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Abstract— Many well studied classes of dynamical systems such

as actuator-constrained linear systems and dynamic artificial neural

networks can be written as discrete-time Lur’e systems with sector-

bounded and/or slope-restricted nonlinearities. Two types of observer-
based output feedback control design methods are presented and ana-

lyzed with regard to robustness to model uncertainties and insensitivity

to output disturbances. The controller designs are formulated in terms
of linear matrix inequalities (LMIs) that are solvable with standard

software. The design equations are illustrated in numerical examples.

I. INTRODUCTION

Lyapunov methods and LMI-based computational algorithms

provide simple but powerful ways to analyze nonlinear dynamical

systems and design stabilizing controllers [1], [2]. Many well-

known stability results were developed for a benchmark problem

known as the Lur’e problem [3], [4], [5]. The Popov and Circle

criteria are sufficient frequency-domain conditions for stability of

the feedback interconnection of a continuous linear time-invariant

system with a sector-bounded nonlinearity [6]. The discrete-time

counterparts are known as the Tsypkin and Jury-Lee criteria [7],

[8]. Such systems consist of the interconnection of a linear time-

invariant system in feedback with a nonlinear operator:

xk+1 = Axk +Bppk,
qk = Cqxk +Dqppk, pk = −φ(qk, k),

(1)

where A ∈ R
n×n, Bp ∈ R

n×np , Cq ∈ R
nq×n, Dqp ∈ R

nq×np ,

and the nonlinear operator φ ∈ Φ where Φ is a set of static functions

that satisfy φ(0, k) ≡ 0 for all k ∈ Z+ and have some specified

input-output characteristics.

Several observer designs for certain classes of nonlinear systems

have been suggested. Many approaches use Luenberger-type ob-

servers with gain L for systems in which the nonlinear feedback

interconnections are exactly known. Results include convergence

analysis for a given Luenberger-type observer [9], analytical results

on eigenvalue assignments based on the multi-valued comparison

lemma (Lemma 3.4 [6]) [10], insights into observer design for

Lipschitz systems using analysis of eigenstructural sufficient con-

ditions on the stability matrix (A−LCy) [11], design of reduced-

order observers for Lipschitz nonlinear systems [12], solutions of

an H∞-optimization problem that satisfies the standard regularity

assumptions and a parameterization of all stabilizing observers for

Lipschitz nonlinearities [13]. In the presence of model uncertainties,

however, the estimation of the states may not be sufficiently

accurate in such Luenberger observers. High-gain observers [6]

have been proposed to allow a separation principle where a state

feedback controller and state observer are designed separately, and

then an output feedback control is applied with the estimate x̂ of
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the state x in the presence of uncertainty in the nonlinearities.

A different type of observer structure has been suggested with

an output-injection term into the nonlinear mappings [14], and

observers for Lur’e systems have been designed with multi-valued

maximal monotone mappings in the feedback path by rendering a

suitable operator passive [15].

The input-to-state stability (ISS) of an observer is relevant in the

certainty-equivalent output feedback control for nonlinear systems.

ISS has been successfully employed in the stability analysis and

control synthesis of nonlinear systems [16], [17]. The discrete-time

counterpart of ISS has also been investigated [18]. A discrete-time

separation principle with local detectability was obtained in [19],

[20] and a robust separation principle was obtained in the presence

of uncertainty in the nonlinearities [18]. If a discrete-time (locally)

detectable system can be stabilized by a state feedback law then it

can also be (locally) stabilized by a feedback law that depends on

the output of a (weak) detector (Theorem 1, [19]). The connection

of detectability and the ISS condition for global stabilization was

investigated in (Theorem 2.3, [20]) and similar results for an

adaptive control system were reported in [21]. Roughly speaking,

if a state observer is convergent to the state exponentially, which

implies that the error dynamics satisfies an ISS property, then a

certainty-equivalent output feedback control that replaces the state

x by its estimate x̂ in a stabilizing state feedback control stabilizes

the overall system.

