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Abstract— In this paper, we study stability of switched linear
discrete-time descriptor systems. Under the assumption that all
subsystems are stable and there is no impulse occurring at the
switching instants, we establish a new pairwise commutation
condition under which the switched system is stable. We also
show that when the proposed commutation condition holds,
there exists a common quadratic Lyapunov function (CQLF)
for the subsystems. These results are natural and important
extensions to the existing results for switched systems in the
state space representation.

Index Terms—Switched linear discrete-time descriptor sys-
tems, stability, pairwise commutation, impulse-free arbitrary
switching, common quadratic Lyapunov functions (CQLFs),
matrix inequalities.

I. INTRODUCTION

This paper analyzes stability properties for switched sys-

tems composed of a family of linear discrete-time descriptor

subsystems. It is known that descriptor systems (also called

as singular systems or implicit systems) have high abilities

in representing dynamical systems [1], [2], since they can

preserve physical parameters in the coefficient matrices, and

describe the dynamic part, static part, and even improper

part of the system in the same form. Due to the existence

of the static part (or the algebraic constraint in other words),

most descriptor systems have impulsive modes, which makes

the analysis and design problems quite difficult, compared

with the state space representation. So far, there have been

many references on descriptor systems, focusing on stability

analysis and stabilization [3], H∞ control [4], etc.

On the other hand, there has been increasing interest

recently in stability analysis and design for switched sys-

tems; see the survey papers [5], [6], [7] and the references

cited therein. It is commonly recognized [5] that there are

three basic problems for stability analysis and design of

switched systems: (i) find conditions for stability under

arbitrary switching; (ii) identify the limited but useful class

of stabilizing switching laws; and (iii) construct a stabilizing

switching law. Specifically, Problem (i) deals with the case

that all subsystems are stable. This problem seems trivial,

but it is important since we can find many examples where

all subsystems are stable but improper switchings can make

the whole system unstable [8]. In addition, if we know that

a switched system is stable under arbitrary switching, then

we can consider higher control specifications for the system.
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There have been several results for Problem (i) with the

state space representation. For example, Ref. [9] showed that

when all subsystems are stable and commutative pairwise,

the switched linear system is stable under arbitrary switching.

Ref. [10] extended this result from the commutation condi-

tion to a Lie-algebraic condition. Ref. [11], [12] and [13]

extended the consideration to the case of L2 gain analysis

and the case where both continuous-time and discrete-time

subsystems exist, respectively. In our previous papers [14],

[15], we extended the existing result of [9] to switched linear

descriptor systems. In that context, we showed that in the

case where all descriptor subsystems are stable, if the de-

scriptor matrix and all subsystem matrices are commutative

pairwise, then the switched system is stable under arbitrary

switching. The recent papers [16] and [17] established suf-

ficient conditions for stability of switched linear descriptor

systems under arbitrary switching in the name of common

Lyapunov functions. It is noted that [16] did not deal with

the variable jump occurring at switching instants, while

[17] proposed an additional condition involving consistency

projectors for that purpose.

The present paper is motivated by the observation that

the commutation condition proposed in [14], [15] is still

conservative, although it is an extension to the existing com-

mutation condition in [9]. The reason is that the commutation

condition in [14], [15] is required to hold among the descrip-

tor matrix and the subsystem matrices. However, it is known

that the dynamics of a linear descriptor system is determined

by the pair of descriptor matrix and system matrix. Thus,

it is natural that the commutation condition be expressed

by the pair or the combination of these matrices. Based

on this observation, this paper proposes a new commutation

condition for stability analysis of switched linear descriptor

systems, which is a natural extension to the commutation

conditions in [9], [14], [15]. The relation between the pro-

posed commutation condition and the existence of common

quadratic Lyapunov functions (CQLFs) is also clarified in a

constructive way.

This paper is organized as follows. In Section II, we

give some preliminaries of linear descriptor systems and

formulate the stability analysis problem under consideration.

