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Abstract— The paper presents a simple setup consisting of
a camera and an accelerometer located on a head mounted
display, and investigates the performance of head tracking for
augmented reality applications using this setup. The informa-
tion from the visual and inertial sensors is fused in an extended
Kalman filter (EKF) tracker. The performance of treating
accelerometer measurements as control inputs is compared
to treating both camera and accelerometer measurements as
measurements, i.e., fusing them in the measurement update
stage of the EKF simultaneously. It is concluded via simulations
that treating accelerometer measurements as control inputs
performs practically as good as treating both measurements
as measurements, while providing a lower complexity tracker.

I. INTRODUCTION

Augmented reality (AR) is applicable to many arenas such

as medical education, remote robot control, entertainment,

and cultural heritage [1]. In AR, the aim is to enrich the real

world with virtual objects, rather than replacing it altogether

(as in virtual reality). Therefore, the user observes virtual

objects rendered on top of the video obtained from the real

world.

Head mounted displays (HMDs) are commonly used in

AR applications to display the virtual content on top of

the real video. In order to achieve a realistic feeling of

immersion, the rendering of the virtual content has to be in

alignment with the real objects in the video. This requires a

very accurate tracking of the 3D pose of the user’s head [1],

[2]. In the literature, many methods have been proposed for

this purpose. Methods depending on technologies such as

GPS [3] are not suitable for indoor applications. Methods

involving placing artificial cues on the scene, such as IR

light emitters, RFID tags, markers, etc., and corresponding

suitable sensors on the HMD [2] may be not possible or

desired, e.g. for applications such as cultural heritage, since

placing external objects to historical scenes would not be

acceptable. Thus, methods involving sensors placed only on

the HMD have been used in the literature [1].

HMDs usually come with mono or stereo cameras. There-

fore, using cameras for head tracking is a natural choice.

Techniques that use only camera measurements and based

on the popular structure-from-motion method (SfM) [4]

generally perform satisfactorily [5] at slow head motion,

however they become less accurate at high velocities and

accelerations due to motion blur. Inertial sensors on the

other hand measure the derivatives of the head pose and
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hence can be employed to boost the tracking performance

at high velocities and accelerations [6]. Therefore, hybrid

methods where inertial sensors and cameras are used together

have been proposed [7]. In the so-called “loosely coupled

approach”, inertial sensor data is used to improve the SfM

performance [8]. Further improvement is achieved when

inertial and visual data are fused simultaneously in a single

Kalman filter [9]. This approach is also referred to as “tightly

coupled approach”.

In this paper, we investigate the use of inertial sensors

and cameras for head tracking in a tightly coupled approach

on a simple setup. Specifically, we consider a setup where

a camera and accelerometer pair providing noisy measure-

ments. We use these measurements in an extended Kalman

filter (EKF) to track their motion. In the EKF, we compare

the performance of treating accelerometer measurements as

control inputs to the (more natural) method of treating both

camera and accelerometer measurements as measurements,

i.e., fusing them in the measurement update stage of the

EKF simultaneously. A similar approach has been reported

in robotics, where odometer data is treated as control inputs

while range data is treated as measurements [10] to reduce

the tracker computational complexity. In a recent paper,

Bleser and Stricker [11] compared using accelerometer mea-

surements as control inputs for AR applications. In this

paper, we investigate extensively the performance of treating

accelerometer measurements as control inputs under varying

object motion speeds and camera sampling rates. To do so,

a plausible camera measurement noise variance as a function

of sampling rate is also proposed. We show via simulations

that treating accelerometer measurements as control inputs

performs practically as good as treating all measurements as

measurements. We confirm that both methods perform better

than using only camera measurements, and the accelerometer

measurements and increased camera frame rates are most

useful at high motion speeds. The conclusion of these obser-

vations is that one can reduce the computational complexity

of the tracker by treating accelerometer measurements as

control inputs without sacrificing from tracking accuracy.

The rest of the paper is organized as follows. In Section II,

the problem setup, and the camera and accelerometer mea-

surement models are presented. In Section III, the specifics

of the EKF and the method of treating the accelerometer as

control inputs is explained. Section IV presents simulation

results.