Two observer-based design methods are proposed for discrete-

time systems: (a) two-step separation of controller-observer design

and (b) one-step linearization of constraints with the variable reduc-

tion (i.e., Finsler’s) lemma. The two-step separation of controller-

observer design satisifies a separation property in a suitable sense

and is robust to model uncertainties and insensitive to output

disturbances. In other words, the state observer is sufficiently robust

to be insensitive to uncertainty up to a certain degree. The one-step

linearization of constraints on the observer and controller gains does

not require any separation property and sufficient LMI conditions

are proposed to obtain both the control feedback gain and the

observer gain simultaneously.

This paper is organized as follows. Section II summarizes some

results from convex analysis and state feedback control for the

system (1). Section III derives two types of observer-based con-

trollers for Lur’e-type systems and shows their robustness to model

uncertainty and insensitivity to output disturbances. The resulting

LMI problems are solved for a numerical example in Section IV

using off-the-shelf software [22], [23], in which the desired control

design specifications are achieved. Section V concludes this paper.

II. MATHEMATICAL PRELIMINARIES

A. Notations and Definitions

The notation used in this paper is standard: Z+ and R+ denote

the set of all nonnegative integers and the set of all nonnegative real

numbers, respectively; ‖·‖ is the Euclidean norm for vectors, or the

corresponding induced matrix norm for matrices; 0 and I denote
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the null matrix whose components are all zeros and the identity

matrix of compatible dimension, respectively; ℓn∞ is the set of all

measurable essentially bounded functions from Z+ to R
n with ℓn∞-

norm defined by ‖f‖ℓn
∞

, max1≤i≤n

{
supk≥0 |fi(k)|

}
< ∞,

where the subscript i denotes the ith element of a vector.

Recall the definitions of class K, K∞, and KL functions from

the nonlinear system stability literature. A function α0 : Rn → R+

is said to be proper or radially unbounded if α0(σ) goes to ∞ as

‖σ‖ → ∞. A function α1 : R+ → R+ is said to be of class K
if α1 is continuous, strictly increasing, and α1(0) = 0. A function

α0 is of class K∞ if furthermore α1 is proper. A function α2 :
R+×R+ → R+ is said to be of class KL if, for each fixed k ≥ 0,

α2(·, k) is a class K-function and for each fixed σ ≥ 0 the function

α2(σ, ·) is non-increasing and α2(σ, k) → 0 as k → ∞.

Definition 1: (Some classes of nonlinear operators) A nonlinear

mapping φ : Rnq × Z+ → R
nq is said to be an element of Φ

|α|
sb

if the inequality
[
α−1
i φi(σ, k) + σ

] [
α−1
i φi(σ, k)− σ

]
≤ 0 holds

for all σ ∈ R
nq , k ∈ Z+, and i = 1, . . . , nq , where the subscript

i denotes the ith element of the vector. A nonlinear mapping φ :
R

nq ×Z+ → R
np is said to be an element of Φ̄α

sb if the inequality

‖φ(σ, k)‖ ≤ α‖σ‖ holds for all σ ∈ R
nq , k ∈ Z+. A nonlinear

mapping φ : Rnq × Z+ → R
np is said to be an element of Φ̄µ

sr

if ‖φ(σ, k) − φ(σ̂, k)‖ ≤ µ‖σ − σ̂‖ holds for all σ 6= σ̂ ∈ R
nq ,

k ∈ Z+.

B. Variable Reduction Lemma

In LMI-based robust control theory, it is common to transform

a set of nonconvex inequalities to an LMI that is either equivalent

or is a conservative approximation, or to eliminate some decision

variables in the original inequalities such that the reduced LMI is

convex in the remaining variables. In the elimination process, the

eliminated variables that satisfy the original non-convex inequalities

can be reconstructed from the solution of the reduced LMI. Finsler’s

lemma (also known as the the variable reduction lemma) is a well-

known result for the elimination of parameters.

Lemma 1: (Finsler’s lemma [1]) The following statements are

equivalent:

(a) ζTSζ > 0 for all ζ 6= 0 such that Rx = 0;

(b) (R⊥)TSR⊥ > 0 for RR⊥ = 0;

(c) S + ρRTR > 0 for some scalar ρ;

(d) S +XR +RTXT > 0 for some unstructured matrix X .

Furthermore, an extension of the equivalence of (b) and (d) is that

for given matrices U and R there exists X such that the LMI

S + UXR + RTXTUT > 0 holds for some S if and only if S
satisfies the two LMIs U⊥S(U⊥)T > 0 and (R⊥)TSR⊥ > 0.