Section III states and proves the commutation condition for

the switched descriptor systems under impulse-free arbitrary

switching. The condition includes the existing commutation

conditions [9], [14], [15] as special cases. Section IV proves

that if the commutation conditions holds, then there exists a

CQLF for the subsystems. This is also a natural extension

to the existing result in the literature. Finally, Section V

concludes the paper.

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 2613



II. PRELIMINARIES & PROBLEM FORMULATION

A. Preliminaries

we first introduce some definitions [4] and a preliminary

result for linear discrete-time descriptor systems.

Definition 1: Consider the linear discrete-time descriptor

system

Ex(k + 1) = Ax(k) (2.1)

where x ∈ Rn is the descriptor variable, the nonnegative

integer k denotes the discrete-time instant, and E,A ∈ Rn×n

are constant matrices. The matrix E may be singular and

we denote its rank by r = rankE ≤ n. The system (2.1)

has a unique solution for any initial condition and is called

regular, if |zE−A| 6≡ 0. The finite eigenvalues of the matrix

pair (E,A), that is, the solutions of |zE − A| = 0, and the

corresponding (generalized) eigenvectors define exponential

modes of (2.1). If the finite eigenvalues lie in the open unit

disc of the complex plane, the solution decays exponentially.

The infinite eigenvalues of (E,A) with the eigenvectors sat-

isfying the relations Ex1 = 0 determines static modes. The

infinite eigenvalues of (E,A) with generalized eigenvectors

xk satisfying the relations Ex1 = 0 and Exk = xk−1

(k ≥ 2) create impulsive modes. The system (2.1) has no

impulsive mode if and only if rank E = deg |zE − A|.
The system (2.1) is said to be stable if it is regular and has

only decaying exponential modes and static modes (without

impulsive modes).

Lemma 1 (Weiertrass Form)[2]: If the descriptor system

(2.1) is regular, then there exist two nonsingular matrices M

and N such that

MEN =

[

Id 0

0 J

]

, MAN =

[

Λ 0

0 In−d

]

(2.2)

where d = deg |zE − A|, J is composed of Jordan blocks

for the finite eigenvalues. If the system (2.1) is regular and

there is no impulsive mode, then (2.2) holds with d = r and

J = 0. If the system (2.1) is stable, then (2.2) holds with

d = r, J = 0 and furthermore Λ being (Schur) stable.

B. Problem Formulation

Without losing generality, we consider the switched sys-

tem composed of two discrete-time descriptor subsystems

described by
{

Ex(k + 1) = A1x(k)

Ex(k + 1) = A2x(k)
(2.3)

where x ∈ Rn is the descriptor variable, and E,A1, A2 ∈
Rn×n are constant matrices. The matrix E may be singular

and we denote its rank by r = rankE ≤ n.

In this paper, we consider Problem (i) for the switched

system (2.3) under the assumption that the two subsystems

in (2.3) are both stable. As for the stability analysis of

switched linear systems in state space representation, such

an analysis problem is well posed (or practical) since a

switched descriptor system can be unstable even if all the

descriptor subsystems are stable and there is no variable

(state) jump at the switching instants. Furthermore, switch-

ings between two descriptor subsystems can even result in

impulse signals, even if the two subsystems do not have

impulsive modes themselves. This happens when the variable

vector x(ks), where ks is a switching instant, does not satisfy

the algebraic equation required in the subsequent subsystem.

In order to exclude this possibility, Ref. [17] proposed an

additional condition using the name of consistency projectors

(for switched continuous-time descriptor systems). Here, in

order to establish a commutation condition, we focus our

attention on the case that there is no impulse occurring with

the variable (state) vector at every switching instant, and

call such kind of switching impulse-free. A more detailed

discussion will be made in the next section how the switching

should be done so that no impulse occurs.

Definition 2: Given a switching law, the switched system

(2.3) is said to be stable if there is no impulse occurring, and

starting from any initial value the system’s trajectories con-

verge to the origin exponentially. If there exists a switching

law under which the switched system is stable, the switched

system (2.3) is said to be stabilizable (under appropriate

switching).

