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Abstract— This paper develops a new solution framework
with detailed system modeling, and control design, analysis and
evaluation, for adaptive control of discrete-time input-output
multiple-delay T-S fuzzy systems with unknown parameters and
uncertain actuator failures. A multiple-delay prediction fuzzy
system model is derived and its minimum phase property is
clarified. Based on a model-based approach, the design and
analysis are presented for an adaptive control scheme for
multiple-delay T-S fuzzy systems, and an adaptive actuator fail-
ure compensation for systems with redundant actuators subject
to uncertain failures, for which new system parametrizations
and controller structures are developed. Illustrative examples
and simulation results are presented to demonstrate the studied
new concepts and to verify the desired performance of the new
types of adaptive fuzzy control systems.

Keywords: Actuator failure, adaptive control, fuzzy sys-

tems, output tracking, system uncertainties.

I. INTRODUCTION

Fuzzy control techniques have emerged in recent years as

a powerful tool to deal with uncertain nonlinear systems.

Takagi-Sugeno (T-S) fuzzy models are derived based on

the idea to decompose complex nonlinear systems into a

group of local linear models. By fuzzily blending local

linear models, the global T-S fuzzy models are essentially

nonlinear models. It has been proven that T-S fuzzy models

are universal approximators [12], which makes them attract

more and more attentions in the development of model-

based control approaches. Model-based approaches for fuzzy

control systems design and analysis make use of well-

developed control theory tools and have solid technical

foundations, as demonstrated in [1] where a comprehensive

overview is given on the basic theory, fundamental design

techniques and popular algorithms for model-based fuzzy

system modeling and control, including rigorously designed

adaptive control schemes single-input single-output single-

delay fuzzy systems with parameter uncertainties.

Considerable research work has been done in adaptive

fuzzy control field. In [11], various adaptive fuzzy logic con-

trollers have been proposed and analyzed for some classes of

nonlinear systems. Recent adaptive fuzzy control approaches
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for continuous-time nonlinear systems can be found in [4],

[13]. Since in applications the fuzzy controllers are actually

realized through computer-generated digital control signals

and not all the continuous-time designs can be directly

applied to discrete-time cases, it is of both theoretical and

practical significance to carry out research work on adaptive

fuzzy control design for discrete-time fuzzy systems [3], [5],

[7].

Although many progresses have been made in model-

based fuzzy adaptive control, to the best of the authors’

knowledge, there are still open issues, including system

characterizations under fuzzy modeling, large parameter

variations due to membership functions and related system

stability, convergence of tracking errors of the baseline fuzzy

control systems, robustness with respect to modeling errors,

as well as uncertain actuator failures, an issue that is also

open for regular systems. Adaptive control techniques need

to be further developed for fuzzy dynamic systems, in order

to deal with the above mentioned issues.

In this paper, we address adaptive fuzzy control of sys-

tems with uncertain actuator failures and develop a solution

framework with detailed design, analysis and evaluation, for

discrete-time input-output multiple-delay T-S fuzzy systems.

Our solution consists of the derivation of an input-output

T-S fuzzy system model with multiple delays, clarification

of the minimum phase property of such T-S fuzzy systems,

the design and analysis of a new adaptive control scheme

for multiple-delay T-S fuzzy systems, and the design and

analysis of adaptive actuator failure compensation for sys-

tems with redundant actuators subject to uncertain failures.

We prove closed-loop stability and asymptotic tracking for

systems with multiple delays and with uncertain actuator

failures.

II. SYSTEM MODELING AND PROBLEM FORMULATION

We first derive a discrete-time input-output multiple-delay

T-S fuzzy system model and its d-step prediction form, and

then formulate the new adaptive fuzzy control problems.