C. Controlled Discrete-Time Lur’e Systems

The main contribution of this paper is to propose designs for

state observers and dynamic output feedback controllers for some

classes of Lur’e systems with multi-valued nonlinear mappings in

the (negative) feedback interconnection so that the observation error

dynamics are global (or local) asymptotically (or exponentially)

stable in the presence of the internal and/or external disturbances.

The focus is on the controlled discrete-time Lur’e systems:

xk+1 = Axk +Bppk + χ(xk, uk, k),

yk = Cyxk, qk = Cqxk, pk = −φ(qk, k),
(2)

where xk ∈ R
n and yk ∈ R

ny denote the state and the mea-

surement going into the state observer, respectively, qk ∈ R
nq and

pk ∈ R
np are the variables entering and exiting the nonlinearity,

respectively, and uk ∈ R
nu is the control input at the sampling time

k ∈ Z+. In addition, the nonlinear function χ : Rn×R
nu ×Z+ →

R
n is Lipschitz in the first argument and the nonlinear operator

φ ∈ Φ, where Φ is a set of static functions that satisfy φ(0, k) ≡ 0
for all k ∈ Z+ and have some specified input-output characteristics

given in Definition 1.

D. State Feedback Controllers

The following result is a sufficient condition for the stability of

the Lur’e system with φ ∈ Φ
|α|
sb or φ ∈ Φ̄α

sb that will be used to

design controllers.

Lemma 2: The system (1) with the memoryless nonlinearity

φ ∈ Φ
|α|
sb is globally asymptotically stable (g.a.s.) if there exists

a positive-definite matrix Q = QT and a diagonal positive-definite

matrix T such that the LMI






−Q ∗ ∗ ∗

0 −T ∗ ∗

AQ −BpT −Q ∗

CqQ 0 0 −SαT







< 0, (3)

is feasible, where Sα = diag{1/α2
1, · · · , 1/α

2
np

}. Similarly, the

system (1) with the memoryless nonlinearity φ ∈ Φ̄α
sb is g.a.s. if

there exists Q = QT > 0 such that the LMI (3) with Sα = γI,

γ ≡ 1/α2, and T = I is feasible.

Now consider the system (2) with a control affine term

χ(xk, uk, k) = Buuk such that the pair (A,Bu) is controllable.

Then our design objective is to determine a linear state feedback

control law uk = Ksxk, where Ks is the control gain matrix of

compatible dimension. Applying this feedback control law to the

system (2) results in the closed-loop system:

xk+1 = (A+BuKs)xk −Bpφ(qk, k). (4)

The system (2) is said to be stabilized by the state feedback control

law uk = Ksxk if the closed-loop system is stable.

Lemma 3: The closed-loop system (4) with φ ∈ Φ
|α|
sb and

Sα = diag{1/α2
1, · · · , 1/α

2
np

} is globally asymptotically stabilized

by the state feedback control uk = Ksxk with Ks = WQ−1 if

the LMI






−Q ∗ ∗ ∗

0 −T ∗ ∗

AQ+ BuW −BpT −Q ∗

CqQ 0 0 −SαT







< 0 (5)

is feasible for Q = QT > 0, a diagonal matrix T > 0, and W . A

similar sufficient stability condition can be derived for the closed-

loop system (4) for a Lur’e system with φ ∈ Φ̄α
sb, which is a

concatenated conic-sector condition. If the LMI (5) with Sα = γI,

γ ≡ 1/α2, and T = I is feasible, then the closed-loop system (4)

is stabilized by the state feedback control law uk = Ksxk.

III. MAIN RESULTS

A. Robust Observer and Controller Design I

This section proposes a two-step separation of controller-observer

design for discrete-time Lur’e systems, and investigates its robust-

ness to perturbations in the state observer side and a separation

property to ensure its certainty-equivalence. The proposed design

is extended to the case when the nonlinear term is not exactly known

but its estimate is used in the state observer side.