We are now ready to state the analysis problem considered

in the present paper.

Stability Analysis Problem Under Impulse-Free Arbi-

trary Switching: “Assume that the two descriptor subsys-

tems in (2.3) are stable. Establish the commutation condition

under which the switched system is stable under impulse-free

arbitrary switching.”

Remark 1: There is a tacit assumption in the switched

system (2.3) that the descriptor matrix E is the same in all

the subsystems. Theoretically, this assumption is restrictive

at present. However, as also discussed in [14], [15], the

above problem settings and the results later can be applied

to switching control problems for single linear descriptor

systems. This is the main motivation that we presently

consider the same descriptor matrix E in the switched

system. For example, if for a single descriptor system

Ex(k + 1) = Ax(k) + Bu(k) where u(k) is the control

input, we have designed two stabilizing descriptor variable

feedbacks u(k) = K1x(k), u(k) = K2x(k), and furthermore

the switched system composed of the descriptor subsystems

characterized by (E,A + BK1) and (E,A + BK2) are

stable under impulse-free arbitrary switching, then we can

switch between the two controllers arbitrarily provided that

no impulse occurs, and thus can consider higher control spec-

ifications. This kind of requirement is very important when

we want more flexibility for multiple control specifications

in real applications.

III. NEW COMMUTATION CONDITION

A. New Commutation Condition for Stability Under Impulse-

Free Arbitrary Switching

Since (E,A1) is stable, according to Lemma 1, there exist

two nonsingular matrices M,N such that

MEN =

[

Ir 0

0 0

]

, MA1N =

[

Λ1 0

0 In−r

]

(3.1)

2614



where Λ1 is a (Schur) stable matrix. Then, we partition the

matrices M , N into

N =
[

NL NR

]

, M =

[

MU

ML

]

(3.2)

where NL ∈ Rn×r, NR ∈ Rn×(n−r), MU ∈ Rr×n, and

ML ∈ R(n−r)×n , and establish the first main result as

follows.

Theorem 1: If the two descriptor systems in (2.3) are

stable, and furthermore the subsystems are commutative

pairwise in the sense of

A1NLMUA2 = A2NLMUA1 , (3.3)

then the switched system (2.3) is stable under impulse-free

arbitrary switching.

Proof: Using the nonsingular matrices M and N , we

write the transformation of A2 as

MA2N =

[

Ā11 Ā12

Ā21 Ā22

]

. (3.4)

According to (3.1) and (3.4), under the same nonsingular

transformation x̄ = N−1x, the two descriptor subsystems in

(2.3) take the form of

x̄1(k + 1) = Λ1x̄1(k)

0 = x̄2(k)
(3.5)

and

x̄1(k + 1) = Ā11x̄1(k) + Ā12x̄2(k)

0 = Ā21x̄1(k) + Ā22x̄2(k)
(3.6)

respectively, where x̄ = N−1x = [x̄⊤
1 x̄⊤

2 ]
⊤, x̄1 ∈ Rr ,

x̄2 ∈ Rn−r . Since (E,A2) is stable, we obtain from (3.6)

that Ā22 is nonsingular,

x̄1(k + 1) = Λ2x̄1(k) , Λ2 = Ā11 − Ā12Ā
−1
22 Ā21

x̄2(k) = −Ā−1
22 Ā21x̄1(k) .

(3.7)

and furthermore Λ2 is (Schur) stable. Note that the stability

of the switched system (2.3) is equivalent to that of the

switched system composed of (3.5) and (3.7).