A. Input-Output Multiple-Delay T-S Fuzzy System Models

Consider a single-input single-output nonlinear system in

its discrete-time input-output form

y(t) = f(y(t−1), . . . , y(t−n), u(t−d), . . . , u(t−n)) (1)
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where f(·, . . . , ·) is some nonlinear function, y(·) is the

system output signal, u(·) is the system input signal, t =
0, 1, 2, . . . , is the discrete-time time variable, n is the system

order, and d is the number of system input-output delays.

In this paper, we are interested in the general case with

1 ≤ d ≤ n (especially, d > 1). To employ fuzzy control

techniques, we will first look for a prediction-based fuzzy

model for (1):

y(t + d) = fd(y(t), y(t − 1), . . . , y(t − n + 1), u(t),

u(t − 1), . . . , u(t − n + 1)), (2)

for some function fd(·, . . . , ·), as used in the literature.

Let us consider the following discrete-time T-S fuzzy

system model with the ith fuzzy rule:

IF ξ1 is F i
1 and . . . and ξL is F i

L, THEN

y(t) + ai1y(t − 1) + · · · + ainy(t − n) = bi0u(t − d)

+bi1u(t − d − 1) + · · · + bi, n−du(t − n), (3)

for i = 1, 2, . . . , N , bi0 6= 0, where N is the number of

fuzzy rules, u(t) ∈ R and y(t) ∈ R are the input and

output variables, d > 0 denotes the system delay, and F i
j

being typically an interval of real numbers, called a fuzzy

set associated with which there is a membership function

F i
j (ξj(t)) to indicate the degree of membership of ξj(t) in

F i
j .

Such local systems have transfer functions:

Ti(z) =
bi0z

n−d + · · · + bi,n−d−1z + bi, n−d

zn + ai1zn−1 + · · · + ai,n−1z + ain

. (4)

Each fuzzy system model (3) defines a local linear model

for the original nonlinear system (1). Introducing the poly-

nomials in z−1:

Ai(z
−1) = 1 + ai1z

−1 + · · · + ainz−n (5)

B̄i(z
−1) = bi0 + bi1z

−1 + · · · + bi,n−dz
−n+d, (6)

we express the local linear system (3) as

Ai(z
−1)[y](t) = z−dB̄i(z

−1)[u](t). (7)

Following [2], solving the polynomial equation

zd = zdFi(z
−1)Ai(z

−1) + Gi(z
−1) (8)

we obtain the unique polynomials

Fi(z
−1) = 1 + fi1z

−1 + · · · + fi,d−1z
−d+1 (9)

Gi(z
−1) = gi0 + gi1z

−1 + · · · + gi,n−1z
−n+1. (10)

Then, operating both sides of (8) on y(t) and substituting

(7), we obtain the local d-step prediction equation

y(t + d) = αi(z
−1)[y](t) + βi(z

−1)[u](t), (11)

where αi(z
−1) = Gi(z

−1) and βi(z
−1) = Fi(z

−1)B̄i(z
−1):

αi(z
−1) = αi0 + αi1z

−1 + · · · + αi,n−1z
−n+1

βi(z
−1) = βi0 + βi1z

−1 + · · · + βi,n−1z
−n+1, (12)

with βi0 = bi0 6= 0, for i = 1, 2, . . . , N .

In our study, we will use the local models in (11) to form

a global d-step prediction fuzzy system model.

Proposition 1: Following a standard fuzzy modeling pro-

cedure, a nonlinear dynamic system (1), via the local fuzzy

system model (3), can be approximated by a global d-step

prediction fuzzy system model:

y(t+d) =

N∑

i=1

µiαi(z
−1)[y](t)+

N∑

i=1

µiβi(z
−1)[u](t), (13)

where µi is the normalized membership function: µi(ξ) =
λi(ξ)∑
N

i=1
λi(ξ)

, λi(ξ) =
∏L

j=1 F i
j (ξj), such that µi(ξ) ≥ 0 and

∑N

i=1 µi(ξ) = 1.

The fuzzy system model (13) is an approximate model for

the original nonlinear system model (1), and the approxi-

mation errors from such a standard fuzzy system modeling

technique can be made small by increasing the number of

membership base functions [12].

