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Abstract— This paper presents a geometric procedure for
designing a minimal-order dynamic feedforward compensator
whose aim is cancelling the minimum-phase invariant zeros of
a discrete-time linear multivariable system, non-strictly proper
in general. The feedforward compensator also satisfies the
condition of being of minimal dynamic order and that of
maintaining right invertibility: i.e., if the original system is right
invertible, then the cascade of the feedforward compensator
and the system is right invertible as well. Special attention is
paid to this property since it is a basic property in interesting
control problems, like, e.g., reference tracking. Nonetheless, the
procedure is developed for non-right-invertible and non-left-
invertible systems, in general.

I. INTRODUCTION

Zero cancellation is a problem widely discussed in system

and control theory. In fact, it can be approached under

various perspectives and with different further specifications.

A method for cancellation of simple invariant zeros in lin-

ear multivariable systems, is introduced in [1]. The limitation

on the multiplicity of the invariant zeros is basically due to

the fact that the algorithm presented relies on the so-called

invariant-zero directions, which are related to eigenvector

problems in the presence of multiple eigenvalues.

In [2], the problem of zero displacement is treated from

an essentially polynomial perspective. The problem is stated

in a very general context, where the rational matrix functions

considered are not necessarily proper. Further requirements

of the solutions may be those of having minimum McMillan

degree or being J-unitary and J-inner, either with respect to

the imaginary axis or to the unit circle.

The design procedure for a precompensator cancelling the

invariant zeros of a strictly-proper continuous-time system is

set forth in [3]. The theoretical developments are based on the

extensive use of the special coordinate basis, which enables

dealing with cancellation of multiple invariant zeros, while

maintaining relevant properties of the original system like

stabilizability, right-invertibility and left-invertibility. How-

ever, the compensator thus obtained is not necessarily the

compensator with the minimal dynamic order.

In this work, zero cancellation in discrete-time linear

multivariable systems is encompassed in the framework of

the geometric approach (see, e.g., [4], [5]). The systems

addressed are not required to be either right-invertible or left-

invertible. However, the feedforward compensator guarantees

right-invertibility of the cascade if the original system is

right invertible. Nonetheless, if left-invertibility must be
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maintained, a filter to be connected in cascade with the

original system and such that to cancel its minimum-phase

invariant zeros, while preserving left-invertibility, can be

obtained by means of simple duality arguments.

The determination of an appropriate state feedback as a

friend of the maximal output-nulling controlled invariant

subspace, with the additional requirement of assigning the

internal eigenvalues of the constrained reachability subspace

in such a way that their set be disjoint from that of the

system invariant zeros, is the first and most important step of

a procedure aimed at pointing out a key geometric subspace

and correlated matrices that capture the structure of the

invariant zeros to be cancelled. In fact, the subsequent steps

consists of a sequence of similarity transformations whose

goal is to lead to the coordinates where a basis matrix of

the resolving subspace can easily be determined. Then, the

crucial matrices associated to it are found as the solution of a

pair of algebraic equations which are the Sylvester equation

and the output-nulling equation. Those matrices will be the

dynamic matrix and the output distribution matrix of the

feedforward compensator, which therefore, has the property

of being the feedforward compensator with the minimal

dynamic order.

Notation: R stands for the set of real numbers. C
⊙, C

⊗,

and C
◦ respectively stand for the open unit disc, the open set

outside the unit disc, and the unit circle. Matrices and linear

maps are denoted by capital letters, like A. The spectrum, the

image, and the kernel of A are denoted by σ(A), im A, and

ker A, respectively. The restriction of a linear map A to an A-

invariant subspace J is denoted by A|J . The quotient space

of a vector space X over a subspace V ⊆ X is denoted by

X/V . The dimension of V is denoted by dimV . The symbols

In and Om×n are respectively used for the identity matrix

of dimension n and the m × n zero matrix (subscripts are

omitted when the dimensions are clear from the context).