1) LMI conditions for observer design: This section derives an

observer with estimation error dynamics that is globally exponential

stable (g.e.s.). For the system dynamics (2), consider the estimator

with measurement output injection [14]:

x̂k+1 = Ax̂k − L1ỹk − Bpφ(q̂k − L2ỹk, k) + χ(x̂k , uk, k),

ŷk = Cy x̂k, q̂k = Cqx̂k,
(6)
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where ỹ , y − ŷ is the output observer error. Then the dynamics

of the state estimation error e , x− x̂ are described by

ek+1 = (A+ L1Cy)ek − Bpφ̂(zk , k; qk) + χδ(ek, uk, k),

zk = (Cq + L2Cy)ek,
(7)

where φ̂(zk, k; qk) , φ(qk, k) − φ(q̂k − L2ỹk, k) = φ(qk, k) −
φ (qk − zk, k) and χδ(ek, uk, k) , χ(xk, uk, k)− χ(x̂k, uk, k)

Assumption 1: Suppose that χ(x, u, k) is continuously differ-

entiable and (globally) Lipschitz in x with a Lipschitz constant γχ,

uniformly in (u, k), i.e.,

‖χ(x1, u, k)− χ(x2, u, k)‖ ≤ γχ‖x1 − x2‖, (8)

for any (u, k) ∈ R
nu × Z+, where (u, k) is a shorthand for the

concatenated vector (uT, k)T.

The next lemma shows that the state estimation error dynamics

belong to a class of Lur’e systems.

Lemma 4: The nonlinear function φ̂ has the following proper-

ties:

(i) For any qk, φ̂ vanishes at zk ≡ 0, i.e., φ̂(0, k; qk) ≡ 0 for all

q(k) ∈ R
nq and k ∈ Z+;

(ii) φ ∈ Φ̄µ
sr implies that φ̂ ∈ Φ̄µ

sb.

From Assumption 1 and Lemma 4, the following theorem pro-

vides a sufficient condition for the g.e.s. of the error dynamics (7).

Theorem 1: If there exist matrices L2, P , and Y such that the

LMIs P = P T > 0 and











−λP ∗ ∗ ∗ ∗ ∗

0 −I ∗ ∗ ∗ ∗

0 0 −I ∗ ∗ ∗

PA+ Y Cy −PBp P −P ∗ ∗

Cq + L2Cy 0 0 0 −
1
µ2 I ∗

I 0 0 0 0 −
1
γ2
χ
I











< 0, (9)

are feasible for some λ ∈ (0, 1), then the estimation error dynamics

(7) with φ ∈ Φ̄α
sb ∩ Φ̄µ

sr is g.e.s. for observer gains L1 = P−1Y1

and L2.

2) Stability analysis of a robust observer: Here the robust

stability of the state estimation error dynamics is analyzed. Two

cases of limited information are considered: (a) partial information

of the nonlinear function and (b) output disturbances. In the proof

of Theorem 1, a sufficient condition for the error dynamics to

be g.e.s. was derived from the LMI condition (3) and vice versa.

The nonlinear mapping χ(·, ·, ·) is assumed known and the robust

stability analysis focuses on the two cases of limited information (a)

and (b). To simplify the expressions, here and below assume without

loss of generality that χ = χ(yk, uk, k) such that χδ(·, ·, k) ≡ 0
for all k ∈ Z+.

a) Unknown nonlinear feedback interconnection: Assume that

χ(·, ·) is known, but φ ∈ Φ is unknown so that its approximation φ0

is used in the observer. Consider the estimator for the unmeasurable

state:

x̂k+1 = Ax̂k − L1ỹk −Bpφ0 (q̂k − L2ỹk, k) + χ(yk, uk, k),

ŷk = Cyx̂k, q̂k = Cqx̂k, (10)

then the error dynamics are

ek+1 = (A+ L1Cy)ek −Bpφ̃(zk, k; qk), (11)

where φ̃(zk, k; qk) := φ(qk, k)− φ0 (q̂k − L2ỹk, k).

The next two lemmas show that the error dynamics (10) with the

nonlinear approximation φ0 can be represented as a Lur’e system.