B. Control Problems

We study two adaptive fuzzy control problems in this

paper: one is adaptive control of the global fuzzy system (13),

and the other is adaptive control of the fuzzy system with

redundant actuators which are subject to uncertain failures.

Adaptive Control Problem I: For this adaptive control

problem, the control objective is to find an adaptive con-

trol scheme for the system (13) with unknown parameters

αi0, αi1, . . . , αin, βi0, βi1, . . . , βi, n−d, i = 1, . . . , N , to en-

sure closed-loop signal boundedness and asymptotic tracking

of a bounded reference output ym(t) by the system output

y(t), under the following assumptions:

(A.1): The fuzzy system (13) is minimum phase.

(A.2):
∑N

i=1 µi(ξ(t))βi0 6= 0, for all t ≥ 0.

Without loss of generality, we assume βi0 = bi0 > 0.

Under this practical assumption, due to the properties of µi,

in particular, µi(ξ) ≥ 0 and
∑N

i=1 µi(ξ) = 1, we actually do

have Assumption (A.2) satisfied.

For adaptive control, we will need the

condition:
∑N

i=1 µi(ξ(t))βi0 6= 0, where β̂i0, i = 1, 2, . . . , N ,

are the estimates of βi0. This condition can be ensured by

using parameter projection [9] on the parameter estimates

β̂i0, i = 1, 2, . . . , N , using the knowledge of the positive

upper and lower bounds of βi0.

Minimum phase fuzzy system definition. We now clarify

the conditions for Assumption (A.1).

For a regular linear time-invariant system

A(z−1)[y](t) = z−dB̄(z−1)[u](t), (14)

recall that it is minimum phase if all zero of B̄(z−1) are in

|z| < 1. This condition implies that

|u(t − d)| ≤ c1|y(t)| + c2

t−1∑

τ=0

λt−τ−1|y(τ)|, t ≥ d, (15)

for some constants c1 > 0, c2 > 0 and λ ∈ (0, 1).

3749



Based on this reasoning, we use the following minimum

phase definition for the global fuzzy system model (13).

Definition 1: The fuzzy system (13) is minimum phase if

the condition (15) is satisfied.

Unlike the case with a regular LTI system (14) whose min-

imum phase property can be checked using the knowledge of

the zeros of B̄(z−1), the fuzzy system (13) is nonlinear and

time-varying and its zeros can not be simply defined (they

are only partially related to the zeros of each B̄i(z
−1) but

largely related to µi(t) and their combined effect).

Adaptive Control Problem II: The second adaptive

control problem deals with the compensation of uncertain

failures of redundant actuators in a fuzzy dynamic system. To

formulate such a problem, consider a multiple-input single-

output nonlinear system in its discrete-time input-output form

y(t) = f(y(t − 1), . . . , y(t − n), u1(t − d), . . . ,

u1(t − n), . . . , um(t − d), . . . , um(t − n)), (16)

where ui(·), i = 1, 2, . . . ,m, are the input signals whose

actuators may fail during the system operation. Similar to

(3) for the case when m = 1 (that is, the non-redundant

actuator case), the following discrete-time T-S fuzzy system

model can be used for the case when m > 1:

IF ξ1 is F i
1 and . . . and ξL is F i

L

THEN y(t) + ai1y(t − 1) + · · · + ainy(t − n)

= b1i0u1(t − d) + b1i1u1(t − d − 1) + · · · (17)

+b1i, n−du1(t − n) + · · · + bmi0um(t − d)

+bmi1um(t − d − 1) + · · · + bmi, n−dum(t − n),

with bji0 6= 0, j = 1, 2, . . . ,m, i = 1, 2, . . . , N .