II. MODEL

In this section, the problem setup is explained. For the sake

of illustration, we assume a 2D world. However our results
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Fig. 1. Illustration of the problem setup.

can be readily extended to 3D 1. We consider an object (e.g.,

an HMD), equipped with a camera and an accelerometer,

moving around on a circle of radius R with a period of P
(see Figure 1). The goal is to track the position of a reference

point on the object, using the measurements from the camera

and the accelerometer. For simplicity, we assume the object

does not undergo rotational motion (i.e., it only performs

translational motion); the contribution of the paper does not

necessitate the tracking of rotation or the presence of other

measurement modalities such as gyroscopes. Extension of

this work to 3-D including rotations is a topic of current

research. Without loss of generality, we assume that the

center of projection of the camera is the reference point to

track, since any known offset can easily be accounted for

in the measurement model. We assume that the reference

point is at the origin at t = 0, however this knowledge is not

available to the tracker. Under these considerations, the actual

motion of the reference point is described by the following

equations:

x(t) = R cos

(

2πt

P

)

− R

y(t) = R sin

(

2πt

P

)

.

Measurements

We assume that the camera frame rate is fc
s and the

accelerometer sampling rate is fa
s . In practice, fa

s > fc
s

usually, due to high data rate of video. We assume that

the first measurements of the camera and the accelerom-

eter are synchronized. It is relatively easy to synchronize

the measurements with external triggers that are present

in most commercially available cameras today. Even when

synchronization is not possible, one could fuse camera and

accelerometer measurements in the EKF separately as they

become available.

1According to our setup, motion in the y dimension and the out-of-plane z
dimension have the same dynamics and measurement characteristics, hence
they are equivalent up to a rotation of the coordinate system. However,
the motion in the x dimension is not equivalent to these two, because of
the nonlinear dependence of the camera measurements to the x dimension.
Therefore, only x and y dimensions are considered in this paper.

Accelerometer Measurements: We assume a capacitive

accelerometer that is designed to operate in a Σ∆ A/D

conversion feedback loop [12]. The advantages of this

approach are two-fold. First, it improves the linearity of

the accelerometer and reduces the memory effect, since

the feedback stabilizes the proof mass in its rest position.

Secondly, the amplifier noise and the quantization noise of

the accelerometer are mostly shaped to out-of-band [13], and

therefore they can be neglected. The noise due to Brownian

motion of the proof mass and the mass residual motion noise

due to digital feedback are not shaped, however. We assume

that the mass residual motion noise is negligible compared

to the Brownian noise [13] (otherwise it might be lumped

in the Brownian noise as well). Under these considerations,

assuming the Brownian noise power spectral density is given

by Sb [m2/sec4/Hz], the accelerometer measurements can be

modeled as follows:

za
x(n) = ẍ(n/fa

s ) + νa
x(n)

za
y (n) = ÿ(n/fa

s ) + νa
y (n), (1)

where n ∈ [1, 2, . . . ,∞) is the sample index, the double dot

denotes the second time derivative, and νa
x(n) and νa

y (n) are

mutually independent white Gaussian noise processes with

sample variance equal to σ2
a = Sbf

a
s . The subscripts x and

y signify the two dimensions.

Here we assume that the accelerometer bias (including

the gravity) is learned beforehand in a calibration stage and

subtracted off from the measurements. The problem with this

approach is, any error in the learning of the bias accumulates

over time in the extended Kalman Filter. In practice, one can

include the accelerometer bias and gravity into the parameter

set that is tracked, and continuously correct for them using

the help of camera measurements during tracking. This will

be explored in the future extensions of this work.

Camera Measurements: We assume that there are N
feature points on a screen (or wall) Wx units away from

the origin. The vertical coordinates of these points are W k
y ,

k = 1, 2, . . . , N . We assume that the locations of the feature

points are learned beforehand at a calibration stage. We

also assume that the local image processing can successfully

detect these points on each video frame. For simplicity we

ignored the probability of mis-detection or false-detection of

these feature points, the cases of their occlusion by other

objects or them being out of the field of view of the camera.