Lemma 5: If a nonlinear approximation φ0 : Rnq × Z+ → Ω
of a nonlinear function φ : Rnq × Z+ → Ω, where Ω ⊂ R

np is a

known bounded set, is a nonlinear mapping satisfying

‖φ(σ1, k)− φ0(σ2, k)‖ ≤ η0‖σ1 − σ2‖ (12)

for all σ1, σ2 ∈ R
nq and k ∈ Z+, then the nonlinear function

φ̃(·, ·; ·) in (10) satisfies ‖φ̃(zk, k; qk)‖ ≤ η0‖zk‖ for all zk ∈
Z ⊂ R

nq , qk ∈ Q ⊂ R
nq , and k ∈ Z+, i.e., φ̃ ∈ Φ̄η0

sb .

Lemma 6: If a nonlinear approximation φ0 of φ ∈ Φ̄µ
sr is an

nonlinear mapping satisfying

‖φ(σ, k)− φ0(σ, k)‖ ≤ ξ0‖σ‖ ∀σ ∀k ∈ Z+. (13)

for all σ ∈ R
nq and k ∈ Z+, then the nonlinear function φ̃(·, ·; ·) in

(10) satisfies ‖φ̃(zk, k; qk)‖ ≤ (µ+ξ0)‖zk‖ for all zk ∈ Z ⊂ R
nq ,

qk ∈ Q ⊂ R
nq , and k ∈ Z+, i.e., φ̃ ∈ Φ̄µ+ξ0

sb .

Combining Theorem 1 with Lemmas 5 and 6 results in sufficient

LMI conditions for the stability of the error dynamics (11) when

the nonlinear approximation φ0 of φ satisfies the relation (12) or

(13).

b) Effect of Output Disturbance on the Observer: Consider

the state estimator in the presence of an output disturbance d:

x̂k+1 = Ax̂k − L1(ỹk + dk)−Bpφ(q̂k − L2(ỹk + dk), k)

+ χ(yk, uk, k),

ŷk = Cy x̂k, q̂k = Cqx̂k.

(14)

Then the state estimation error dynamics are

ek+1 = (A+ L1Cy)ek −Bpφ̂(zk, k; qk) + δk, (15)

where δk , −Bp (φ(q̂k − L2ỹk)− φ(q̂k − L2ỹk − L2dk)) +
L1dk, φ̂(·, ·; ·) are the same as in (7), and the augmented distur-

bance δk satisfies

‖δk‖ ≤ c1‖dk‖, ∀k ∈ Z+, (16)

where c1 , µσmax(L2) + σmax(L1).
Recall that a system whose equilibrium point is g.e.s. in the

absence of the disturbance is input-to-state stable. If the estimation

error dynamics (15) with δk ≡ 0 is g.e.s and the measured-output

disturbance satisfies d ∈ ℓ
ny
∞ , i.e., there exists a constant ∆d such

that ‖d‖
ℓ
ny
∞

:= ∆d < ∞, then there exist a class KL function

β and a class K function ρ such that, for any initial state e0, the

solution ek of the system (15) satisfies

‖ek‖ ≤ β (‖e0‖, k) + ρ
(

‖δ[0,k]‖ℓny
∞

)

≤ β (‖e0‖, k) + ρ (c1∆d) .
(17)

Application of the definition of the ISS and a sufficient LMI

condition (9) in Theorem 1 for the g.e.s. of the error dynamics

(15) in the absence of δk guarantees the robustness of the state

observer to output disturbances with a non-zero stability margin,

which corresponds to the class K function ρ. In particular, if the

output disturbance is an asymptotically vanishing perturbation, i.e.,

limk→∞ ‖dk‖ = 0 or satisfies the linear growth bound ‖dk‖ ≤
γd‖ek‖ for all k ∈ Z+ with small γd ≪ 1 then the origin of the

system (15) is g.a.s.

An example of an output disturbance is an output quantizer [24].

In quantized measurement and control of continuous-time nonlinear

systems, this ISS property of the error dynamics appears to be

fundamental for incorporating an observer in certainty-equivalent

output feedback control. In fact, ISS with respect to an output

disturbance is a standing assumption in the results on quantized

feedback control. Even for discrete-time nonlinear systems, the time

scales (or samplings) in the plant, controllers, and observers may be
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different such that quantization-like effects are everywhere in the

system. In such cases, it is important to ensure robustness against

the quantization effect.

3) Optimal observer design: Consider the observer design ob-

jective of maximizing the decay rate.