The actuator failures can be described by

uj(t) = ūj(t) = ūj0 +

nj∑

l=1

ūjlfjl(t), t ≥ tj (18)

for some unknown constants ūj0 and ūjl and known bounded

signals fjl(t), l = 1, . . . , nj , and nj ≥ 1 [10]. This

parametrized actuator failure model can be used to closely

approximate a large class of practical failures, by a proper

selection of these “basis” functions fjl(t).
The control objective is to find an adaptive control scheme

for the global version of the fuzzy system (18) with unknown

parameters and subject to failures belonging to a failure

set (e.g., for up to m − 1 actuators), with unknown failure

patterns, values and time instants, to ensure closed-loop

signal boundedness and asymptotic tracking of a bounded

reference output ym(t) by the system output y(t).

Remark 1: For a realistic system, the system model (13)

is subject to certain modeling error ∆(y(·), u(·), t):

y(t + d) =
N∑

i=1

µiαi(z
−1)[y](t) +

N∑

i=1

µiβi(z
−1)[u](t)

+∆(y(t), y(t − 1), . . . , u(t − 1), u(t − 2), . . . , t).

For adaptive control of the fuzzy system model (13), the

robustness issue can be similarly addressed by using robust

adaptive control designs [1], [9]. Due to space limit, this

issue is not addressed in this paper.

III. ADAPTIVE CONTROL DESIGN AND ANALYSIS FOR

T-S FUZZY SYSTEMS

In this section, we design and analyze an adaptive control

scheme for the T-S fuzzy system (13), to solve the first

adaptive control problem stated in Section 2.2. We first give

a nominal control scheme for the system (13), assuming all

system parameters are known. We then derive a parametriza-

tion of the system (13) with unknown parameters, design

an adaptive parameter estimation algorithm to estimate the

unknown system parameters, and develop an adaptive control

law and analyze the closed-loop system performance.

A. Parameter Estimation

To estimate the system parameters, we need to develop

a parametrized model. With the knowledge of n and d, the

fuzzy system (13) can be expressed as

y(t + d) = θT φ(t), (19)

where φ(t) = [φT
1 (t), . . . , φT

N (t)]T ,θ = [θT
1 , . . . , θT

N ]T ,

φi(t) = [µiy(t), µiy(t − 1), . . . , µiy(t − n + 1), (20)

µiu(t), µiu(t − 1), . . . , µiu(t − n + 1)]T (21)

θi = [αi0, αi1, . . . , αi,n−1, βi0, βi1, . . . , βi,n−1]
T . (22)

The expression (19), with θ unknown and φ(t) known, is a

regression form with a linear parametrization for which many

parameter adaptation algorithms can be adopted to estimate

these unknown parameters in θ. As a choice, the following

adaptive law is employed to obtain the estimate θ̂(t) of θ:

θ̂(t) = θ̂(t − 1) +
γ(t)φ(t − d)ε(t)

c + φT (t − d)φ(t − d)
, (23)

where γ(t) ∈ (γ0, 2 − γ0) is an adaptation gain for some

constant γ0 ∈ (0, 1), c > 0 is a small design parameter, and

ε(t) = y(t) − θ̂T (t − 1)φ(t − d). (24)

For this parameter estimation algorithm, we have:

Lemma 1: The parameter adaptation law (23), when

applied to the fuzzy system (19), has the properties:

(i) ‖θ̂(t) − θ‖ ≤ ‖θ̂(t − 1) − θ‖ ≤ ‖θ̂(0) − θ‖, for

the l2-vector norm ‖ · ‖;

(ii)
ε(t)√

c+φT (t−d)φ(t−d)
∈ L2;

(iii) limt→∞
ε(t)√

c+φT (t−d)φ(t−d)
= 0;

(iv) ‖θ̂(t) − θ̂(t − t1)‖ ∈ L2; and

(vi) limt→∞ ‖θ̂(t) − θ̂(t − t1)‖ = 0, for any finite

t1 > 0.

