
 
 

 

  

Abstract—Control objectives of the forced-circulation 
evaporation process of alumina production include maintaining 
the liquid level and fast tracking of the product density to its 
setpoint. Due to the strong coupling between the level control 
and product density control loops and high nonlinearities in the 
process, conventional control strategies can not achieve 
satisfactory control performance and meet production demands. 
Viewing the forced-circulation evaporation system and valves as 
a generalized plant, a nonlinear multi-model adaptive 
decoupling control strategy is proposed. The nonlinear adaptive 
decoupling controller includes a linear adaptive decoupling 
controller, a neural-network-based nonlinear adaptive 
decoupling controller, and a switching mechanism. The linear 
adaptive decoupling controller is used to reduce the coupling 
between the two loops. The neural-network-based nonlinear 
adaptive decoupling controller is employed to improve the 
transient performance and mitigate effects of the nonlinearities 
on the system, and the switching mechanism is introduced to 
guarantee the input-output stability of the closed-loop system. 
Simulation results show that the proposed method can decouple 
the loops effectively for the forced-circulation evaporation 
system and can improve the evaporation efficiency. 

I. INTRODUCTION 
ORCED-circulation evaporation system is the last stage of 
the liquor burning process in the evaporation system 

associated with Bayer process for alumina production in an 
alumina refinery. The objective of the operation is to remove 
the organic impurities of the spent caustic liquor so that the 
liquor can be recycled. In order to improve the evaporation 
efficiency and to keep operation smooth, the liquid level of 
the evaporator should avoid large fluctuations. The product 
density set point must also be tracked quickly. 

Level control and product density control of the 
forced-circulation system are challenging problems because 
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of their unique characteristics such as complex dynamics, 
high nonlinearity and strong coupling between the dual loops 
[1]. Therefore, good performance for the forced circulation 
evaporation system is difficult to achieve using a 
conventional decentralized control system [2]. In order to 
reduce the coupling, several effective methods were proposed 
in the literature [3-7]. However, those designs did not take 
into account the dynamic characteristics of the control valves. 
Thus the dynamics of the sub-systems and information can 
not be effectively used to improve overall dynamic 
performances of the system. Moreover, parametric 
uncertainties of the evaporation process were not considered 
in the afore-mentioned literatures. 

Over last decades, effectiveness of adaptive decoupling 
control technology has been demonstrated in solving the 
parameter uncertainties problems and in reducing the 
coupling among multiple control loops [8-10]. However, 
because of the strong nonlinearities in the forced-circulation 
evaporation system, the adaptive decoupling technology 
sometimes cannot achieve desired performances. The 
integration of adaptive control and neural networks has made 
significant progress in recent years [11-15]. However, its 
applications to complex systems such as the 
forced-circulation evaporation system have not been 
demonstrated. 

This paper views the actuating valves and the 
forced-circulation evaporation system as a generalized plant. 
To decouple the level control loop from the product density 
control loop of the forced- circulation system, an adaptive 
nonlinear decoupling controller using neural network and 
multiple models is proposed. The design consists of three 
elements: the linear adaptive decoupling controller used to 
reduce strong coupling between the two loops, the 
neural-network-based nonlinear adaptive controller 
employed to improve the transient performance and mitigate 
nonlinearities effects,  and the switching mechanism  
introduced to guarantee the input-output stability of the 
closed-loop system. Simulation results show that the 
proposed method can effectively decouple the two loops for 
the forced-circulation evaporation system and can improve 
the evaporation efficiency. 

The rest of the paper is organized as follows. 
Forced-circulation evaporation system is described in Section 
II. The generalized plant model of the forced-circulation 
evaporation system is developed in Section III. The nonlinear 
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adaptive multi-model control strategy is proposed in Section 
IV. In Section V, simulation results are presented to illustrate 
the effectiveness of the proposed method. Section VI 
concludes this paper. 

II. FORCED-CIRCULATION EVAPORATION SYSTEM 
DESCRIPTION  

The schematic diagram of the forced-circulation 
evaporation system is shown in Fig.1. The system is mainly 
composed of flash tank, pump and steam heaters.  