Next, we proceed to prove Λ1 and Λ2 are commutative

pairwise. Before that, we write several equations

MUA1NL = Λ1 , MUA1NR = 0 , MLA1NL = 0

MUA2NL = Ā11 , MUA2NR = Ā12

MLA2NL = Ā21 , MLA2NR = Ā22 ,
(3.8)

which are easily derived from the transformations (3.1) and
(3.4). Then,

Λ1Λ2 = MUA1NL

[

MUA2NL −MUA2NRĀ−1

22
Ā21

]

= MUA1NLMUA2NL −MUA1NLMUA2NRĀ−1

22
Ā21

= MUA2NLMUA1NL −MUA2NLMUA1NRĀ−1

22
Ā21

= MUA2NLMUA1NL , (3.9)

where the fact MUA1NR = 0 and the condition (3.3) are
used to reach the final equation. Similarly,

Λ2Λ1 =
[

MUA2NL − Ā12Ā
−1

22
MLA2NL

]

MUA1NL

= MUA2NLMUA1NL − Ā12Ā
−1

22
MLA2NLMUA1NL

= MUA2NLMUA1NL − Ā12Ā
−1

22
MLA1NLMUA2NL

= MUA2NLMUA1NL , (3.10)

where the fact MLA1NL = 0 is used.

According to (3.9) and (3.10), Λ1Λ2 = Λ2Λ1. Since both

Λ1 and Λ2 are Schur stable, we obtain that the switched

system composed of x̄1(k+1) = Λ1x̄1(k) and x̄1(k+1) =
Λ2x̄1(k) is exponentially stable under arbitrary switching,

and x̄1(k) converges to zero exponentially.

Noticing that x̄2(k) = 0 in the first subsystem and

x̄2(k) = −Ā−1
22 Ā21x̄1(k) in the second subsystem, x̄2(k)

also converges to zero exponentially under impulse-free

arbitrary switching. This completes the proof.

Remark 2: Using the same technique as in the proof

of Theorem 1, we can easily establish and prove the result

for the case where there are more than three descriptor

subsystems involved. More precisely, for the switched system

composed of N descriptor subsystems described by

Ex(k + 1) = Aix(k) , i = 1, · · · ,N , (3.11)

if all (E,Ai), i = 1, · · · ,N , are stable, and furthermore

the subsystems are commutative pairwise in the sense of

satisfying

AiNLMUAj = AjNLMUAi , ∀i 6= j , (3.12)

then the switched system (3.11) is stable under impulse-free

arbitrary switching.

Remark 3: It is obtained from the transformation (3.1)

that

MENL =

[

Ir

0

]

, MA1NR =

[

0

In−r

]

, (3.13)

and thus

M−1 =
[

ENL A1NR

]

. (3.14)

Similarly, using (3.1) again,

MUEN =
[

Ir 0
]

, MLA1N =
[

0 In−r

]

, (3.15)

and thus

N−1 =

[

MUE

MLA1

]

. (3.16)

To substitute these inverse matrices into the first equation of

(3.1), one obtains

E = M−1

[

Ir 0

0 0

]

N−1

=
[

ENL A1NR

]

[

Ir 0

0 0

][

MUE

MLA1

]

= E(NLMU )E . (3.17)
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In addition, since MUENL = Ir, it leads to

(NLMU )E(NLMU ) = NL(MUENL)MU = NLMU .

(3.18)

Based on the above observation, NLMU is actually a

Pseudo inverse matrix of E.

Remark 4: The commutation condition (3.3) does not

depend on the choice of M , N in (3.1). Suppose we choose

two different nonsingular matrices M̄ , N̄ such that

M̄EN̄ =

[

Ir 0

0 0

]

, M̄A1N̄ =

[

Λ̄1 0

0 In−r

]

. (3.19)

Since both Λ1 and Λ̄1 include the dynamic part of the

descriptor system (E,A1), they have the same eigenvalues

and thus there exists a nonsingular matrix T1 satisfying

Λ̄1 = T−1
1 Λ1T1 . Then, comparing (3.19) with (3.1), we

obtain easily that

NL = N̄LT
−1
1 , MU = T1M̄U . (3.20)

Therefore, NLMU = N̄LM̄U and the condition (3.3) takes

the same form.

In the end of this subsection, we give a remark discussing

the “impulse-free” property at the switchings for the switched

descriptor system. In real applications, we need to know in

which space (area) the switchings do not result in impulses.