The proof of this lemma is standard [2]. The adaptive law

generates online estimates θ̂(t) of the unknown parameter θ,

with desired stability and L2 properties.
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B. Adaptive Control Law

Let α̂i(z
−1) and β̂i(z

−1) be the estimates of αi(z
−1) and

βi(z
−1) in (12) and (12), with parameters estimates α̂ij and

β̂ij . We choose the global fuzzy control law as

u(t) =
1

∑N

i=1 µiβ̂i0

[−
N∑

i=1

µiα̂i(z
−1)[y](t)

−
N∑

i=1

µi
̂̄βi(z

−1)[u](t) + ym(t + d)]. (25)

For this adaptive control law, parameter projection [9] may

be used for the parameter estimation algorithm (23) to ensure

that
∑N

i=1 µiβ̂i0 > β0 for some constant β0 > 0.

Stability analysis. We now show that the adaptive control

system has desired stability and tracking properties. Substi-

tuting (25) into (13), we obtain the closed-loop system as

y(t + d) = θT φ(t) − θ̂T (t)φ(t) + ym(t + d). (26)

With e(t) = y(t) − ym(t) and θ̃(t) = θ̂(t) − θ, we obtain

e(t + d) = −θ̃T (t)φ(t). (27)

We first present a desired property for φ(t).

Lemma 2: Under Assumption (A.1), the regressor φ(t)
defined in (20) satisfies

‖φ(t − d)‖ ≤ ρ1 + ρ2 max
τ=0,1,...,t

|e(τ)| (28)

for some positive constants ρ1 and ρ2.

The proof of Lemma 2 is based on Assumption (A.1) and

Definition 1 and details can be found in [6].

We now show the desired closed-loop system properties.

Theorem 1: All signals in the closed-loop system, with

the plant (13) satisfying Assumptions (A.1) and (A.2), the

controller (25) and the adaptive law (23), are bounded, and

limt→∞(y(t) − ym(t)) = 0.

Thus far, we have solved the first adaptive control problem

of Section 2.2, for the system (13) with uncertain parameters.

IV. ADAPTIVE ACTUATOR FAILURE COMPENSATION

In this section, we develop the solution to the adaptive

actuator failure compensation problem. For simplicity of

presentation and without loss of generality, we consider the

fuzzy system model (18) with two actuators.

A. Nominal Failure Compensation Design

Based on the fuzzy system model (18) with two actuators

(m = 2): u1 and u2, using a derivation procedure similar to

that in Section II.A, we can derive the following global d-step

prediction fuzzy system model (as similar to that described

in Proposition 1 for the one-actuator system):

y(t + d) =
N∑

i=1

µiαi(z
−1)[y](t) +

N∑

i=1

µiβ1i(z
−1)[u1](t)

+
N∑

i=1

µiβ2i(z
−1)[u2](t). (29)

For this system, there are three possible situations which

we need to deal with: (i) both actuators u1 and u2 are healthy,

(ii) the actuator u1 is healthy while u2 is failed (that is,

u2 = ū2 in (18)), and (iii) the actuator u2 is healthy while u1

is failed (that is, u1 = ū1 in (18)). Our goal is to develop one

controller structure which is suitable for all three situations.

For either case (ii) or case (iii), in order for the healthy

actuator to meet the control objective (stability, tracking and

faliure compensation), we need to assume

(A.1a): Both individual subsystems (u1, y) and (u2,

y) are minimum phase.

For the first case with no failure, that is, when both

actuators u1 and u2 are healthy, there is a need of actuator

coordination to meet a desired system output performance

(otherwise, for example, u1(t) and u2(t) are against to

each other, there would be a problem). Such an actuator

coordination is characterized by an actuation scheme

ui(t) = δiv0(t), δi > 0, i = 1, 2 (30)

for some applied input signal v0(t) to be designed. With this

actuation scheme, the system (29) becomes

y(t+d) =
N∑

i=1

µiαi(z
−1)[y](t)+

N∑

i=1

µiβi(z
−1)[v0](t), (31)

where βi(z
−1) = δ1β1i(z

−1)+δ2β2i(z
−1)

△
= βi0+βi1z

−1+
· · ·+βi,n−1z

−n+1. The control signal v0(t) can be designed

as u(t) in (25), under Assumptions (A.1) and (A.2) for the

system (31). This motivates the following assumption for the

system (29):

(A.1b): The coordinated system (31) is minimum

phase for a set of chosen δ1 > 0 and δ2 > 0.