Corollary 1: (Maximization of the decay rate of the estimation

error dynamics) Observer matrices that maximize a lower bound on

the decay rate of the estimation error dynamics (7) are obtained by

solving the generalized eigenvalue problem (GEVP):

min λ s.t. P > 0, (9), (18)

in the decision variables P , Y , L2, and λ, where L1 = P−1Y .

A optimal value of λ ∈ (0, 1) in (18) implies that the designed

estimation error dynamics are g.e.s., with a smaller value of λ
indicating a faster rate of exponential convergence.

4) Certainty-equivalence Control: The observer that ensures

ISS estimation error dynamics guarantees the certainty-equivalence

property of the closed-loop system, at least in a local sense.

Theorem 2: (Observer-based output feedback controller design

I) Consider the system (2) with φ ∈ Φ̄α
sb ∩ Φ̄µ

sr and χ(·, uk, k) =
Buuk = BuKsx̂k, and its state observer (6). If there exists a

feasible solution to the EVP

min
Q,W

γ

s.t. Q > 0,







−Q ∗ ∗ ∗
0 −I ∗ ∗

AQ+BuW −Bp −Q ∗
CqQ 0 0 −γI






< 0,

(19)

and a feasible solution to the GEVP

min
P,Y,L2

λ (20)

s.t. P > 0,







−λP ∗ ∗ ∗
0 −I ∗ ∗

PA+ Y Cy −PBp −P ∗
Cq + L2Cy 0 0 − 1

µ2 I






< 0,

then the overall system (2) with feedback gain Ks = WQ−1 and

estimator gains L1 = P−1Y and L2 is g.a.s. with γ = 1/α2.

An optimal solution K∗
s of the EVP (19) maximizes an upper

bound on α of the system (2) while achieving g.a.s. and optimal

solutions L∗
1 and L∗

2 of the GEVP (20) maximize a lower bound on

the decay rate of the estimation error dynamics (7). The Lyapunov

matrices Q and P in Theorem 2 are independent, i.e., the existence

of a common Lyapunov function is not required. The value of the

local slope µ in Step 2 should be set so that µ ≥ α, to avoid

conservatism in the definition of the nonlinearities. The upper bound

on the local slope is the same as the maximum sector bound for

many typical memoryless nonlinearities (e.g., hyperbolic tangent,

saturation, and dead-zone nonlinearities), in which case µ in Step

2 should be set equal to the α computed in Step 1.

B. Robust Observer and Controller Design II

This section proposes one-step linearization of design constraints

with the variable reduction lemma (Lemma 1). The purpose of this

section is to propose a state feedback control and state observer

design whose design parameters are obtained by solving LMIs,

instead of solving BMIs.

1) LMI conditions for design: Instead of the design method in

Theorem 2 consisting of an EVP followed by a GEVP, consider

the objective of designing for a fixed decay rate for the closed-loop

system with α = µ. The closed-loop system with the observer-

based feedback can be written as
[
xk+1

ek+1

]

=

[
A+BuKs BuKs

0 A+ L1Cy

]

︸ ︷︷ ︸

Acl

[
xk

ek

]

−

[
Bp 0

0 Bp

]

︸ ︷︷ ︸

Bp,cl

[
φ(qk, k)

φ̂(zk, k; qk)

]

︸ ︷︷ ︸

φcl

,

[
qk
zk

]

=

[
Cq 0

0 Cq + L2Cy

]

︸ ︷︷ ︸

Cq,cl

[
xk

ek

]

.

(21)

The closed-loop system, which is the feedback interconnection

of the system whose transfer function is Gcl(s) , Cq,cl(sI −
Acl)

−1Bp,cl and the nonlinearity within the set φcl ∈ Φ̄µ
sb is g.e.s.

if the inequality






−λX ∗ ∗ ∗
0 −I ∗ ∗

XAcl −XBp,cl −X ∗
Cq,cl 0 0 − 1

µ2 I






< 0 (22)

is feasible for some X = XT > 0 and λ ∈ (0, 1). This is

not a convex feasibility problem due to bilinear product terms of

the decision matrix variables. Since BMI problems are in general

nonconvex and hence difficult to solve, there has been much interest

in identifying special cases in which the BMI problem can be

reduced to an LMI feasibility problem. The following result is that

the feasibility of the BMI (22) is implied, with some conservatism,

by the feasibility of two LMIs.