II. GEOMETRIC APPROACH BACKGROUND

The discrete-time linear time-invariant system

xt+1 = Axt + B ut, (1)

yt = C xt + D ut, (2)

is considered, where t ∈ Z is the time variable and x ∈
X = R

n, u ∈ R
p, y ∈ R

q , with p ≤ n and q ≤ n,

are the state, the input, the output, respectively. A, B, C,

D are constant real matrices of appropriate dimensions.
[

B
D

]

and [ C D ] are full-rank matrices. Geometric objects

extensively used in this work are B, the image of B, C,
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the kernel of C, minJ (A,B), the minimal A-invariant sub-

space containing B, maxJ (A, C), the maximal A-invariant

subspace contained in C, V∗ = maxV(A,B,C,D), the

maximal output-nulling controlled invariant subspace of (1),

(2), S∗ = minS(A,B,C,D), the minimal input-containing

conditioned invariant subspace of (1), (2), RV∗ = V∗ ∩ S∗,

the reachability subspace on V∗. The following geometric

properties are extensively used in this work. A subspace

V ⊆ X is an output-nulling controlled invariant subspace

of (1), (2) if and only if at least one linear map F exists,

such that (A + BF )V ⊆ V and V ⊆ ker (C + DF ). A

subspace S ⊆ X is an input-containing conditioned invariant

subspace of (1), (2) if and only if at least one linear map G
exists, such that (A + GC)S ⊆ S and S ⊇ im (B + GD).
Let the linear map F be such that (A + BF )V∗ ⊆ V∗

and V∗ ⊆ ker (C + DF ), then (A + BF )RV∗ ⊆ RV∗ and

RV∗ ⊆ ker (C + DF ) hold with the same F . The spectrum

of (A + BF )|RV∗ is assignable. The spectrum of (A +
BF )|V∗/RV∗ is fixed. The spetrum of (A + BF )|V∗/RV∗ is

also known as the set of the internal unassignable eigenvalues

of V∗ or, equivalently, as the set of the invariant zeros of

(1), (2), and is also denoted by Z(A,B,C,D). With a slight

abuse of terminology, the invariant zeros of (1), (2) lying

in C
⊙ are called the minimum-phase invariant zeros of (1),

(2) and their set is denoted by ZMP (A,B,C,D). Similarly,

the invariant zeros of (1), (2) lying in C
⊗ are called the

nonminimum-phase invariant zeros of (1), (2) and their set

is denoted by ZNMP (A,B,C,D). The set of the invariant

zeros of (1), (2) lying in C
◦ is denoted by Z0(A,B,C,D).

Further crucial notions are those of right-invertibility and left

invertibility of a system. A geometric condition equivalent

to the property of system (1), (2) of being right-invertible

is V∗ + S∗ = X . A geometric condition equivalent to

the property of system (1), (2) of being left-invertible is

V∗ ∩ S∗ = {0}.

III. PROBLEM STATEMENT

Consider system (1), (2) and assume that R =
minJ (A,B) = X , where R is the reachable subspace

of (A,B), and Q = maxJ (A, C) = {0}, where Q is

the unobservable subspace of (A,C), so that (1), (2) be

a minimal state-space description. Consider the problem of

designing a feedforward compensator,

xc,t+1 = Ac xc,t + Bc vt, (3)

ut = Cc xc,t + Dc vt, (4)

such that the cascade of (3), (4) and the original sys-

tem (1), (2) has a minimal state-space description

xm,t+1 = Am xm,t + Bm vt, (5)

yt = Cm xm,t + Dm vt, (6)

that satisfies the following conditions:

C 1. the invariant zeros are the nonminimum-phase invariant

zeros and the invariant zeros on the unit circle of the

original system: i.e.,

Z(Am, Bm, Cm, Dm) =

ZNMP (A,B,C,D) ∪ Z0(A,B,C,D);

C 2. is right-invertible if (1), (2) is right-invertible.