These effects, if present, are expected to not alter the main

message of the paper. However incorporating these issues

to our work are topics of our current research. Assuming a

perspective projection model [14], we get N feature point

measurements per image:

zc
k(n) = F

W k
y − y(n/f c

s )

Wx − x(n/f c
s )

+ νc(n), (2)

where, k = 1, 2, . . . , N stands for the kth feature point and

F [pixels] is the focal length of the camera. To account for

camera measurement noise, we assume mutually indepen-

dent additive Gaussian random variables νc
k(n) with sample

variance σ2
c .
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To find the sample variance of camera measurement noise,

we propose the following model. We assume that the errors in

locating feature points in images are due to two independent

sources. One is due to motion blur, and the other is due to

camera readout noise. To compute the error due to motion

blur, we consider the following. The object moves in the

vertical direction 2R units in P/2 seconds (fc
sP/2 frames).

This corresponds to an average motion of 4R
Pfc

s
units per

frame. Each feature point then moves 4RF
Pfc

s Wx
pixels per

frame on the average. We assume that the local processing

determines the location of a feature point to an accuracy of

half of its average per frame motion. The error due readout

noise is modeled as an independent additive random variable

whose variance increases linearly with frame rate, as the

image signal-to-noise ratio increases linearly with exposure

time in the photon shot-noise dominated regime [15]. Thus,

the sample variance of νc(n) becomes

σ2
c =

(

2RF

Pfc
sWx

)2

+ αfc
s , (3)

where α depends on the camera properties as well as external

factors such as lighting conditions.

It is interesting to note that, according to our proposed

model, the accelerometer noise variance is linear in ac-

celerometer sampling rate whereas the camera noise first

decreases with frame rate (less motion blur) but increases

after a point (photon shot noise dominates). Not only this

model realistically captures the dependency of noise vari-

ances with respect to the sampling rates, but also it yields

an interesting investigation on the best camera frame rate to

accelerometer sampling rate ratio. In this paper, we explore

using different camera frame rates and its effect on the

tracking performance. Finding the best ratio is a topic of

future research.

III. TRACKER

We use the accelerometer and camera measurements in an

extended Kalman filter (EKF) to track the position of the

reference point. EKF is extensively used in a wide variety of

recursive non-linear estimation problems and the details of

the EKF algorithm can be found in any standard textbook,

e.g., [10]. Here, we will present the EKF algorithm very

briefly with focus on the specifics to our problem.

First, we define the global sampling rate of the system

fs to be the least common multiple of the two sampling

rates, namely fc
s and fa

s . We assume that the accelerometer

measurements are available once every fs/fa
s time steps and

the camera measurements are available every fs/fc
s time

steps. If the least common multiple yields a global sampling

rate that is prohibitively large for a real time operation,

one could assume a smaller one and assume measurements

happen at the closest sampling time. We also define the time

period between two samples as ∆ = 1/fs.

State Vector: Since the camera measurements give infor-

mation about the position of the object and the accelerometer

gives information about the acceleration, the system state that

we track is a 6-D vector consisting of the position, velocity

and acceleration in the x and y dimensions:

uT (n) := [x(n∆) y(n∆) ẋ(n∆) ẏ(n∆) ẍ(n∆) ÿ(n∆)].
(4)

State Evolution: Given the state above, we assume in the

EKF tracker that the object moves at a constant acceleration,

and any deviations in the acceleration is modeled as additive

noise:

u(n + 1) = Au(n) + Bω(n), (5)

where

A =

















1 0 ∆ 0 ∆2

2 0

0 1 0 ∆ 0 ∆2

2
0 0 1 0 ∆ 0
0 0 0 1 0 ∆
0 0 0 0 1 0
0 0 0 0 0 1

















, B =

















∆2

2 0

0 ∆2

2
∆ 0
0 ∆
1 0
0 1

















,

(6)

and ω(n) ∈ R
2 models the error in the constant acceleration

assumption. We assume elements of ω(n) are independent

and identically distributed Gaussian random variables with

variance σ2
ω.

