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Abstract— Hybrid electric vehicles exploit energy production
and energy storage systems to achieve improved fuel economy
with respect to conventional powertrains. In order to maximize
such improvements, advanced control strategies are needed for
deciding the amount of energy to be produced and stored. In
this paper we propose an approach for energy management of
a series hybrid electric vehicle (SHEV). This approach focuses
on maximizing the pointwise powertrain efficiency, rather than
the overall fuel consumption. For a given power request the
steady state engine operating point is chosen to maximize the
efficiency. A control algorithm regulates the transitions between
different operating points, by using the battery to smoothen the
engine transients. Due to the constrained nature of the transient
smoothing problem, we implement the control algorithm by
model predictive control. Experimental testing on the UDDS
cycle shows improved fuel economy with respect to two baseline
strategies.

I. INTRODUCTION

Hybrid Electric Vehicles (HEVs) achieve higher fuel

economy than conventional vehicles due to the capability

of recovering energy during braking, and of using electric

batteries to improve the efficiency of the internal combustion

engine operation. HEV energy management [1] focuses on

deciding how much power should be produced by the internal

combustion engine and how much should be stored/released

from the auxiliary energy storage systems to achieve the

desired power at the wheels, to enforce the operating con-

straints, and to optimize fuel economy.

In recent years, several strategies for HEV energy manage-

ment have been proposed, including dynamic programming

(DP) [2], stochastic dynamic programming (SDP) [3], equiv-

alent fuel consumption minimization (ECMS) [4], and model

predictive control (MPC) [5], [6]. These strategies optimize

the fuel economy by solving a problem where the fuel con-

sumption explicitly appears in the cost function. Indeed, this

results in minimum fuel consumption if the full information

problem can be solved over the whole driving cycle (as in

the DP approach). However, information about the future

driving cycle is not available during conventional driving.

In addition, planning for the whole future driving cycle

is computationally demanding. While the use of stochastic

models (as in SDP and in stochastic MPC [7]) alleviates

some of these problems, the choice of stochastic model and

its identification still poses several challenges.
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In this paper we describe a different approach for HEV

energy management, and we apply it to a Series Hybrid

Electric Vehicle (SHEV). Instead of explicitly optimizing

the fuel consumption, we aim at improving the efficiency

of the engine operation. Since in the SHEV configuration

the engine is mechanically decoupled from the wheels, for a

given power request the steady state engine operating point

-engine speed and engine torque- can be arbitrarily chosen

within a curve. Thus, a curve of optimal operating points as a

function of the requested generator power can be computed,

and the engine operating point can be controlled to be on

that curve in steady state. However, during the transients the

engine dynamics move the operating point away from the

optimal curve. In this paper we propose to use the battery to

“smoothen” the transients so that the engine operating point

slides in a narrow band along the optimal efficiency curve.

In order to obtain the engine power smoothing behavior,

a Model Predictive Control (MPC) algorithm [8] is imple-

mented. While alternative control designs can also be consid-

ered, MPC provides the appealing capabilities of enforcing

constraints on the control signals and on the system states,

and of defining the priority between the different objectives

by a cost function. By multiparametric programming [9] the

MPC controller can be synthesized as a feedback law suitable

for implementation in engine control units.

In this paper, we discuss the series hybrid vehicle con-

figuration, with particular focus on the power flows, in

Section II. In Section III we introduce and motivate the

engine power smoothing energy management strategy, and in

Section IV we design the feedback controller that implements

it. In Section V we discuss the tuning, done in simulation,

and we present the experimental results. Conclusions are

summarized in Section VI.

II. SERIES HYBRID ELECTRIC VEHICLE ARCHITECTURE

We consider the Series Hybrid Electric Vehicle (SHEV)

configuration, shown in Figure 1. In this configuration, the

engine powers an electric generator that feeds a DC-bus,

which is connected to the battery and to the electric motor.

In the SHEV, the electric motor is the unique traction source,

Pwh(t) = ηwh(t)Pmot(t), (1)

where Pwh is the power at the wheels, Pmot is the electric

motor power output, and ηwh is the (time varying) efficiency

in transmitting the mechanical power from the motor to the

wheels. Depending on the power flow direction, ηwh(t) is

smaller or greater than 1. The motor power is

Pmot(t) = ηmot(t)(Pgen(t) + Pbat(t)), (2)
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Fig. 1. Schematics of a series hybrid electric powertrain.

where Pgen is the generator power, ηmot is the (varying)

motor efficiency, and Pbat is the power flow in the bus

from the battery. The power coupling occurs in a voltage

controlled DC-bus, that has almost perfect efficiency and

does not impose mechanical constraints.