Remark 5: According to the proof of Theorem 1, under

the same nonsingular variable transformation x̄ = N−1x,

the two descriptor subsystems in (2.3) are decomposed into

a differential equation and an algebraic equation, as described

in (3.5) and (3.6). It is clear that impulses occur when the

two algebraic equations are not consistent. On the contrary,

switchings in the variable (state) space where the two alge-

braic equations are both satisfied will not result in impulses.

Since Ā22 is nonsingular, Ā21x̄1 = 0 is required in a nec-

essary and sufficient manner so that the two algebraic equa-

tions are consistent. To summarize, the “impulse-free” space

(area) is obtained as
{

x ∈ Rn

∣

∣

∣
Ā21

[

Ir 0
]

N−1x = 0
}

,

which provides an easy-to-check condition for “impulse-

free” switching.

B. Comparison with Existing Commutation Conditions

In this subsection, we consider the relation of Theorem 1

with the existing commutation conditions in [9], [15].

Lemma 2:[9] Consider the switched system composed of

x(k + 1) = A1x(k) , x(k + 1) = A2x(k) (3.21)

and assume that A1 and A2 are (Schur) stable matrices such

that A1A2=A2A1. Then,

1) the switched system is exponentially stable under ar-

bitrary switching;

2) there exists a common quadratic Lyapunov function

V (x) = x⊤Px for the subsystems.

In the case that E is nonsingular, the commutation condi-

tion in the above lemma is written as

(E−1A1)(E
−1A2) = (E−1A2)(E

−1A1)

⇐⇒ A1E
−1A2 = A2E

−1A1 .
(3.22)

In our discussion, when E is nonsingular, we obtain r = n

and simply choose N = E−1,M = In or N = In,M =
E−1 in the transformation (3.1). Then, the commutation

condition (3.3) is the same as (3.22). This implies that the

commutation condition together with the stability result in

this paper is an extension of Ref. [9] to switched linear

descriptor systems.

Next, we proceed to compare Theorem 1 with the com-

mutation condition proposed in [14], [15].

Lemma 3:[15] If the two descriptor systems in (2.3) are

stable, and furthermore the descriptor matrix E and the two

system matrices A1, A2 are commutative pairwise, i.e.,

EA1 = A1E , EA2 = A2E , A1A2 = A2A1 , (3.23)

then the switched system (2.3) is stable under impulse-free

arbitrary switching.

The next theorem shows that the commutation condition

(3.3) is an extension to (3.23).

Theorem 2: If the commutation condition (3.23) holds,

there exist nonsingular matrices M , N in (3.1) such that the

condition (3.3) is satisfied.

Proof: As shown in the proof of Theorem 1 in [15],

when the commutation condition (3.23) holds, there exist

nonsingular matrices M , N such that

MEN =

[

Ir 0

0 0

]

MA1N =

[

Λ1 0

0 In−r

]

,MA2N =

[

Λ2 0

0 X

] (3.24)

where Λ1 and Λ2 are (Schur) stable matrices satisfying

Λ1Λ2 = Λ2Λ1, and X ∈ R(n−r)×(n−r) is nonsingular. Here,

without causing confusion, we used the same notations as

before.

After some simple calculation, we obtain

MA1NLMUA2N

= (MA1N)(N−1NL)(MUM
−1)(MA2N)

=

[

Λ1 0

0 I

][

Ir

0

]

[

Ir 0
]

[

Λ2 0

0 X

]

=

[

Λ1Λ2 0

0 0

]

(3.25)

and

MA2NLMUA1N

= (MA2N)(N−1NL)(MUM
−1)(MA1N)

=

[

Λ2 0

0 X

][

Ir

0

]

[

Ir 0
]

[

Λ1 0

0 In−r

]

=

[

Λ2Λ1 0

0 0

]

. (3.26)

Since Λ1Λ2 = Λ2Λ1 and N , M are nonsingular, we

obtain A1NLMUA2 = A2NLMUA1, which is exactly the

commutation condition (3.3) in Theorem 1.
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IV. RELATION WITH EXISTENCE OF CQLF

Part 2) of Lemma 2 in the previous section states that

when the commutation condition A1A2 = A2A1 holds for

switched linear systems in the state space representation,

there exists a CQLF for the subsystems. The next theorem

extends this important part for Theorem 1. More precisely,

it shows that when the commutation condition (3.3) holds,

there exists a CQLF for the subsystems in (2.3).