Then, under a chosen actuation scheme (30), we propose

the following nominal controller structure for v0(t) to ac-

commodate the above all three cases:

v0(t) =
1

∑N

i=1 µiβ∗
i0

[−
N∑

i=1

µiαi(z
−1)[y](t)

−
N∑

i=1

µiβ̄
∗

i (z−1)[v0](t) −
N∑

i=1

µiβ
∗

1i(z
−1)[ū1](t)

−
N∑

i=1

µiβ
∗

2i(z
−1)[ū2](t) + ym(t + d)], (32)

where β∗
i (z−1) = δ1β1i(z

−1)+δ2β2i(z
−1), and β∗

1i(z
−1) =

β∗
2i(z

−1) = 0 for case (i); β∗
i (z−1) = δ1β1i(z

−1),
β∗

1i(z
−1) = 0 and β∗

2i(z
−1) = β2i(z

−1) for case (ii);

and β∗
i (z−1) = δ2β2i(z

−1), β∗
1i(z

−1) = β1i(z
−1), and

β∗
2i(z

−1) = 0 for case (iii). They are piecewise polynomials

which change when an actuator failure occurs.

Although in the nominal control β∗
ji(z

−1) may be zero

for some j = 1, 2, for adaptive control when the actuator

failure pattern (which actuator fails) is uncertain, they both

are treated as parametrized polynomials whose parameters

are to be adaptively estimated by some adaptive laws.
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B. Adaptive Failure Compensation Design

To develop an adaptive actuator failure compensation

scheme, we need to obtain the estimates of αi(z
−1),

β∗
i (z−1), β∗

1i(z
−1) and β∗

2i(z
−1). In view of their definitions,

we express the system (29) as

y(t + d) =

N∑

i=1

µiαi(z
−1)[y](t) +

N∑

i=1

µiβ
∗

i (z−1)[v0](t)

+
N∑

i=1

µiβ
∗

1i(z
−1)[ū1](t) +

N∑

i=1

µiβ
∗

2i(z
−1)[ū2](t). (33)

In this model, β∗
i (z−1) is parametrized in the same struc-

ture as that of δ1β1i(z
−1) + δ2β2i(z

−1), δ1β1i(z
−1) and

δ2β2i(z
−1) (they all have the same structure), β∗

1i(z
−1) and

β∗
2i(z

−1) are parametrized in the structures of β1i(z
−1)

and β2i(z
−1), respectively. Moreover, the parametrization

of
∑N

i=1 µiβ
∗
1i(z

−1)[ū1](t) (or
∑N

i=1 µiβ
∗
2i(z

−1)[ū2](t)) is

based on combining the known signals µi with the known

basis functions fjl(t), j = 1, 2, l = 0, 1, . . . , nj , of the

actuator failure model (18) (with fj0 = 1, j = 1, 2).

1) Parameter Estimation: Express the system (33) as

y(t + d) = θT
a φa(t) +

2∑

j=1

N∑

i=1

µiβ
∗

ji(z
−1)[ūj ](t), (34)

where θa = [θT
a1, . . . , θ

T
aN ]T , φa(t) = [φT

a1, . . . , φ
T
aN ]T

φai(t) = [µiy(t), µiy(t − 1), . . . , µiy(t − n + 1),

µiv0(t), µiv0(t − 1), . . . , µiv0(t − n + 1)]T (35)

θai = [αi0, αi1, . . . , αi,n−1, β
∗

i0, β
∗

i1, . . . , β
∗

i,n−1]
T . (36)

Parametrize the actuator fault ūj(t) in (18) as

ūj(t) = pj0 + pT
j fj(t), j = 1, 2, (37)

where pj0 = ūj0, pj = [ūj1, ūj2, . . . , ūjnj
]T ∈ Rnj and

fj(t) = [fj1(t), fj2(t), . . . , fjnj
(t)]T ∈ Rnj .