IV. SYNTHESIS OF THE FEEDFORWARD COMPENSATOR

This section is aimed at revealing the structure of the

minimum-phase invariant zeros of the original system, so

that it can be repeated in the feedforward compensator. This

is achieved by identifying a specific output-nulling controlled

invariant subspace of the original system, henceforth denoted

by Vm, whose internal eigenvalues matches the set of the

minimum-phase invariant zeros of the original system.

Lemma 1: Consider system (1), (2). Let the linear map F
be such that (A + BF )V∗ ⊆ V∗ and V∗ ⊆ ker(C + DF ).
Perform the similarity transformation T = [T1 T2 T3 T4],
where im T1 = RV∗ , im [T1 T2] = V∗, im [T1 T3] = S∗.

Then,

A′
F = T−1(A + BF )T =









A′
11 A′

12 A′
13 A′

14

O A′
22 A′

23 A′
24

O O A′
33 A′

34

O O A′
43 A′

44









,(7)

C ′
F = (C + DF )T =

[

O O C ′
3 C ′

4

]

. (8)

Proof: Let n1 = dimRV∗ , n2 = dimV∗ − n1, n3 =
dimS∗ − n1, and n4 = n − n1 − n2 − n3. Let

T ′
1 =

[

In1
O O O

]⊤
(9)

T ′
2 =

[

O In2
O O

]⊤
(10)

T ′
3 =

[

O O In3
O

]⊤
(11)

T ′
4 =

[

O O O In4

]⊤
. (12)

With respect to the new coordinates, RV∗ = im T ′
1, V∗ =

im [T ′
1 T ′

2], and S∗ = im [T ′
1 T ′

3]. Hence, the zero matrices

in the first block of columns of A′
F are due to (A + BF )-

invariance of RV∗ . The zero matrices in the last blocks of

rows of A′
F are due to (A+BF )-invariance of V∗. The zero

matrices in C ′
F are due to RV∗ ⊆ V∗ ⊆ ker (C + DF ).

Remark 1: The set of the internal eigenvalues of RV∗ is

equal to the set of the eigenvalues of A′
11: i.e., σ((A +

BF )|RV∗ ) = σ(A′
11). The set of the internal unassignable

eigenvalues of V∗, or, equivalently, the set of the invariant

zeros of (1), (2), is equal to the set of the eigenvalues of A′
22:

i.e., σ((A + BF )|V∗/RV∗ ) = Z(A,B,C,D) = σ(A′
22).

Lemma 2: Consider system (1), (2). Let the linear map

F be such that (A + BF )V∗ ⊆ V∗, V∗ ⊆ ker (C + DF ),
and σ((A + BF )|RV∗ ) ∩ σ((A + BF )|V∗/RV∗ ) = ∅. Refer

to (7), (8) and perform the similarity transformation T ′ =
[T ′

1 T ′′
2 T ′

3 T ′
4], where T ′

1, T ′
3, T ′

4 were defined in (9), (11),

(12), and T ′′
2 =

[

X⊤ In2
O O

]⊤
, with X denoting

the solution of the Sylvester equation

A′
11X − XA′

22 = −A′
12. (13)
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Then,

A′′
F = T ′−1A′

F T ′ =









A′
11 O A′′

13 A′′
14

O A′
22 A′

23 A′
24

O O A′
33 A′

34

O O A′
43 A′

44









, (14)

C ′′
F = C ′

F T ′ = C ′
F . (15)

Proof: In light of Remark 1, the assumptions on F
ensure the existence and uniqueness of the solution of (13).

Hence, (14), (15) follow from (7), (8), since

T ′−1 =









In1
−X O O

O In2
O O

O O In3
O

O O O In4









.

Lemma 3: Consider system (1), (2). Let the linear map F
be such that (A + BF )V∗ ⊆ V∗, V∗ ⊆ ker(C + DF ), and

σ((A+BF )|RV∗ )∩σ((A+BF )|V∗/RV∗ ) = ∅. Refer to (14),

(15). Let Js = imJs be the maximal A′
22-invariant subspace

such that σ(A′
22|Js

) ⊂ C
⊙. Let J0 = im J0 be the maximal

A′
22-invariant subspace such that σ(A′

22|J0
) ⊂ C

◦. Let

Ju = imJu be the maximal A′
22-invariant subspace such that

σ(A′
22|Ju

) ⊂ C
⊗. Let Js, J0, and Ju be full-rank matrices.