D
Q

F lash
tank

Feed H FQ

Q F

h

ρ

1 ( )v t

2 ( )v t

Vm

PQ

smLT

*h

*ρ

P roduct S team  
heaters

S team  flow

P um p

D  C

F C F T

F C

D T

F TL C

 
Fig.1 Schematic of the forced-circulation evaporation system 
The feed ( FQ ) is mixed with a high volumetric flow rate of 

recycling liquor ( DQ ) and is pumped into a heat exchanger 
which is heated by the steam. The liquid passes to the flash 
tank where the liquid and the vapor are separated. The liquid 
is recycled with some drowned off as product. The vapor ( Vm ) 
is usually used as heating steam for other processes. 

The current control strategy of the forced-circulation 
system is accomplished by using muti-loop cascade SISO 
controller. The flow rate of the heat steam ( sm ) is 
manipulated to control the product density ( ρ ), while the 
valve ( 2 ( )v t ) opening is adjusted for the heat steam ( sm ). The 
flash tank liquid level (h) is controlled by the discharge liquor 
flow ( PQ ), while the valve ( 1( )v t ) opening is adjusted for the 
discharge liquor flow ( PQ ). The conventional cascade control 
strategy is difficult to achieve satisfactory control 
performance mainly for the following reasons. First, the dual 
cascade loops have strong interactions and there are many 
disturbances such as feed flow ( FQ ) and feed density ( fρ ) in 
the forced-circulation system. Second, the parameters of 
specific heat of the liquor change with the different feed flow, 
which leads to changes of dynamic characteristics of the 
forced-circulation system. 

III. GENERALIZED PLANT OF THE FORCED-CIRCULATION 
SYSTEM  

A. Dynamic modeling 
The dynamic model of the forced-circulation system can be 

derived from mass and energy balances [2]. The model 

equations are given below. 
1) Flash tank level: 

  1 ( )V
F P

w

dh mQ Q
dt A ρ

= − −                      (1) 

2) Flash tank liquid product density 
1 ( ( 1) ( 1))F F V

F w

d Q m
dt Ah
ρ ρ ρρ

ρ ρ
= − − −       (2)                  

3) Flash tank liquid discharge temperature 
1 [ ( ) ]HF HF HF HF S s V v HF HF V

dT Q c T m m Q m cT
dt cAh

ρ λ λ ρ
ρ

= + − − −   (3) 

where   

      F F F F P s S
V

V

Q c T cQ T mm ρ ρ λ
λ

− +
=                   (4)      

F F F F D
HF

HF HF HF

Q c T Q cTT
Q c

ρ ρ
ρ

+
=                          (5) 

HF HF D F FQ Q Qρ ρ ρ= +                             (6) 
The detailed description of the model can be found in [2]. 

B.  Generalized plant 
Substituting (4)-(6) into (1)-(3) yields the following 

dynamic model for the forced-circulation system: 
1 [ ( ) ]F w V F F F w V P P S s
w V

dh Q c T Q cT Q m
dt A

ρ λ ρ ρ λ ρ λ
ρ λ

= − − + −  (7) 

  
1 [ (

)( )]

F V w F V w F F F F F
V w

P s s w

d Q Q Q c T
dt A h

cT Q m

ρ λ ρ ρ λ ρ ρ ρ
λ ρ

ρ λ ρ ρ

= − −

− + −

      (8) 

1 [ ( ) ( ) ]F F F F V V P s s
V

dT Q c T T cT TQ Tm
dt A h

ρ λ λ ρ λ
λ ρ

= − + − +    (9) 

The above model does not consider of dynamic 
characteristic of the control valves. From a control 
engineering point of view, the generalized plant of the 
evaporation system corresponds to a classical cascade 
feedback control system. The inner loops correspond to the 
fast dynamics which is associated to the actuators, and the 
outer loop corresponds to the control of the evaporation 
system which is described by a nonlinear dynamic model. 
The generalized plant integrates the subsystem and the 
evaporation system information. 