Measurement updates: In each iteration, the EKF first

performs a “time update” stage:

û(n|n − 1) = Aû(n − 1|n − 1) (7)

Σ̂u(n|n − 1) = AΣ̂u(n − 1|n − 1)AT + σ2
ωBBT , (8)

where û and Σ̂u denote the estimates of the state and the

state covariance matrix, and (n|n− 1) denotes “at time step

n given the measurements up to time step n − 1”.

If there are measurements available, they are fused in the

estimate of the state vector in a “measurement update” stage:

G := Σ̂u(n|n − 1)JT (JΣ̂u(n|n − 1)JT + V )−1

(9)

û(n|n) = û(n|n − 1) + G(z(n) − h(û(n|n − 1))) (10)

Σ̂u(n|n) = Σ̂u(n|n − 1) − GJΣ̂u(n|n − 1), (11)

where z(n) is the vector of all measurements at time step n

z(n) = [za
x(n) za

y (n) zc
1(n) zc

2(n) . . . zc
N (n)]T ; (12)

h(u) is the non-linear measurement model according to

Equations (1, 2)

h(u) =

[

u5 u6 F
W 1

y − u2

W 2
y − u1

. . . F
WN

y − u2

WN
y − u1

]T

, (13)

where ui denotes the ith element of vector u; J is the

Jacobian of h in Equation (13) evaluated at û(n|n − 1)

J =



















0 0 0 0 1 0
0 0 0 0 0 1

F (W 1

y −ŷ(n|n−1))

(Wx−x̂(n|n−1))2
−F

Wx−x̂(n|n−1) 0 0 0 0
...

...
...

...
...

...
F (W N

y −ŷ(n|n−1))

(Wx−x̂(n|n−1))2
−F

Wx−x̂(n|n−1) 0 0 0 0



















;

(14)
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and V is a diagonal measurement noise covariance matrix

with the diagonal entries being σ2
a, σ2

a, σ2
c , . . . , σ2

c .

If some of the measurements are not available at a specific

time step, corresponding elements or rows and columns are

deleted from z(n), h(u), J and V . If no measurement is

available, measurement update is not performed and the

algorithm passes on to the next time update stage.

Note that in the case of accelerometer measurements

only, the position estimate will diverge eventually since the

acceleration measurement noise will accumulate through the

inherent integrator of the EKF [1]. However, the system

with only camera measurements does not suffer from the

same problem, thus the camera measurements are crucial

for tracking. On the other hand, when used with camera

measurements, the accelerometer measurements help achieve

more accurate results compared to camera measurements

only. But how useful these measurements are, and when they

are useful are important questions that are tackled in this

paper. Also, we are mainly interested in the performance of

treating accelerometer measurements as control inputs in the

tracker. Next, we explain the changes in the EKF under this

assumption.

Using Accelerometer as Control Input: Since the ac-

celerometers provide measurements at a relatively high rate

(more than 100 Hz) and the tracker should operate in real

time for augmented reality applications, reducing its com-

putational complexity as much as possible might become a

practical necessity. In addition to the standard EKF described

above, we implemented a modified tracker that assumes

the accelerometer measurements as noisy control inputs.

This allows the use of a constant velocity state evolution

model, which needs only the position and the velocity of

the reference point in the state vector. In return, the reduced

size of the state vector provides lower complexity in the

EKF operations. Moreover, since the sampling rate of the

accelerometer is usually faster than that of the camera, this

model allows to skip the measurement update step when

only accelerometer measurements are available. With this

assumption, the Equations (4 – 14) are modified as follows:

ũT (n) := [x(n∆) y(n∆) ẋ(n∆) ẏ(n∆)],

ũ(n + 1) = Ãũ(n) + C̃[za
x(n + 1) za

y (n + 1)]T + B̃ω(n),

Ã =









1 0 ∆ 0
0 1 0 ∆
0 0 1 0
0 0 0 1









, B̃ = C̃ =









∆2

2 0

0 ∆2

2
∆ 0
0 ∆









,

z̃(n) = [zc
1(n) zc

2(n) . . . zc
N (n)]T ,

h̃(u) =

[

F
W 1

y − u2

W 2
y − u1

. . . F
WN

y − u2

WN
y − u1

]T

,

J̃ =











F (W 1

y −ŷ(n|n−1))

(Wx−x̂(n|n−1))2
−F

Wx−x̂(n|n−1) 0 0
...