Perform the similarity transformation T ′′ = [T ′
1 T ′′′

2 T ′
3 T ′

4],
where T ′

1, T ′
3, T ′

4 were defined by (9), (11), (12), and

T ′′′
2 =

[

O J⊤ O O
]⊤

, with J = [Js J0 Ju]. Then,

A′′′
F = T ′′−1A′′

F T ′′ =









A′
11 O A′′

13 A′′
14

O A′′
22 A′′

23 A′′
24

O O A′
33 A′

34

O O A′
43 A′

44









, (16)

C ′′′
F = C ′′

F T ′′ = C ′
F , (17)

with

A′′
22 =





A′′
22s

O O
O A′′

220
O

O O A′′
22u



 . (18)

Proof: Equations (16), (17) follow from (14), (15), since

since J is invertible by construction and, therefore,

T ′′−1 =









In1
O O O

O J−1 O O
O O In3

O
O O O In4









.

Moreover, in the new coordinates,

Js = im





Ins

O
O



, J0 = im





O
In0

O



, Ju = im





O
O

Inu



,

with ns = dimJs, n0 = dimJ0, and nu = dimJu. Hence,

the zero matrices in A′′
22 are due to A′

22-invariance of Js,

J0, and Ju.

Theorem 1: Consider system (1), (2). Let the linear map

F be such that (A + BF )V∗ ⊆ V∗, V∗ ⊆ ker (C + DF ),
and σ((A + BF )|RV∗ ) ∩ σ((A + BF )|V∗/RV∗ ) = ∅. Refer

to the following more detailed representation of (16), (17)

with (18)

A′′′
F =

















A′
11 O O O A′′

13 A′′
14

O A′′
22s

O O A′′
23s

A′′
24s

O O A′′
220

O A′′
230

A′′
240

O O O A′′
22u

A′′
23u

A′′
24u

O O O O A′
33 A′

34

O O O O A′
43 A′

44

















, (19)

C ′′′
F =

[

O O O O C′
3 C ′

4

]

. (20)

With respect to these coordinates, let Vm be defined by

Vm = im V ′′′
m = im

[

O Ins
O O O O

]⊤
. (21)

Then,

(i) Vm is an output-nulling controlled invariant subspace

of (1), (2);

(ii) the internal eigenvalues of Vm are the minimum-phase

invariant zeros of (1), (2): i.e., σ((A + BF )|Vm
) =

ZMP (A,B,C,D).
Proof: Proposition (i): Equation

A′′′
F V ′′′

m = V ′′′
m A′′

22s
(22)

holds, owing to (19) and (21). Hence, Vm is an (A + BF )-
invariant subspace or, equivalently, an (A,B)-controlled in-

variant subspace. Moreover,

C ′′′
F V ′′′

m = O (23)

holds, owing to (20) and (21). Hence, Vm is an output-nulling

controlled invariant subspace.

Proposition (ii) follows from Proposition (i) since, in light

of Remark 1, (22) implies σ((A + BF )|Vm
) = σ(A′′

22s
) =

ZMP (A,B,C,D).
Corollary 1: Consider system (1), (2). Let the linear map

F be such that (A+BF )V∗ ⊆ V∗, V∗ ⊆ ker(C +DF ), and

σ((A + BF )|RV∗ ) ∩ σ((A + BF )|V∗/RV∗ ) = ∅. Let Tm =
TT ′T ′′, where T , T ′, T ′′ were introduced in Lemmas 1–3.

Refer to (21) and let Vm = TmV ′′′
m . Then,

AVm − VmW = −BL, (24)

CVm = −DL, (25)

hold with W = A′′
22s

and L = FVm.