 In order to obtain the generalized plant of the 
forced-circulation system, the control valves model should be 
derived. The valve dynamic model can be acquired using the 
experimental data. 

Model of the discharge flow (where  1v  and 1q  are input 
variable and output variable, respectively) can be presented 
as follows:  

1 1( ) / ( ) 1.74 / (5.28 1)v s q s s= +                  (10) 

Model of the steam flow (where  2v  and 2q  are input 
variable and output variable, respectively) can be presented 
as follows: 

2 2( ) / ( ) 0.3 / (4.68 1)v s q s s= +                    (11) 

According to the above dynamic models, the PID 
controller parameters can be acquired as follows: 
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Kp1=0.9976; Ki1=0.1903; Kd1=0; Kp2=4.9131; Ki2=1.1789; 
Kd2=0. Substituting the controller into the dynamic model, 
we can acquire the close-loop equation as follows: 

2
1 1( ) / ( ) (0.3288 1.7276) / ( 0.5181 1.7276)q s u s s s s= + + + (12)                        

2
2 2( ) / ( ) (0.3149 0.2671) / ( 0.5286 0.2671)q s u s s s s= + + +  (13)                   

where 1q  and 2q  are discharge flow and the steam flow, 
respectively; 1u  and 2u   are discharge flow setpoint and steam 
flow setpoint, respectively.   

Define 1 2,h x xρ= = and 3T x= . We can transform the (12) 
and (13) into the following state space form: 

4 4
1

55

0 1 0
1.7276 0.5181 1

x x
u

xx
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦
           (14) 

                   [ ] 4
1

5

1.7276 0.3288
x

q
x

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
                   (15) 

6 6
2

77

0 1 0
0.2671 0.5288 1

x x
u

xx
⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦⎣ ⎦⎣ ⎦
            (16) 

                   [ ] 6
2

7

0.2671 0.3149
x

q
x

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
                 (17) 

Substituting (15)- (17) into (7)- (9) and combining the result 
with (14)- (16), we can derive the generalized plant as 
follows: 

1 2 3

4 5 6 7

2 2 2 3
1

4 5 6 7 2

3
1 2

1 [ ( ) ( )

(1.7276 0.3288 ) (0.2671 0.3149 )]
1 [ (

(1.7276 0.3288 ) (0.2671 0.3149 ))( )]
1 [ (

F w V F F F w V
w V

S

F V w F V w F F F F F
V w

s w

F F F F
V

x Q c T cx x
A

x x x x

x Q x Q Q c T cx x
A x

x x x x x

x Q c T
A x x

ρ λ ρ ρ λ
ρ λ

λ

λ ρ λ ρ ρ ρ
λ ρ

λ ρ

ρ
λ

= − − −

+ − +

= − − −

+ + + −

= − 3 3 2 3

4 5 3 6 7

4 5

5 4 5 1

6 7

7 6 7 2

) ( )

(1.7276 0.3288 ) (0.2671 0.3149 )]

1.7276 0.5181

0.2671 0.5288

V V

s

x cx x x

x x x x x
x x
x x x u
x x
x x x u

λ λ

λ

+ −

+ + +

=

= −

⎧
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

− +
=

= − − +

⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩

 

 (18) 
Eq. (18) can be written as 

  1 2 3 4 5 6 7( , , , , , , ) ( )x f x x x x x x x Bu t= +                        (19) 

where [ ]1 2( ) ( ) ( )u t u t u t Τ= ;
0 0 0 0 1 0 0
0 0 0 0 0 0 1

T

B ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
; and 

[ ]1 2 3 4 5 6 7( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x t x t x t x t x t x t x t x t Τ=  

Define system outputs:                   ( ) ( )y t Cx t=              (20) 

where 1 0 0 0 0 0 0
0 1 0 0 0 0 0

C
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

, [ ]1 2( ) ( ) ( )y t y t y t Τ=  

Discrete model of the generalized plant can be obtained via 
the Euler method by selecting the sampling period T and can 
be transformed into the NARMA as follows: 