The battery power flow changes the charge in the battery

(Qbat). Since the net power fed by the battery in the bus is

Pbat = ibusVbus, where ibus is the battery current in the bus,

and Vbus is the (controlled) DC-bus voltage, we have

d

dt
Qbat(t) = −ibat(t) = −

Pbat(t)

ηbat(t)Vbus(t)
, (3)

where ηbat is the battery efficiency, which accounts for

power losses in the circuit and in the battery. The electrical

generator is powered by the internal combustion engine

Pgen(t) = ηgen(t)Peng(t), (4)

where ηgen is the generator efficiency, and Peng is the engine

net power output. The efficiencies ηgen, ηmot, ηwh can be

conveniently represented as functions of the rotational speed

and torque of the respective component.

In terms of power flow, for wheel power request there

is only one degree of freedom. For instance, if the power

released from the battery is selected, then the engine power is

assigned by (1), (2), (4). When selecting the engine operating

point -engine speed and torque-, an additional degree of

freedom is available, since Peng(t) = ωeng(t)τeng(t). Given

that there is no mechanical coupling between the different

power paths, the selection of the engine operating point can

focus only on the engine and generator combined efficiency.

For a given engine power,

Pfuel =
Peng

ηeng(ωeng, τeng)
, (5)

where Pfuel is the amount of net power that can be extracted

from the fuel burnt in the cylinder, and ηeng(ωeng, τeng) is

the engine efficiency map, as a function of the engine speed

and engine torque. The fuel consumption is modelled by the

relation Pfuel = Hfwf , where Hf is the lower fuel lower

heating value, and wf is the fuel mass flow.

For a (desired) engine power output, from (5) the fuel

consumption is minimized by selecting the operating point

that provides the maximum efficiency. For the SHEV, this

is applied to the engine-generator cascade. Consider a gear

with ratio κ between the engine and the generator,

Pfuel =
Pgen

ηgen (κ−1ωeng, κτeng)η(ωeng, τeng)
, (6)

and define the system efficiency as

ηsys(ωeng, τeng) = ηgen

(

κ−1ωeng, κτeng)η(ωeng, τeng

)

.

Given a desired generator power Pgen, the engine operating

point that minimizes the fuel consumption at steady state is

obtained by maximizing the efficiency

ζ∗sys(Pgen) = arg max
ωeng,τeng

ηsys(ωeng, τeng) (7a)

s.t. ηgen

(ωeng

κ
, κτeng

)

ωengτeng = Pgen. (7b)

The curve ζ∗sys : R+ → R
2
+ assigns the engine operating

point with maximum stationary efficiency to the generator

power. The efficiency along ζ∗sys is described by

η∗
sys(Pgen) = max

ωeng,τeng

ηsys(ωeng, τeng) (8a)

s.t. ηgen

(ωeng

κ
, κτeng

)

ωengτeng = Pgen (8b)

In case of a gearbox between engine and generator, (7)

and (8) can be modified to select also the optimal gear. Thus,

the stationary operating point for a desired generator power

is chosen by (7), but the effects of the transients still have

to be accounted for. Differently from conventional vehicles,

in hybrid powertrains the engine is not the only available

energy source, and the redundancy can be used to optimize

the transients, as described next.

III. POWER SMOOTHING CONTROL ENERGY

MANAGEMENT

In the considered HEV control architecture, the energy

management strategy specifies a target operating point for

the energy sources, and several control algorithms drive the

subsystems to such operating points, for instance by modu-

lating the battery current and the engine torque. As discussed

in Section II, in a SHEV, given two desired generator power

levels P1 and P2, two optimal engine operating points can

be computed. However, if the generator power output varies

from P1 to P2, the efficiency depends on how the transient

is executed.

While the dynamics in the electrical circuit are fast,

hence the battery respond quickly to power variations, large

“power jumps” in the engine-generator system, may take

a considerable time to complete (in the order of seconds).