Proof: Owing to (7), (8), (14)–(17) and the definitions

of Tm and Vm, A′′′
F = T−1

m (A + BF )Tm, C ′′′
F = (C +

DF )Tm, and V ′′′
m = T−1

m Vm. Consequently, (22) and (23)

can be written as T−1
m (A + BF )Vm = T−1

m VmA′′
22S

and

(C + DF )V ∗
m = O. Then, one gets (24) and (25) by left

multiplying the former by Tm and replacing A′′
22S

and FVm

with W and L, respectively.

Corollary 1, which refers to a basis matrix Vm of Vm

in the original coordinates, has provided a consistent pair

of matrices, W and L, which point out the structure of the

internal eigenvalues of Vm, or equivalently, the structure of

the minimum-phase invariant zeros of the original system.

The matrices W and L will respectively be the system

matrix and the output distribution matrix of the feedfor-

ward compensator. The input distribution matrix and the
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direct feedthrough matrix of the feedforward compensator

will respectively be such that the states of the feedforward

compensator and the inputs of the original system be directly

accessible one by one. Hence, the feedforward compensator

is described by system (3), (4) with

Ac = W, Bc =
[

Ins
O

]

, (26)

Cc = L, Dc =
[

O Ip

]

. (27)

The compensator has the minimal dynamic order since

the system matrix exactly duplicates the dynamics of the

minimum-phase zeros of the original system.

V. PROPERTIES OF THE CASCADE

This section examines the properties of the cascade of the

feedforward compensator and the original system. First, a

minimal form of the series of the feedforward compensator

and the original system will be obtained. Then, it will be

shown that the conditions of the problem statement are

satisfied. The series of the feedforward compensator (3), (4),

with (26), (27), and the original system (1), (2) is ruled by

xs,t+1 = As xs,t + Bs vt, (28)

yt = Cs xs,t + Ds vt, (29)

where

As =

[

A BCc

O Ac

]

, Bs =

[

BDc

Bc

]

, (30)

Cs =
[

C DCc

]

, Ds = DDc. (31)

Theorem 2, that follows, introduces a minimal representation

of the series (28), (29), with (30), (31). Lemma 4 sets

the basis for the similarity transformation used to prove

Theorem 2.

Lemma 4: Consider system (28), (29), with (30), (31). Let

J = im J = im
[

In O
]⊤

, (32)

Jc = im Jc = im
[

V ⊤
m Ins

]⊤
. (33)

Then,

(i) J is an As-invariant subspace;

(ii) Jc is an As-invariant subspace;

(iii) J ⊕Jc =Xs, where ⊕ stands for the direct sum of

subspaces and Xs denotes the state space of (28), (29).

Proof: Proposition (i) is implied by AsJ = JA, which

holds by virtue of (30) and (32).

Proposition (ii) is implied by AsJc = JcAs, which holds by

virtue of (30) and (33), in light of (24), (26), and (27).

Proposition (iii) follows from the comparison of the respec-

tive basis matrices J and Jc of J and Jc, defined by (32)

and (33).

Theorem 2: Consider system (5), (6). Let

Am = A, Bm =
[

−Vm B
]

, (34)

Cm = C, Dm =
[

O D
]

. (35)

Then, system (5), (6) with (34), (35) is a minimal state-space

representation of (28), (29) with (30), (31).

Proof: Let Ts = [J Jc], where J and Jc were defined

in (32) and (33). Owing to Proposition (iii) of Lemma 4, Ts

is invertible. Hence, let the similarity transformation Ts be

applied to (28), (29) with (30), (31). Then,

A′
s = T−1

s AsTs =

[

A O
O Ac

]

, (36)

B′
s = T−1

s Bs =

[

−Vm B
I O

]

, (37)

C ′
s = CsTs =

[

C O
]

, (38)

D′
s = Ds =

[

O D
]

, (39)

where (24)–(27) have been taken into account. Then, one

gets (34), (35) from (36)–(39) by dropping the subsystem

described by the triple (Ac, I, O), which is unobservable.