1 1 1 1 2 2 1 1 2 2( 1) ( ( ), ( 1), ( ), ( 1), ( ), ( 1), ( ), ( 1))yy k f y k y k y k y k u k u k u k u k+ = − − − −   

(21) 

2 2 1 1 2 2 1 1 2 2( 1) ( ( ), ( 1), ( ), ( 1), ( ), ( 1), ( ), ( 1))yy k f y k y k y k y k u k u k u k u k+ = − − − −   

(22) 
Eq. (21) and Eq. (22) can be rewritten as a general form: 

( ) [ ( 1), , ( ), ( 1), , ( 1)]a by k f y k y k n u k u k n= − − − − −   (23)  

where [ ] 2
1 2( ) ( ) ( )u k u k u k Τ= ∈ R  denotes the discharge flow 

setpoint and steam flow setpoint.  [ ] 2
1 2( ) ( ) ( )y k y k y k Τ= ∈R  

denotes the system outputs. 2[ ]f R⋅ ∈ is a smooth 
vector-valued nonlinear function; an and bn are the system 
orders. 

IV. NONLINEAR ADAPTIVE MULTI-MODEL CONTROL 
STRATEGY 

In this Section, the generalized plant is first reformulated to 
be suitable for controller design. The generalized plant of   the 
forced-circulation system can be decomposed into a linear 
model incorporating a nonlinear term around the operating 
point, as expressed in the following formulation [15]: 

1 1 1
1 1 1 111 11 12

1 1 1
2 2 2 222 21 22

( ) ( 1) ( 1) ( 1)( ) 0 ( ) ( )
( ) ( 1) ( 1) ( 1)0 ( ) ( ) ( )

y k y k u k v ka z b z b z
y k y k u k v ka z b z b z

− − −

− − −

− − −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=− + +⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

(24) 
where 1( )iia z− and 1( )ijb z−  are polynomials of 1z− . 

2( 1) [ ( 1), , ( ), ( 1), , ( 1)]a bv k v y k y k n u k u k n R− = − − − − − ∈  is 
the higher order nonlinear item. 
Eq.  (24) can be rewritten as follows: 

1 1 1( ) ( ) ( ) ( 1) ( ) ( 1) ( 1)A z y k B z u k B z u k v k− − −= − + − + − (25) 
where  

1 1
1 11

1 1
22

1 ( ) 0
( )

0 1 ( )
z a z

A z
z a z

− −
−

− −

⎡ ⎤+
= ⎢ ⎥+⎣ ⎦

; 

1
1 11

1
22

( ) 0
( )

0 ( )
b z

B z
b z

−
−

−

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
; 

1
1 12

1
21

0 ( )
( )

( ) 0
b z

B z
b z

−
−

−

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
. 

Remark: Considering the physical restrictions of the 
forced-circulation, the nonlinear term ( 1)v k −  is assumed to 
be bounded in this paper. 

A. Nonlinear Decoupling Controller 
We can construct nonlinear decoupling controller which 

makes the system outputs ( )y k  track the reference value 
( )w t in the following formulation: 

1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( ) ( )IH z u k K w k L z y k H z u k K z v k− − − −= − − − −   
(26)                      

where 1( )H z− , 1( )L z− and IK , are diagonal polynomial matrix 
and diagonal constant  matrix, respectively. The decoupling 
compensator 1( )H z− , which is a polynomial matrix with zero 
diagonal elements, is designed to decouple control loops. The 
nonlinear compensator 1( )K z− , which is a diagonal 
polynomial matrix, is employed to eliminate the influence of 
the nonlinear item ( 1)v k −  on the closed-loop system. 