Theorem 3: If the two descriptor subsystems in (2.3)

are stable, and furthermore the commutation condition (3.3)

holds, then there are nonsingular symmetric matrices Pi ∈
Rn×n, i = 1, 2, such that

E⊤PiE ≥ 0 (4.1)

A⊤

i PiAi − E⊤PiE < 0 (4.2)

and furthermore

E⊤P1E = E⊤P2E . (4.3)

It is known [18] that (4.1)-(4.2) guarantees Vi(x) =
x⊤E⊤PiEx is a Lyapunov function for stability of the

i-th subsystem. Thus, (4.1)-(4.3) shows there is a CQLF

x⊤E⊤PiEx for the two subsystems.

Proof of Theorem 3: In the proof of Theorem 1, we

have obtained that when the two descriptor systems in (2.3)

are stable and (3.3) holds, the original switched system

is equivalent to the switched system composed of (3.5)

and (3.7). Since Λ1 and Λ2 are commutative, we obtain a

common positive definite matrix PΛ satisfying

Λ⊤

1 PΛΛ1 − PΛ < 0 , Λ⊤

2 PΛΛ2 − PΛ < 0 . (4.4)

Use the above matrix PΛ to define

Pi = M⊤

[

PΛ P i
12

(P i
12)

⊤ P i
22

]

M . (4.5)

where the matrices P i
12, P i

22 are determined later, only
assuming P i

22 is symmetric presently. Then,

E
⊤
PiE = N

−⊤(MEN)⊤(M−⊤
PiM

−1)(MEN)N−1

= N
−⊤

[

Ir 0

0 0

][

PΛ P i

12

(P i

12)
⊤ P i

22

][

Ir 0

0 0

]

N
−1

= N
−⊤

[

PΛ 0

0 0

]

N
−1

≥ 0 , (4.6)

which shows (4.1) and (4.3) are true.

To prove (4.2), we first obtain

A⊤

1 P1A1

= N−⊤(MA1N)⊤(M−⊤P1M
−1)(MA1N)N−1

= N−⊤

[

Λ⊤
1 0

0 In−r

][

PΛ P 1
12

(P 1
12)

⊤ P 1
22

]

×

[

Λ1 0

0 In−r

]

N−1

= N−⊤

[

Λ⊤
1 PΛΛ1 Λ⊤

1 P
1
12

(P 1
12)

⊤Λ1 P 1
22

]

N−1 , (4.7)

and thus

A⊤

1 P1A1 − E⊤P1E

= N−⊤

[

Λ⊤
1 PΛΛ1 − PΛ Λ⊤

1 P
1
12

(P 1
12)

⊤Λ1 P 1
22

]

N−1 . (4.8)

Since N is nonsingular and Λ⊤
1 PΛΛ1 − PΛ < 0, we can

simply choose P 1
12 = 0 and P 1

22 = −ηI with any positive

scalar η to achieve A⊤
1 P1A1 − E⊤P1E < 0 .

Next, we choose P 2
12 = 0 in P2 and obtain by similar

calculation that

A⊤

2 P2A2

= N−⊤(MA2N)⊤(M−⊤P2M
−1)(MA2N)N−1

= N−⊤

[

Ā11 Ā12

Ā21 Ā22

]⊤ [

PΛ 0

0 P 2
22

]

×

[

Ā11 Ā12

Ā21 Ā22

]

N−1 . (4.9)

Using the fact

[

Ā11 Ā12

Ā21 Ā22

][

I 0

−Ā−1
22 Ā21 I

]

=

[

Λ2 Ā12

0 Ā22

]