From (37), the second term in (34) can be written as

N∑

i=1

µiβ
∗

ji(z
−1)[ūj ](t) = p̄T

j0µ̄(t) + p̄T
j φfj

(t), (38)

where, with ⊗ denoting the Kronecker product,

µ̄(t) = [µ1(t), µ2(t), . . . , µN (t)]T ∈ RN

f̄j(t) = Mj(z
−1)[fj ](t) ∈ Rn×nj

p̄j0 = [
n−1∑

k=0

β∗

j1kpj0,
n−1∑

k=0

β∗

j2kpj0, . . . ,
n−1∑

k=0

β∗

jNkpj0]
T ∈ RN

p̄j0 = [
n−1∑

k=0

β∗

j1kpj0,
n−1∑

k=0

β∗

j2kpj0, . . . ,
n−1∑

k=0

β∗

jNkpj0]
T ∈ RN

p̄j = [β∗T
j1 ⊗ pT

j , β∗T
j2 ⊗ pT

j , . . . , β∗T
jN ⊗ pT

j ]T ∈ Rn×nj×N

φfj
(t) = [µ1f̄j

T
(t), µ2f̄j

T
(t), . . . , µN f̄j

T
(t)]T ∈ Rn×nj×N

Mj(z
−1) = [Inj

, z−1Inj
, . . . , z−n+1Inj

]T ∈ R(n×nj)×nj .

Substituting (38) into (34) yields

y(t + d) = θT
a φa(t) +

2∑

j=1

(p̄T
j0µ̄(t) + p̄T

j φfj
(t))

= θT φ(t), (39)

where, with p̄0 = p̄10 + p̄20, θ = [θT
a , p̄T

0 , p̄T
1 , p̄T

2 ]T and

φ(t) = [φT
a (t), µ̄T (t), φT

f1
(t), φT

f2
(t)]T .

With the closed-loop system in the form (39), the esti-

mation of θ can be obtained by using (23), which has the

desired stability properties summarized in Lemma 1.

2) Adaptive Control Law: With the parameter estimation,

the nominal control law (32) can be implemented with the

parameter estimates. α̂i(z
−1) and β̂∗

i (z−1) can be obtained

directly from corresponding terms in θ̂ and the remaining

failure-related parts can be calculated as

N∑

i=1

µiβ̂
∗

1i(z
−1)[ū1](t) +

N∑

i=1

µiβ̂
∗

2i(z
−1)[ū2](t)

= ̂̄pT

0 µ̄(t) + ̂̄pT

1 φf1
(t) + ̂̄pT

2 φf2
(t) (40)

with ̂̄p0, ̂̄p1 and ̂̄p2 being the corresponding elements in the

parameter estimate vector θ̂ = [θ̂T
a , ̂̄pT

0 , ̂̄pT

1 , ̂̄pT

2 ]T .

Based on the desired properties of the parameter adapta-

tion law and the regressor, the following closed-loop stability

and asymptotic tracking results can be proved [6].

Theorem 2: The controller (32) with the parameters es-

timated by the adaptive law (23), applied to the system

(33) under Assumptions (A.1a) and (A.1b) and with actuator

failures (18), guarantees that all closed-loop system signals

are bounded and limt→∞(y(t) − ym(t)) = 0.

The above design and analysis can be extended to systems

with more than two actuators subject to uncertain failures.

V. SIMULATION STUDY

In this section, we present an illustrative example with

simulation results to show the control design and evaluation,

based on a mass-spring-damper mechanical system [8]:

Mẍ + c1ẋ + c2x = (1 + c3ẋ
3)u, (41)

where M denotes the mass, x is the displacement(in meters)

of the mass , u is the force (in Newtons) applied to the spring,

c1 is the damping constant, c2 is the spring constant, c3 is a

constant related to the nonlinear term ẋ3. For simulation, the

parameters are set as M = 1kg, c1 = 150N · s/m, c2 =
200N/m, c3 = 0.13N/(m/s)3.