Moreover, from (34), (35) it follows that (5), (6) is reachable

and observable, since (1), (2) is reachable and observable by

assumption. Therefore, (5), (6) with (34), (35) is a minimal

state-space representation of (28), (29) with (30), (31).

In the remainder of this section, it will be shown that

system (5), (6), with (34), (35), satisfies Conditions C 1 and

C 2 (Theorems 3 and 4, respectively). The proofs involve a

close comparison between the basic subspaces of the original

system and those of the minimal form of the cascade. This

is carried out in Lemmas 5–7, with an extensive use of the

geometric tools reviewed in Appendix I.

Lemma 5: Consider system (1), (2) and system (5), (6),

with (34), (35). Let V∗ = maxV(A,B,C,D) and V∗
m =

maxV(Am, Bm, Cm, Dm). Then,

V∗
m = V∗. (40)

Proof: As reviewed in Appendix I (Proposition 1), a

basis matrix of V∗ = maxV(A,B,C,D) can be derived

from that of V̂∗ = maxV(Â, B̂, Ĉ), where the matrices of

the extended triple (Â, B̂, Ĉ) are defined by (51). Similarly,

a basis matrix of V∗
m = maxV(Am, Bm, Cm, Dm) can be

derived from that of V̂∗
m = maxV(Âm, B̂m, Ĉm), where the

matrices of the extended triple (Âm, B̂m, Ĉm) are defined

according to (51), with A, B, C, D respectively replaced

by Am, Bm, Cm, Dm. Owing to (34), (35), Âm = Â,

B̂m = [−V̂m B̂], where V̂m =
[

Vm

O

]

, and Ĉm = Ĉ. Then,

V̂∗
m = maxV(Âm, B̂m, Ĉm)

= maxV(Â, [−V̂m B̂], Ĉ)

= maxV(Â, B̂, Ĉ) = V̂∗, (41)

since, as is shown in [5] (Property 4.2-1), for any subspace

Ĥ = im Ĥ ⊆ V̂∗, the relation maxV(Â, [B̂ Ĥ], Ĉ) =
maxV(Â, B̂, Ĉ) = V̂∗ holds and V̂m = im V̂m ⊆ V̂∗

holds by construction. Therefore, (40) follows from (41) and

Proposition 1.

Lemma 6: Consider system (1), (2) and system (5), (6),

with (34), (35). Let S∗ = minS(A,B,C,D) and S∗
m =

minS(Am, Bm, Cm, Dm). Then,

S∗
m = S∗ + Vm. (42)

Proof: As reviewed in Appendix I (Proposition 2), a

basis matrix of S∗ = minS(A,B,C,D) can be derived
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from that of Ŝ∗ = minS(Â, B̂, Ĉ), where the matrices of

the extended triple (Â, B̂, Ĉ) are defined by (53). Similarly,

a basis matrix of S∗
m = minS(Am, Bm, Cm, Dm) can be

derived from that of Ŝ∗
m = minS(Âm, B̂m, Ĉm), where the

matrices of the extended triple (Âm, B̂m, Ĉm) are defined

according to (53), with A, B, C, D respectively replaced by

Am, Bm, Cm, Dm. Owing to (34), (35), Âm, B̂m, Ĉm have

the structure

Âm =





A −Vm B
O O O
O O O



 , B̂m =





O O
Ins

O
O Ip



 ,

Ĉm =
[

C O D
]

.

Hence, by applying Algorithm 2 to the extended triple

(Âm, B̂m, Ĉm) and taking into account Proposition 2, one

gets

Ŝ∗
m = im





S∗ Vm O O
O O Ins

O
O O O Ip



 = im





S∗
m O O
O Ins

O
O O Ip



 ,

(43)

where S∗ and Vm are basis matrices of S∗ and Vm, respec-

tively. Hence, (43) implies S∗
m = imS∗

m = im [S∗ Vm] =
S∗ + Vm, which proves (42).

Lemma 7: Consider system (1), (2) and system (5), (6),

with (34), (35). Let RV∗ = V∗ ∩ S∗ and RV∗
m

= V∗
m ∩ S∗

m.