...
...

...
F (W N

y −ŷ(n|n−1))

(Wx−x̂(n|n−1))2
−F

Wx−x̂(n|n−1) 0 0











.

TABLE I

PARAMETERS USED IN SIMULATIONS.

Param Explanation Value

P Object motion period 10 seconds
R Object motion radius 1 unit
fa

s Accelerometer sampling rate 120 Hz.
fc

s Camera frame rate 30 Hz.

Sb Accelerometer noise spectral density (218µg/
√

Hz.)2

N Number of feature points 2
Wx Depth of feature points 5 units

W k
y Height of feature points {0, 1} units

σω Noise std. dev. of motion model (5)
max(ẍ(t))

100
α Prop. constant for camera shot noise (3) 1/160 pixels2/Hz.

While using the accelerometer measurements as control

inputs allows a lower complexity tracker, it also means that

the information from these measurements are incorporated

only in the time update stage of the EKF. Hence in the

measurement update stage, the innovation from the accel-

eration measurements is not fused with the past estimate

of the probability density function. Therefore, this method

is expected to perform inferior to the standard EKF where

all measurements are treated as measurements. In the next

section, we compare the performance of the two methods.

IV. SIMULATION RESULTS

In this section, we report simulation results that compares

the tracking performance of the tracker under three scenarios:

(i) when only camera measurements are available, (ii) when

both camera and accelerometer measurements are available

and treated as measurements, and (iii) when both modalities

are available but the accelerometer measurements are treated

as noisy control inputs. We do not report the result of using

accelerometer measurements only, as the tracker diverges in

that case. We compare the performance of these scenarios

under different object motion speeds (i.e., object rotation

periods P ) and camera frame rates fc
s . For a given (P, fc

s )
pair, we first simulate the actual object motion and generate

the noisy camera and accelerometer measurements for 900

seconds. Then the obtained measurements are used in EKFs

that implement the scenarios mentioned above, to track the

position of the object. We repeat each such simulation for five

times, and plot the RMSE tracking error means and standard

deviations of these simulations.

First, we present a segment of an example simulation

run in Figure 2. The parameters used in this simulation are

given in Table I. In the table, the choice of Sb is based on

the reported Brownian noise level of ST Microelectronics

LIS331DLH accelerometer [16]. The other parameters are

chosen arbitrarily. These parameters except for P and fc
s are

used in other simulations of this section throughout.

In Figure 2, the red line with diamonds shows the tracking

result using only camera measurements. The other lines

show the true object path and other two scenarios that

we tested, namely using both camera and accelerometer

measurements as measurements and using both modalities

but accelerometer measurements as control inputs. We ob-

serve that using the accelerometer measurements together
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Fig. 2. An example simulation. The red line with diamonds is the tracking
result using only camera measurements. The other two scenarios, namely
using both camera and accelerometer measurements as measurements and
using both modalities but accelerometer measurements as control inputs
overlap without noticeable difference with the true object path.

with camera measurements improves the tracking accuracy.

More interestingly, treating accelerometer measurements as

control input does not seem to perform worse than treating

them as regular measurements (their plots overlap without

noticeable difference, see the zoom-in on one of the peaks

of the position plot at the bottom right insert), despite the

disadvantages explained in Section III. If true, this means

one could save from computational complexity, while not

compromising from tracking performance. Next, we present

more simulations investigating this.

Figure 3 plots the means and standard deviations (as error

bars) of the RMSE tracking performance in the x dimension

for the three scenarios, with respect to varying object rotation

period P . Here, the camera frame rate is fc
s = 30Hz. The

figure confirms that the accelerometer measurements increase

the tracking accuracy, when the object motion is fast, which

is expected. It is also observed that the performance of

treating accelerometer measurements as control input is as

good as treating both measurements as measurements (to

within the variations in the simulations). These extended

simulations confirm the observation that was made above;

it seems like one can indeed save from computational

complexity without losing performance. We are currently

investigating the theoretical reason as to why this happens.