Choose the output y = x. Assuming ẏ ∈ [−1.5, 1.5] and

using the same approach as that in [8], a two-rule continuous-

time Takagi-Sugeno fuzzy model to approximate (41) is

given as

IF ẏ is F1
1 , THEN ÿ = −150ẏ − 200y + 1.4387u,

IF ẏ is F2
1 , THEN ÿ = −150ẏ − 200y + 0.5613u

with the membership functions describing ”F1
1 ” and ”F2

1 ”

chosen as F 1
1 (ẏ) = 0.5+ẏ3/6.75 and F 2

1 (ẏ) = 0.5−ẏ3/6.75.
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Fig. 1. Adaptive system response with ū2(t) = 100 sin(0.2t)(t > 50).
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Fig. 2. Parameter adaptation of Rule 1 and Rule 2 (ū2 = 100 sin(0.2t)).

If the sampling time T is chosen small enough, we can

approximate ẏ and ÿ with ẏ = [y(t + 1) − y(t)]/T and

ÿ = [y(t + 2) − 2y(t + 1) + y(t)]/T 2. Then a discrete-time

model can be obtained as

Ri : IF ξ1(t) is F i
1, THEN

y(t + 2) + ai1y(t + 1) + ai2y(t) = bi0u(t), (42)

where ξ1(t) = [y(t + 1) − y(t)]/T , ai1 = 150T − 2, ai2 =
1 − 150T + 200T 2, i = 1, 2 and b10 = 1.4387T 2, b20 =
0.5613T 2.

The discrete-time T-S fuzzy system model (42) can be

equivalently written into the form of (3) with n = 2 and the

system delay d = 2. In this simulation, a redundant actuator

is added to the fuzzy model (42) so that when one fails,

the other can adaptively compensate the effect of the failed

actuator. We start our design from the following model:

Ri : IF ξ1(t − 2) is F i
1, THEN

y(t) + ai1y(t − 1) + ai2y(t − 2)

= b1i0u1(t − 2) + b2i0u2(t − 2), i = 1, 2

with ai1 = 150T −2,ai2 = 1−150T +200T 2, b110 = b210 =
1.4387T 2 and b120 = b220 = 0.5613T 2.

We then obtain the global fuzzy system model (29) for the

two actuator case (m = 2) with αi(z
−1) = αi0 + αi1z

−1 =
a2

i1 − ai2 + ai1ai2z
−1 and βji(z

−1) = βji0 + βji1z
−1 =

bji0 − aj1bji0z
−1, i, j = 1, 2.

In the simulation, we assume u2(t) = ū2(t) and consider

a sinusoidal failure ū2(t) = 100 sin(0.2t). The initial pa-

rameter values are set as 50% of their true values. Other

parameters are chosen as T = 0.01s, γ(t) = 1 and c = 0.01.

The failure is added at t = 50. We consider output tracking

of a sinusoidal signal ym(t) = 2 sin(0.5t) under failures.

Simulation results are given in Fig. 1 and Fig. 2. More

simulation results can be found in [6].

VI. CONCLUDING REMARKS

In this paper, we have formulated an adaptive fuzzy

control problem: adaptive fuzzy control of systems with

uncertain actuator failures, and developed a detailed solution

for discrete-time single-input single-output multiple-delay T-

S fuzzy systems in an input-output form. A multiple-delay

fuzzy prediction model has been developed, based on which

an adaptive control scheme and an adaptive actuator failure

compensation scheme have been developed and analyzed,

which have the desired system performance in the presence

of parameter and failure uncertainties. Simulation results

have also verified the desired performance of the developed

adaptive fuzzy control systems.
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