As can be seen from (26), the linear decoupling controller 
can be written as: 
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1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( 1)IH z u k K w k L z y k H z u k− − −= − − −       (27) 
Substituting (26) into (25) yields: 

1 1 1 1

1 1 1 1 1

[ ( ) ( )] ( 1) ( ) ( )

[ ( ) ( )] ( ) [ ( ) ( )] ( )
IHA z z LB z y k B z K w k

H B z z B H z u k H z B K z v k

− − − −

− − − − −

+ + = +

− + −
 (28)                                

Thus, from (28), the coupling effect and the tracking errors 
can be eliminated in the steady state of the closed-loop system, 
provide that the matrices 1( )H z−  and 1( )K z−  satisfy the 
following equations: 

[ (1) (1) (1) (1)] (1) IH A L B B K+ =                             (29) 

(1) (1) (1) (1)H B B H=                                      (30) 
(1) (1) (1)H B K=                                           (31) 

B. Parameters Selection 

To choose matrices IK , 1( )H z− , 1( )L z−  and 1( )K z− in (26), 
the following performance index is introduced based on 
generalized predictive control law: 

1

1

1

2
1 2

1 ( )

|| ( ) ( ) ( ) ( 1)

( ) ( 1) || ( 1) (3 2 )
j

j

N

j j
j

N

j
j Q z

J y k j r w k j S z u k j

K z v k j u k jλ
−

−

=

−

=

= + − + + + − +∑

+ − + + −∑

where N denotes a prediction range, ,j jr λ are diagonal 

weighting matrices; 1( )jK z− is a diagonal polynomial matrix 

about 1z− ; 1( )jS z− is a polynomial matrix with zero diagonal 

elements that can eliminate coupling; 1( )jQ z−  are diagonal 
weighting matrices as expressed in the following 
formulation: 

1 2

1 2

1 11 1 1 1 12 2 1 2
1 0 1 0 1 2 2( ) [ ..... ..... ]m m

m mQ z diag q q z q z q q z q z− −− − −
×= + + + + =

11 1 1 12 1 1
0 11 0 12 2 2[ ( ) ( )]diag q z Q z q z Q z− − − −

×+ +  
1 1 2

0 0 2 2( ) [ ] 2,3,.......j j
jQ z diag q q j N−

×= =  

where 1
1( )Q z− is a diagonal polynomial matrix about 1z− , 

1( ), 1...jQ z j N− = are diagonal constant matrices. In order to 
obtain j-step ahead predictor, we introduce the following 
Diophantine equations: 

1 1 1( ) ( ) ( )j
j jI E z A z z F z− − − −= +                  (33) 

1 1 1 1( ) ( ) ( ) ( )j
j j jE z B z G z z H z− − − − −= +         (34) 

1 1 1 1( ) ( ) ( ) ( )j
j j jE z B z G z z H z− − − − −= +          (35) 

where 1 1 1 1( ), ( ), ( ), ( )j j j jE z F z G z H z− − − −  are diagonal polynomial 

matrices about 1z− ; 1 1( ), ( )j jG z H z− − are polynomial matrices 
with zero diagonal elements as expressed in the following 
formulation: 

11 1
1 1 1

0 0 0
1 11

1 1 1

0 0 0

( ) , ( ) , ( ) ,

( ) , ( ) , ( ) ,

a

b b

nj j
i i i

j i j i j i
i i i

n nj
i i i

j i j i j i
i i i

E z E z F z F z G z G z

H z H z G z G z H z H z

−− −
− − − − − −

= = =

− −−
− − − − − −

= = =

= = =∑ ∑ ∑

= = =∑ ∑ ∑

With (25), (33)-(35), j-step ahead predictor can be given by: 

1 1 1

1 1 1

( ) ( ) ( ) ( ) ( 1) ( ) ( 1)

( ) ( 1) ( ) ( 1) ( ) ( 1)

j j j

j j j

y k j F z y k G z u k j H z u k

G z u k j H z u k E z v k j

− − −

− − −

+ = + + − + − +

+ − + − + + −
  

(36) 
Choose 1( )jS z− : 

1 1 1 1( ) ( 1) ( ) ( 1) ( ) ( 1) ( ) ( 1)j j j jS z u k j G z u k j H z u k M z u k− − − −+ − + + − + − = − (37) 

where 1( )jM z− are polynomial matrices with zero diagonal  
elements. Substituting ( )y k j+  into the performance (32) 
index yields:  

1

1 1 1

1

1 1 1

2 2
( )1

|| ( ) ( ) ( ) ( 1) ( ) ( 1)

( ) ( 1) ( ) [ ( ) ( )]