We also present the RMSE tracking performance in the y
dimension, with respect to varying object rotation period P ,

in Figure 4. The conclusions of this figure is very similar

to Figure 3. The main difference is that the RMSE values

are lower in this dimension compared to x dimension. This

makes sense, since according to our setup, the camera mea-

surements are linear in the vertical position and non-linear

in the horizontal position of the object (see Equation 2).

Therefore, the EKF performs better in the y dimension.

We also investigated the effect of changing camera frame

rate on the tracking performance. In Figures 5 and 6, similar

plots are provided with camera frame rates fc
s = 20 Hz and
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both, accmtr as control input
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Fig. 3. RMSE tracking performance means and standard deviations in the
x dimension for the three scenarios. Here, fc

s = 30 Hz.
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Fig. 4. RMSE tracking performance means and standard deviations in the
y dimension for the three scenarios. Here, fc

s = 30 Hz.

40 Hz, respectively. It is observed that, for the cases when

both camera and accelerometer measurements are used, the

motion blur term in the camera noise variance (Equation 3)

dominates when the object motion is fast (P close to 1

sec), and the tracking performance increases as camera frame

rate is increased. At P = 1 sec, the camera measurement

noise standard deviation drops approximatelyf by half as

fc
s increases from 20Hz to 40Hz, and correspondingly, the

tracking RMSE decreases approximately by half. However,

when the object motion is slow (P close to 100 sec), the

motion blur is insignificant and the shot noise term dominates

the camera noise variance, which increases as frame rate

increases. The tracking performance of different camera

frame rates are similar at around P = 100 sec therefore

accelerometer noise is dominant. As a conclusion of these

experiments, one can say that increasing camera frame rate

only helps when the object motion is fast and the motion blur

dominates. Otherwise, it might even hurt you (e.g., under

poor lighting conditions). We also observed that varying the

camera frame rate did not effect much the case when the

motion is fast and only camera measurements are available.

1290



10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

Period [sec]

R
M

S
E

x

 

 

just camera measurements

both, accmtr as control input

both treated as measurements

Fig. 5. RMSE tracking performance means and standard deviations in the
x dimension for the three scenarios. Here, fc

s = 20 Hz.

10
−1

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

Period [sec]

R
M

S
E

x

 

 

just camera measurements

both, accmtr as control input

both treated as measurements

Fig. 6. RMSE tracking performance means and standard deviations in the
x dimension for the three scenarios. Here, fc

s = 40 Hz.

We are currently investigating the reason behind this.

In Table II, we present the CPU time of using both

camera and accelerometer measurements in a standard EKF

(Tboth) relative to the CPU time of using accelerometer

measurements as control input in the EKF (Taac). As seen in

the table, using accelerometer measurements as control input

speeds up the computations about twice.

V. CONCLUSION

A hybrid system using inertial sensors and cameras to

track the position of a head mounted display for augmented

reality applications is investigated under a simple setup.

The information from the sensors is fused in an extended

Kalman filter (EKF). Specifically, the performance of treating

accelerometer measurements as control inputs in the EKF

is compared in simulations to treating both measurements

as measurements, under varying motion speeds and camera

frame rates. It is observed that the accelerometer measure-

ments and increased camera frame rates are most useful to

camera measurements under high motion speeds, however,

TABLE II

RELATIVE CPU TIMES FOR DIFFERENT CAMERA FRAME RATES.

fc
s = 20 Hz fc

s = 30 Hz fc
s = 40 Hz

Tboth/Taac 2.63 2.18 2.11

treating accelerometer measurements as control inputs does

not suffer from performance loss compared to treating both

measurements as measurements. This allows the use of a

lower complexity EKF without sacrificing from tracking

accuracy.

We are aware that our setup and model is very simple: it

assumes a 2D world and does not consider many real life

non-idealities such as mis- or false-detections and occlusion

of feature points, rotational motion, accelerometer bias, etc.

We are working on extending our results to incorporate these

real life non-idealities. We will also verify our findings on an

experimental setup. Exploration of the theoretical reasoning

behind our conclusion is another work in progress.
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