Theorem 3: The BMI (22) is feasible for L1, Ks, L2, and a

block-diagonal matrix X = diag{X1, X2} = XT > 0 if and only

if the two LMIs

B̄⊥
u Πλ(B̄

⊥
u )T < 0 and (ĒT)⊥Πλ((Ē

T)⊥)T < 0, (24)

are feasible for Y1 , X−1
1 , W1 , KsX

−1
1 , X2, W2 ,

X2L1, and L2 with a given λ ∈ (0, 1), where the matrix Πλ

is given in (23) and B̄T
u ,

[
0 0 0 0 BT

u 0 0 0
]
,

Ē ,
[
0 I 0 0 0 0 0 0

]
.

Remark 1: All of the results for analysis and synthesis of

a robust observer obtained from Section III-A can be trivially

extended to the system (21).

IV. NUMERICAL EXAMPLES

The proposed observer-based design methods are demonstrated

for a numerical example. Consider the system (2) with the nonlinear

mapping φ ∈ Φ̄α
sb ∩ Φ̄µ

sr , system matrices

A =







0 1.0000 0 0
−0.2703 −0.0124 0.2703 0

0 0 0 1.0000
0.1075 0 0.0743 0






,

Bu =







0
0.0216

0
0






, Bp =







0 0
0.2703 0

0 0
−0.1075 0.0332






,

Cy =

[
1 0 0 0
0 1 0 0

]

, Cq =

[
−1 0 1 0
0 0 1 0

]

,

and χ(·, uk, k) = Buuk.

The two-step design method proposed in Section III-A is applied

to achieve robust stability and performance of the closed-loop

system. The design objective is to maximize α = µ that quantifies

the magnitude of the nonlinearity and to maximize the decay rate of

the estimation error dynamics (7) such that the closed-loop system
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Πλ ,

























−λY1 0 0 0

(
Y1A

T

+W T
1B

T
u

)

0 Y1C
T
q 0

0 −λX2 0 0 0

(
ATX2

+CT
yW

T
2

)

0

(
CT

q

+CT
yL

T
2

)

0 0 −I 0 −BT
p 0 0 0

0 0 0 −I 0 −BT
pX2 0 0

(
AY1

+BuW1

)

0 −Bp 0 −Y1 0 0 0

0

(
X2A

+W2Cy

)

0 −X2Bp 0 −X2 0 0

CqY1 0 0 0 0 0 −
1
µ2 I 0

0

(
Cq

+L2Cy

)

0 0 0 0 0 −
1
µ2 I

























. (23)
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Fig. 1: Trajectories for a controlled Lur’e system with Design I in the presence of measurement disturbance and modeling error
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Fig. 2: Trajectories for a controlled Lur’e system with Design II in the presence of measurement disturbance and modeling error

(2) is stabilized by the control law uk = Ksx̂k. The optimal

solution for K∗
s , L∗

1, and L∗
2 of the successive EVP and GEVP in

Theorem 1 as obtained using a semi-definite programming (SDP)

solver [22] is

K∗
s =

[
18.8558 0.5750 −8.1083 0.0000

]
,

L∗
1 =







−0.1158 −0.6558
0.2666 0.0046
0.0321 0.2515
−0.0857 −0.0021






, L∗

2 =

[
1.7341 0.4482
0.4482 −0.3401

]

,

where the maximum upper bound on the sector and slope for the

nonlinearity φ is α∗ = µ∗ = 2.5281 and the decay rate with λ∗ =
0.2959 is achieved. To maximize insensitivity to output disturbances

on the observer, L1 and L2 are computed that minimize the value

c1 in (16). This can be done by using the bisection method and

solving EVPs at each step iteration. The computed value of c1 for

L∗
1 and L∗

2 is c∗1 = 3.3915. Figure 1 shows the time trajectories for

the closed-loop system with φ(q) = α∗ tanh(q), in the presence

of the vanishing disturbance dk = 2.7 sin(kπ)e−0.01k in (14) and

a modeling error with φ0(q) = 0.5α∗ tanh(q) in (10). The states

and estimation errors for a nonzero initial state converge quickly,

as expected from the value of λ∗ = 0.2959, with an insensitivity

to the output disturbance and model uncertainty.