( 1) || ( 1)
j j

N

j j j
j

j j j j

N

Q zj

J F z y k G z u k j H z u k

M z u k r w k j E z K z

v k j u k jλ −

− − −

=

− − −

=

= + + − + − +∑

− − + + +

+ − + + −∑

 (38) 
 Minimizing the cost function J with respect to U leads to: 

1
0

1

( ) { [ ( ) ( 1)

( 1) ( ) ] }

T T

m i
i

i

U G G Q G RW Fy k H u k

M u k E K V Q z U

λ λ−

−

=

= + − − −

− − − + − ∑
 (39) 

where 11 12 21 22 1 2
0 0 0 0 0 0 0[ , , , ..... , ]N NQ diag q q q q q q= , and 

1 2diag[q ,...,q ,0,...0]i i iQ = , 1 21.... , max[ ]i m m m m= = , 
G is lower triangular Toeplitz matrix which are the 
coefficients of 1( )jG z− . Let 1 2[ , ,...... ]NP P P P=  be the first 2 

rows of 1
0( )T TG G Q Gλ λ−+ , and 1 2[ , ,...... , ]NP P P P′ ′ ′ ′=  be the  

f irst  2 rows of 1
0( )TG G Qλ −+ ,  where ( 1, , )iP i N= and 

( 1, , )iP i N′ =  are 2 2×  diagonal matrixes. Then: 

 
1

1 1

( ) [ ( ) ( 1) ( 1)
( ) ] ' '( ) ( 1)

u k P RW Fy k Hu k Mu k
E K V P Q z u k−

= × − − − − −

− + − −
  (40) 

where 1 1 1
1 11 12 2 2'( ) [ ( ) ( )]Q z diag Q z Q z− − −

×= . We define  

1

N

c i i
i

R PR
=

= ∑ ; 1 1

1
( ) ( )

N

c k k
k

F z P F z− −

=
= ∑ ; 1 1

1
( ) ( )

N

c k k
k

H z P H z− −

=
= ∑ ; 

1 1

1
( ) ( )

N

c k k
k

M z P M z− −

=
= ∑ ; 1 1 1

1
( ) [ ( ) ( )]

N

c k k k
k

E z P E z K z− − −

=
= +∑ ; 

1 2

1 1 2 1 1 2 1
1 1 1 2 2 1 2 2 2 2

1 11 2
1 2 2

( ) [ ] [ .... ]

... [ ]
c

m m
m m

Q z P diag q q P diag q z q z

P diag q z q z

− − −
× ×

− + − +
×

′ ′= × + ×

′+ ×

Eq. (40) can be written as: 
1 1

1 1 1

( ) ( ) ( ) ( ) ( ) ( 1)

( ) ( 1) ( ) ( 1) ( ) ( )
c c c

c c c

u k R w k F z y k H z u k

M z u k Q z u k E z v k

− −

− − −

= − − −

− − − − −
   (41) 

where 1 1( ), ( )c cH z Q z− − are diagonal polynomial matrices. 
Define 1 1 1( ) ( ) ( )c c cI H z Q z H z− − −+ + = , and Eq. (41) can be 
given by: 

1 1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( ) ( )c c c c cH z u k R w k F z y k M z u k E z v k− − − −= − − − −  
(42) 

We define 1 1 1 2
0 1 2

1 1
( ) ( ) ( )

N N j j j
c k k k

k k
F z P F z P F F z F z− − − −

= =
= = + +∑ ∑ . 