,

(4.10)
we obtain from (4.9) that

A
⊤

2 P2A2

= N̄
−⊤

[

Λ⊤

2 PΛΛ2 Λ⊤

2 PΛĀ12

Ā⊤

12PΛΛ2 Ā⊤

22P
2

22Ā22 + Ā⊤

12PΛĀ12

]

N̄
−1

(4.11)

where

N̄ = N

[

I 0

−Ā−1
22 Ā21 I

]

(4.12)

is also nonsingular. Together with the fact

N̄−⊤

[

PΛ 0

0 0

]

N̄−1 = N−⊤

[

PΛ 0

0 0

]

N−1 , (4.13)

we reach

A⊤

2
P2A2 − E⊤P2E

= N̄−⊤

[

Λ⊤

2
PΛΛ2 − PΛ Λ⊤

2
PΛĀ12

Ā⊤

12
PΛΛ2 Ā⊤

22
P 2

22
Ā22 + Ā⊤

12
PΛĀ12

]

N̄−1.

(4.14)

Since Ā22 is nonsingular, we can always choose P 2
22 =

−µI with a large positive scalar µ such that Ā⊤
22P

2
22Ā22 +

Ā⊤
12PΛĀ12 is negative definite enough. Combining with the

fact that Λ⊤
2 PΛΛ2 − PΛ < 0, we obtain that we can

always choose P 2
22 such that A⊤

2 P2A2 −E⊤P2E < 0 . This

completes the whole proof.

Remark 6: As also shown in [16], the proofs of Theorem

1 and Theorem 3 suggest that V (x̄) = x̄⊤
1 PΛx̄1 is a common
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quadratic Lyapunov function for the systems (3.5) and (3.7).

In fact, this is rationalized by the following equation.

x⊤E⊤PiEx

= (N−1x)⊤(MEN)⊤(M−⊤PiM
−1)(MEN)(N−1x)

=

[

x̄1

x̄2

]⊤ [

Ir 0

0 0

][

PΛ 0

0 P i
22

][

Ir 0

0 0

][

x̄1

x̄2

]

= x̄⊤

1 PΛx̄1 (4.15)

Therefore, although E⊤PiE is not positive definite and

neither is Vi(x) = x⊤E⊤PiEx, the function Vi(x) plays

the role of a CQLF for the two descriptor subsystems.

Remark 7: The conditions (4.1)-(4.3) in Theorem 3

include a non-strict matrix inequality and an equation, which

may not be easy to solve using the existing LMI Control

Toolbox in Matlab [19]. As a matter of fact, the proof of

Theorem 3 suggested an alternative method for solving it in

the framework of strict LMIs: (a) decompose E as in (3.1)

using nonsingular matrices M and N , and compute MA2N ;

(b) solve the following simultaneous strict LMIs [20]

[

Λ⊤
1 PΛΛ1 − PΛ 0

0 P 1
22

]

< 0

[

Λ⊤
2 PΛΛ2 − PΛ Λ⊤

2 PΛĀ12

Ā⊤
12PΛΛ2 Ā⊤

22P
2
22Ā22 + Ā⊤

12PΛĀ12

]

< 0

(4.16)

with respect to PΛ and P 1
22, P

2
22, where PΛ > 0 and

P 1
22, P

2
22 are symmetric; (c) compute the original Pi with

Pi = M⊤

[

PΛ 0
0 P i

22

]

M , i = 1, 2 .

V. CONCLUDING REMARKS

In this paper, we have established a new commutation con-

dition for stability of switched linear discrete-time descriptor

systems under impulse-free arbitrary switching. We have also

shown that when the proposed commutation condition holds,

there exists a CQLF for the subsystems. These results are

natural and important extensions to the existing results for

switched systems in the state space representation.

It is easy to see that the proposed commutation condition

can be used to deal with the case where there are both

stable and unstable subsystems involved [21], and the case

where there is no stable subsystem but there is a stable

combination of the subsystems [22] taking the form of

(E, λA1 + (1− λ)A2) [14], [15]. It is noted that careful

consideration of excluding impulsive signals is still desired,

especially in the case where the subsystems have different

descriptor matrices.
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