Then,

RV∗
m

= RV∗ + Vm. (44)

Proof: Owing to Lemmas 5, 6, and the inclusion Vm ⊆
V∗, the relation RV∗

m
= V∗

m ∩ S∗
m = V∗ ∩ (S∗ + Vm) =

V∗ ∩ S∗ + Vm = RV∗ + Vm holds, which implies (44).

Theorem 3: Consider system (1), (2) and system (5), (6),

with (34), (35). Let ZNMP (A,B,C,D) be the set of

the nonminimum-phase invariant zeros of (1), (2). Let

Z0(A,B,C,D) be the set of the invariant zeros of (1), (2)

on the unit circle C
◦. Let Z(Am, Bm, Cm, Dm) be the set

of the invariant zeros of (5), (6). Then,

Z(Am, Bm, Cm, Dm) =

ZNMP (A,B,C,D) ∪ Z0(A,B,C,D). (45)

Proof: Let Fm be such that (Am + BmFm)V∗
m ⊆ V∗

m

and V∗
m ⊆ ker (Cm + DmFm). Then,

Z(Am, Bm, Cm, Dm) = σ((Am + BmFm)|V∗
m

/RV∗
m

) (46)

and is independent of Fm. Let F be such that (A+BF )V∗ ⊆
V∗ and V∗ ⊆ ker (C + DF ). Then,

ZNMP (A,B,C,D) ∪ Z0(A,B,C,D) =

σ((A + BF )|V∗/(RV∗+Vm)) (47)

and is independent of F . Therefore, (45) follows from the

comparison of (46) with (47), in light of (34), (35), Lemma 5,

and Lemma 7.

Theorem 4: Consider system (1), (2) and system (5), (6),

with (34), (35). If (1), (2) is right-invertible, then, (5), (6) is

right-invertible.

Proof: Owing to Lemma 5, Lemma 6, the inclusion

Vm ⊆ V∗, and the assumption of right-invertibility of (1),

(2) the following relation holds:

V∗
m + S∗

m = V∗ + S∗ + Vm = V∗ + S∗ = X = R
n, (48)

which implies right-invertibility of (5), (6).

A slight modification of the procedure leads to a filter

cancelling a subset of the minimum-phase zeros of the

original system — even only one zero with its multiplicity.

More precisely, the basis transformation T ′′, considered in

Lemma 3, must be defined in such a way that matrix A′′
22

turns out to be in Jordan form. Then, the definition of the key

subspace Vm, given in Theorem 1, must be modified so that

the basis matrix V ′′′
m have an identity matrix that selects the

Jordan blocks of A′′
22 corresponding to the minimum-phase

zeros to be cancelled. Still, Vm is an output nulling controlled

invariant subspace of (1), (2) and Corollary 1 points out

the structure of the minimum-phase invariant zeros to be

cancelled.

The dynamic system for zero cancellation can alternatively

be derived in the form of a filter to be connected in cascade of

the original system by means of simple duality arguments.

In that case, the property of the original system which is

preserved along with reachability and observability is left-

invertibility. While preserving right-invertibility is relevant

in control problems like, e.g., reference tracking, preserving

left-invertibility is important in observation problems, like,

e.g., input reconstruction.

VI. CONCLUSION

In this paper, zero cancellation in discrete-time linear

multivariable systems is discussed in the framework of

the geometric approach. The systems addressed are not

necessarily assumed to be either right-invertible or left-

invertible. Nonetheless, how to preserve these properties has

been shown. The procedure is based on the determination

of a key subspace and an associated pair of matrices that

capture the structure of the invariant zeros to be cancelled.

The feedforward compensator consistently designed has the

minimal dynamic order.