From (42) and (26), we can easily derive IK , 1( ),H z− 1( )L z−  
1( )K z− .  The closed-loop system can be described by: 
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1 1 1 1 1 1 1

1 1 1 1 1

{ ( ) ( ) ( )[ ( ) ( )]} ( )

( ) ( ) [ ( ) ( ) ( )] ( )
c c c

c c c

z F z B z A z H z z M z u k

R A z w k A z E z z F z v k

− − − − − − −

− − − − −

+ +

= − +
 (43) 

In order to guarantee the stability of the closed-loop system, 
1( )cF z− , 1( )cM z− should satisfy: 

1 1 1 1 1 1 1det{ ( ) ( ) ( )[ ( ) ( )]} 0, 1c c cz F z B z A z H z z M z z− − − − − − −+ + ≠ ≥     (44) 

C. Adaptive Decoupling Control Based on Neural Networks 
and Multiple Models 

According to (25), the identification equation of 
system parameters is: 

( ) ( 1) ( 1)Ty k X k v k= Θ − + −                      (45) 
where 1 0[ , , , , , ]

a b

T
n nA A B BΘ = , ( 1)X k − =  

[ ( 1), , ( ), ( 1), , ( 1)]T T T T T
a by t y t n u t u t n− − − − − − − . 

In this paper, two estimation models are used to predict 
output of the system. The first one is the linear estimation 
model : 

1 1
ˆˆ ( ) ( 1) ( 1)Ty k k X k= Θ − −                           (46) 

where 1
ˆ ( 1)T kΘ −  is an estimation of Θ  at instant k–1. The 

parameter matrix Θ is identified by the following algorithm: 
1 1

1 1
( ) ( 1) ( )ˆ ˆ( ) ( 1)

1 ( 1) ( 1)

T

T

k X k e kk k
X k X k

μ −
Θ = Θ − +

+ − −
            (47) 

 1
1

1 ( ) 4
( )

0
e k

kμ
⎧ > Δ⎪= ⎨
⎪⎩

if 

else 
               (48) 

1( )e k  is the linear model error, i.e. 

1 1 1
ˆˆ( ) ( ) ( ) ( ) ( 1) ( 1)Te k y k y k y k k X k= − = − Θ − −    (49) 

The second one is the neural network nonlinear estimation 
model: 

2 2
ˆˆ ˆ( ) ( 1) ( 1) ( 1)Ty k k X k v k= Θ − − + −         (50) 

where ˆ( 1)v k −  can be estimated by multi-layer  neural 
networks[18] and 2

ˆ ( 1)T kΘ − is an another estimation of Θ  at 
instant k–1. The parameter matrix Θ is identified by the 
following algorithm: 

2 2
2 2

( ) ( 1) ( )ˆ ˆ( ) ( 1)
1 ( 1) ( 1)

T

T

k X k e kk k
X k X k

μ −
Θ = Θ − +

+ − −
         (51) 

2
2

1 ( ) 4
( )

0
e k

kμ
⎧ > Δ⎪= ⎨
⎪⎩

i f

 e l s e  
            (52) 

2 ( )e k  is the nonlinear model error, i.e. 

2 2 2
ˆˆ ˆ( ) ( ) ( ) ( ) ( 1) ( 1) ( 1)Te k y k y k y k k X k v k= − = − Θ − − − − (53) 

If nonlinear item ˆ ( 1)v k −  is not considered, the linear 
adaptive decoupling control law based on the linear 
estimation model is obtained as: 

 1 1 1
1 1 1 1

ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( 1)IH z u k K w k L z y k H z u k− − −= − − −        (54) 
From (26) and (50), the nonlinear adaptive decoupling 

control law based on the neural network nonlinear estimation 
model is obtained as: 

1 1 1 1
2 2 2 2

ˆˆ ˆˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( ) ( )IH z u k K w k L z y k H z u k K z v k− − − −= − − − −   
(55) 

The linear adaptive decoupling controller (54) can 
guarantee the stability of the close-loop system. However, it 

does not consider effects of the nonlinearities on the system 
output. The performance of control system becomes poor 
when ˆ( 1)v t −  is larger. The nonlinear adaptive decoupling 
controller (55) can reduce the impact of nonlinearity on 
system output. But it can not guarantee the stability of the 
close-loop system. In order to improve performance of 
control system and ensure the stability for the closed-loop 
system, a multi- model switching mechanism is obtained  
[15]:  

