diag(Dy))
]T

(yd−y)

(34)

Fig. 3. PLOT OF REFERENCE TRAJECTORY (DESIRED PLUNGER
POSITION PROFILE). THE PLUNGER FOLLOWS A TRAJECTORY
OF ALTERNATE SEGMENTS FOR FILL AND PACK PHASES. DUR-
ING THE FILL PHASE, THE PLUNGER MOVES WITH CONSTANT
VELOCITY WHILE DURING THE PACK PHASE, THE PLUNGER IS
HELD TO OBTAIN CONSTANT PRESSURE.

First, we use the P-type search algorithm, i.e., the parame-
ter update is proportional to the error; sk = Kpek. The P-type
learning law is given by

bk+1 = bk +Kp (yd−yk) (35)

We run the semi-active ILC algorithm for 1000 iterations
(Kp < 0), and the convergence of the cost function (2-norm
of error norm) is shown in Figure 4. Note that the the
position error norm decreases, although non-monotonically.
Further, Figure 5 shows the error profile across a single
run for iterations 10, 50, 100, 500, and 1000. We observe
that the peak error is limited to less than 25 mm after 100
iterations and less than 8 mm after 1000 iterations. Though
the algorithm requires 1000 iterations to converge to 1%
error, most of the improvement (80%) is achieved within
the first 100 iterations. This performance is acceptable for
most blow molding applications.

Further, the damping coefficient converges to the ideal
profile as iterations go by, as shown below in Figure 6. The
ideal profile was obtained in simulation by assuming that a
perfect model is available and using Equation 30.

Fig. 4. EVOLUTION OF COST (ERROR 2-NORM) OVER ITERATIONS
USING THE P-TYPE LEARNING LAW.

Fig. 5. POSITION ERROR PROFILE ACROSS ITERATIONS
10,50,100,500, AND 1000 USING THE P-TYPE LEARNING LAW.

Fig. 6. PLOT OF DAMPING COEFFICIENT ACROSS ITERATION 1000.
THE DOTTED LINE SHOWS THE IDEAL DAMPING COEFFICIENT
PROFILE.

Next, we use an inversion-type semi-active ILC law

bk+1 = bk−
diag(sign(Dpyk))

max(Dpyk)
Ak (yd−yk) (36)

Since we do not have access to Dpyk+1, we use Dpyk in the
learning law above. Note that we only need to know the sign
of Dpyk+1, which is always positive.

Figure 7 shows the decrease in error 2-norm over itera-
tions. We notice that the error norm decreases monotonically.
Further, the error profiles within iterations 10, 50, 100, 500
and 1000 in Figure 8 show that the peak error is reduced
to 0.4 mm after 1000 iterations. The inverse-type law yields
very fast and monotonic convergence at the cost of requiring
accurate model parameter information.
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Fig. 7. EVOLUTION OF COST (ERROR 2-NORM) OVER ITERATIONS
USING THE INVERSION-TYPE LEARNING LAW.

Fig. 8. POSITION ERROR PROFILE ACROSS ITERATIONS
10,50,100,500, AND 1000 USING THE INVERSION-TYPE LEARNING
LAW.

Fig. 9. PLOT OF DAMPING COEFFICIENT ACROSS THE ITERATION
FOR ITERATION 1000. THE DOTTED LINE SHOWS THE IDEAL
DAMPING COEFFICIENT PROFILE.

In order to evaluate the robustness of the method, the
algorithm was tested through Monte Carlo simulations of
parameter uncertainty of 30% in the mass and spring con-
stants of the actual and nominal models. The sleeve of error
decay over iterations for these Monte Carlo simulations is
shown in Figure 10. Therefore, we note that the proposed
algorithm is robust to parametric uncertainty in the model
as long as the stability criterion is satisfied.

V. CONCLUSIONS AND FUTURE WORK

This paper investigated semi-active ILC algorithms. The
semi-active learning law is different from traditional ILC
laws in that it iteratively adjusts system parameters instead

Fig. 10. SLEEVE OF ERROR NORM DECAY PROFILES FOR 1000
MONTE CARLO SIMULATIONS WITH 30% MODEL-PLANT PARAM-
ETER MISMATCH (MASS AND SPRING CONSTANT).

of control signals in a repetitive process. The parameters
were adjusted from one cycle to the next for minimization
of a cost function such as the 2-norm of tracking error.
The stability criteria for the semi-active ILC update law was
obtained based on a gradient-type search. The gradient-based
law guarantees convergence to the local minimum of the
cost function. With suitable step size monotonic decrease
in the cost function is achieved. In order to illustrate an
application of the semi-active learning law, a case study
on plastic blow molding was presented. P-type and inverse-
type semi-active learning laws were shown to provide per-
formance enhancement for this system. The learning laws
yielded stable convergence and were shown to be robust
to parametric model uncertainty. The P-type learning law,
while requiring less model information, resulted in non-
monotonic convergence. In contrast, the inverse-type law
was monotonically stable, but required model parameter
knowledge. The choice of the learning law is therefore based
on the availability of accurate model information.
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