Now the one-step design method proposed in Section III-B is

applied to the same system. Similar to the two-step design method,

for the control objective of maximizing α such that the closed-loop

system is stabilized by the control law uk = Ksx̂k, the optimal

solution for K∗
s , L∗

1 , and L∗
2 in the EVP in Theorem 3 obtained by

a semi-definite programming (SDP) solver [22] is

K∗
s =

[
18.8558 0.5750 −8.1083 0.0000

]
,

L∗
1 =







0.0000 −1.0000
0.2703 0.0124
0.0000 0.0301
−0.1075 0.0000






, L∗

2 =

[
1.0000 0.0000
0.0000 0.0000

]

,

where the maximum upper bound on the sector and slope for
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the nonlinearity φ is α∗ = µ∗ = 2.5281 for λ = 0.99.

The closed-loop trajectories for the closed-loop system (2) with

φ(q) = α∗ tanh(q), in the presence of the vanishing disturbance

dk = 2.7 sin(kπ)e−0.01k in (14) and a modeling error with

φ0(q) = 0.5α∗ tanh(q) in (10), are shown in Fig. 2. To compare

the potential effect of output disturbances with the previous design

method, the value of c1 for L∗
1 and L∗

2 was computed, which was

c∗1 = 3.5286, somewhat higher than for the two-step design. This

comparison suggests the closed-loop system for the one-step design

method could be more sensitive to output disturbances than for the

two-step design method, but this may not be true because sufficient

conditions appear in the derivations of both design methods.

For this example, potential conservatism due to the use of

a block-diagonalized Lyapunov matrix X = diag{X1, X2} in

Theorem 3 for the two-step method was not significant in terms of

the achieved maximum upper bound on the sector and slope for the

nonlinearity φ, although the computational algorithms are different.

Theorem 1 considers the convergence rate of the estimation error

dynamics in a separate design process from the computation of the

control gain Ks, whereas all design variables are computed in an

integrated manner in Theorem 3.

Fig. 3 shows the Pareto-optimality curves for the two design

methods, which quantify the tradeoffs between insensitivity to

disturbances and performance in terms of decay rate (rate of

convergence). Note that the Pareto-optimality curves for the two

different design methods have different meanings. Fig. 3a shows

the tradeoff between the convergence (decay) rate of the estimation

error dynamics and the upper bound on the sector-bounded (and/or

slope-restricted) nonlinearities, where the estimation error dynamics

are g.e.s. with λ independent of the controlled system. Contrary to

this, Fig. 3b shows the tradeoff curve for the overall system, which

is the concatenation of the controlled system and the estimation

error dynamics. That is, the overall closed-loop system is g.e.s.

with the decay rate (1 − λ) and the upper bound (1/γ2) on

the sector-bounded (and/or slope-restricted) nonlinearities. Both

Pareto-optimality curve are monotonic and well-behaved, with

the certainty-equivalence design having a sharper knee region for

defining an optimal tradeoff (Fig. 3a).

V. CONCLUSIONS

Two LMI-based procedures are proposed for the design of

observer-based output feedback controllers for a Lur’e-type system

with conic-sector-bounded slope-restricted nonlinearities. Observer

design methods are proposed for two different strategies: (a) based

on an observer-controller separation and (b) based on simultaneous

design derived from the Finsler’s lemma. Both sets of LMIs are

easily solved using existing solvers. Their robustness against model

uncertainty and insensitivity to output disturbance were also inves-

tigated. Very similar controller and estimator designs and closed-

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

!"# !"#$ !"% !"%$ !"& !"&$ '
!

'

(

)

*

$

+

#

,-./01231456-.7289.-6/!1::2;4.</=

1 − λ

1
γ

(a) Certainty-equivalence control

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]̂_̀abcdefghijklmnopqrstuvwxyz{|}~

! !"# !"$ !"% !"& '
!

'

#

(

$

)

%

*

+,-./0120345,-6178-,5.!0991:3-;.<

1 − λ

1
γ

(b) Combined observer-controller

Fig. 3: Trade off between λ and γ

loop responses were obtained in applications of the two methods

to a numerical example.
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