2 2
2

1 1

( )(|| ( ) || 16 )( ) (1 ( )) || ( ) || ( 1,2)
4(1 ( 1) ( 1))

t t
i i

i i iT
l l t N

l e lJ k l e l i
X l X l

μ α μ
= = − +

− Δ
= + − =∑ ∑

+ − −
          

(56) 
1 ( ) 4

( )
0

i
i

e k
kμ

⎧ > Δ⎪= ⎨
⎪⎩

if

 else 
        (57) 

where N is an integer and 0α ≥ is a predefined constant. i = 1 
stands for the linear model, i = 2 denotes the nonlinear models. 
At each time instant t, the linear estimation model and the 
nonlinear model predict the system output, and the 
parameters of models are updated through the input-output 
data. At the same time, we calculate 1( )J k , 2 ( )J k and choose 

the control law ( )u k∗  corresponding to the smaller * ( )J k  to 
be applied to the system. 

V. SIMULATION RESULTS  
The model parameters and the operating point of the forced 

circulation as follows: 
3 3 3

1 2
3 2

3
3

1 2

80 / , 1365 / , 2 , 1429.4 / ,

107.5 , 1365 / , 2247 / , 40

2185 / , 68 / , 11.2 /

F F

w V

S

Q m h kg m x m x kg m

x c kg m kJ kg A m

kJ kg u m h u t h

ρ

ρ λ

λ

= = = =

= ° = = =

= = =   
In this section, two illustrative examples are provided to 

demonstrate the performance of the proposed nonlinear 
decoupling adaptive control. The examples will show the 
following two scenarios: effect of setpoint changes, 
parametric uncertainties. 

1) In order to study the tracking performance of the 
multiple models adaptive decoupling controller, the level 
setpoint does not change during the experiment process. At 
t=0, product density is changed from 31429.4 /kg m   to 31435 /kg m , 
and at t=2h, product density is changed from 31435 /kg m   to 

31440 /kg m ,at t=4h, product density is changed from 31440 /kg m   
to 31435 /kg m  . For comparison, the conventional cascade PID 
control strategy is adopted.  

2) The changes of the specific heat of the liquor are usually 
caused by the changes of feed flow. Such changes are usually 
slow and can not be acquired online. The proposed controller 
is implemented in a more challenging situation: with a step 
change from 3.61 0/ ( )kJ kg C⋅  to 3.63 0/ ( )kJ kg C⋅ , at t=3h. 
The setpoint of level does not change in this case, and product 
density is changed from 31429.4 /kg m   to 31435 /kg m  at t=0. The 
NMPC (Nonlinear model predictive control) strategy is 
adopted for comparison. 
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The system order are 2an = , 1bn = .We chose Iλ = , N=3, 
Q0=diag{0.01 0.03 1 1 1 1}, the parameters of the switching 
criterion are chosen to be α  = 1, N = 2 and 0.3Δ = . Two 
groups of multi-layer neural networks are adopted.  
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Fig.2   Response of level and product density 

The simulation results are shown in Figs.2-3. Fig.2-3 
shows the responses of the level and the product density for 
the conventional cascade strategy, multiple models 
neural-network-based adaptive decoupling strategy and 
NMPC strategy. 
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Fig.3 Response of level and product density 

It can be seen that the system performance is not good for 
the conventional cascade PID strategy. The nonlinear 
multiple models adaptive decoupling can reduce the coupling 
between the level loop and the density loop. The level of the 
evaporator is less fluctuations and the product density can 
track the setpoint quickly. It is worth noting that the proposed 
method can reduce the uncertainties impact on the system.  
The level and the density can quickly return the setpoint when 
the disturbance occurs and the uncertainties parameters 
change. At the same time, the NMPC strategy applies the 
forced-circulation system. Although the NMPC can track the 
setpoint very quickly, it can not reduce the impact of the 
uncertainties of parameters. 

VI. CONCLUSION 
The nonlinear multi-model adaptive decoupling 

control strategy has been proposed in the paper for the 
forced-circulation system of the alumina production which is 
a multivariable, strongly coupled nonlinear system with 
uncertainties. The proposed method can not only mitigate 
nonlinearities and   reduce interactions between the density 
control and the level control loops, but also improve the 
transient performance and the evaporation efficiency for the 
forced-circulation system.  
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