APPENDIX I

GEOMETRIC ALGORITHMS FOR NON-STRICTLY-PROPER

SYSTEMS

Some geometric properties of non-strictly-proper systems

can be studied by reducing them to strictly-proper systems,

according to techniques mentioned, e.g., in [5] and derived

from [6]. This section reviews how the maximal output-

nulling controlled invariant subspace and the minimal input-

containing conditioned invariant subspace can be respec-

tively obtained by means of the algorithms for computing

the maximal controlled invariant subspace contained in the

kernel of the output and the minimal conditioned invariant

subspace containing the image of the input, which are the

basic subspaces of strictly-proper systems.
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The discrete-time linear time-invariant system

x̂t+1 = Â x̂t + B̂ ut, (49)

yt = Ĉ x̂t, (50)

is considered, where t ∈ Z is the time variable and x̂ ∈
X̂ = R

n̂, u ∈ R
p, y ∈ R

q, with p ≤ n̂ and q ≤ n̂, are

the state, the input, the output, respectively. Â, B̂, Ĉ are

constant real matrices of appropriate dimensions. B̂ and Ĉ
are full-rank matrices. B̂ and Ĉ stand for im B̂ and ker Ĉ,

respectively. The symbol V̂∗ = maxV(Â, B̂, Ĉ) stands for

the maximal (Â, B̂)-controlled invariant subspace contained

in Ĉ. The symbol Ŝ∗ = minS(Â, B̂, Ĉ) stands for the

minimal (Â, Ĉ)-conditioned invariant subspace containing

B̂. A subspace V̂ ⊆ X̂ is an (Â, B̂)-controlled invariant

subspace if and only if at least one linear map F̂ exists,

such that (Â + B̂F̂ )V̂ ⊆ V̂ . A subspace Ŝ ⊆ X̂ is an

(Â, Ĉ)-conditioned invariant subspace if and only if at least

one linear map Ĝ exists, such that (Â + ĜĈ)Ŝ ⊆ Ŝ.

The subspaces V̂∗ and Ŝ∗ are computed with the following

algorithms.

Algorithm 1: Consider system (49), (50). The subspace

V̂∗ is the last term of the sequence

V̂0 = Ĉ,

V̂i = Â−1(V̂i−1 + B̂) ∩ Ĉ, i = 1, 2, . . . , k,

where k < n̂ is the least integer such that V̂k+1 = V̂k.

Algorithm 2: Consider system (49), (50). The subspace

Ŝ∗ is the last term of the sequence

Ŝ0 = B̂,

Ŝi = Â(Ŝi−1 ∩ Ĉ) + B̂, i = 1, 2, . . . , k,

where k < n̂ is the least integer such that Ŝk+1 = Ŝk.

The following propositions relate the basic subspaces of a

quadruple, like (1), (2), to the corresponding subspaces of

triples, like (49), (50), conveniently constructed. Proofs will

be omitted for the sake of brevity.

Proposition 1: Consider system (1), (2). Let V∗ =
maxV(A,B,C,D). Consider system (49), (50), with

Â =

[

A O
C O

]

, B̂ =

[

B
D

]

, Ĉ =
[

O Iq

]

. (51)

Let V̂∗ = maxV(Â, B̂, Ĉ). Then,

V̂∗ = im V̂ ∗ = im

[

V ∗

O

]

, (52)

where V ∗ is a basis matrix of V∗.

In light of Proposition 1, the computation of V∗ =
maxV(A,B,C,D) reduces to applying Algorithm 1 to the

system (49), (50), with Â, B̂, Ĉ defined by (51).

Proposition 2: Consider system (1), (2). Let S∗ =
minS(A,B,C,D). Consider system (49), (50), with

Â =

[

A B
O O

]

, B̂ =

[

O
Ip

]

, Ĉ =
[

C D
]

. (53)

Let Ŝ∗ = minS(Â, B̂, Ĉ). Then,

Ŝ∗ = im Ŝ∗ = im

[

S∗ O
O Ip

]

, (54)

where S∗ is a basis matrix of S∗.

In light of Proposition 2, the computation of S∗ =
minS(A,B,C,D) reduces to applying Algorithm 2 to the

system (49), (50), with Â, B̂, Ĉ defined by (53).
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