During the transient, the engine is not guaranteed to operate

along the maximum efficiency curve ζ∗sys. In Figure 2(a) we

show the simulation of the engine operating point dynamics

obtained by executing two step power changes (from 2kW

to 35kW, and then to 15kW). The simulation is executed on

a high-fidelity model that co-simulate the whole powertrain

and vehicle dynamics together with the control software

including the controller that aims at regulating the engine

operating point on ζ∗sys. During the transient the engine runs

considerably distant from the optimal efficiency curve ζ∗sys,
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(a) Power steps from 2kW to 35kW, then to 15kW
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(b) Power ramps from 2kW to 35kW then to 15kW

Fig. 2. Effect of abrupt and smooth transients on the engine operating point dynamics (optimal efficiency curve ζ∗sys in red).

i.e., at non-optimal efficiency. The simulation where the

engine power ramps from 2kW to 35kW at 2.5kW/s rate

and then to 15 kW at −1kW/s rate executed on the same

environment is shown in Figure 2(b). In this case the engine

operating point “slides” along ζ∗sys.

Indeed, by performing a smoother transient -a ramp in-

stead of a step- the lower-level control algorithm can main-

tain the engine close to the optimum efficiency curve. At ev-

ery control cycle the energy management strategy commands

a generator power transition Pgen(k) → Pgen(k+1) which is

converted into an operating point transition ζ∗sys(Pgen(k)) →
ζ∗sys(Pgen(k + 1)), consistent with

(ω∗
eng(k), τ∗

eng(k)) → (ω∗
eng(k + 1), τ∗

eng(k + 1))

Due to continuity, if ∆P ∗
gen(k) = P ∗

gen(k + 1) − P ∗
gen(k)

is small, then ∆ω∗
eng(k) = (ω∗

eng(k + 1) − ω∗
eng(k)) and

∆τ∗
eng(k) = (τ∗

eng(k + 1) − τ∗
eng(k)) are small, and as a

consequence the transients are reduced.

The power transients are responses to driver power re-

quests changes which can be arbitrarily aggressive. However,

the engine is not the only power source in the SHEV, and

by (2) it is possible to smoothen its power transients by

using the battery. In fact, since the electrical dynamics are

faster than the mechanical ones, it makes sense to absorb

rapid power variations by the battery, and to use the (slower)

mechanical components to deal with the low frequency

content of the power request.

On the other hand, the power that the battery can pro-

vide is limited, and the battery state of charge should

be maintained within a desirable operating interval. Thus,

the power-smoothing energy management strategy must be

implemented in an algorithm that is capable of enforcing

constraints on the actuator limits and on the components

desired operating ranges, and of trading-off between different

objectives, such as using the battery to smoothen the current

transient, yet maintaining enough charge to absorb transients

in the immediate future.

IV. MPC-BASED POWER SMOOTHING CONTROL

Model predictive control (MPC) is a successful strategy

for controlling systems subject to input and state constraints,

where the optimal trade-off between competing control ob-

jectives is sought. Hence, it appears to be a natural candidate

for the power smoothing energy management strategy for the

SHEV, where constraints on powerflow and battery charge

have to be enforced, and where the trade-off between power

smoothing and battery usage has to be optimized. Due to the

capabilities of automotive ECUs, a linear MPC algorithm

is used with a relatively short prediction horizon. In fact,

nonlinear MPC is in general too complex for real-time

implementation in automotive ECUs, while a short horizon is

required because some of the relevant variables, e.g., wheel

power request, cannot be reliably predicted for long in the

future.

We design a discrete-time MPC controller with sam-

pling period Ts that selects the generator power variation

∆Pgen(k) = Pgen(k + 1) − Pgen(k), where we also impose

∆Pmin
gen ≤ ∆Pgen(k) ≤ ∆Pmax

gen . In order to account for

extreme accelerations and decelerations, we provide two

additional control signals, Pbrk and Pxt, where Pbrk is the

power dissipated by conventional (friction) brakes, for the

cases where regenerative braking is insufficient, and Pxt is

an additional generator power request to be used in case

of aggressive accelerations. As a consequence, the generator

power dynamics are defined by

Pgen(k + 1) = Pgen(k) + ∆Pgen(k) + Pxt(k). (9)

The desired wheel power, which is computed basing on

the current driver’s pedal input and vehicle state, is converted

into a desired bus power by (1), (2),

Pbus(k) =
Pwh(k)

ηmot(k)ηwh(k)
, (10)

that in the MPC controller is seen as a measured disturbance,

assumed constant along the (brief) prediction horizon. Thus,

by (2), (9), (10) the battery power can be expressed as

Pbat(k) = Pbus(k) − Pgen(k) − ∆Pgen(k)

+Pbrk(k) − Pxt(k). (11)

The most relevant dynamics in the energy management [2]

is the battery state of charge (SoC), which is defined as the

percentage ratio between the (current) battery charge and
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the maximum charge SoC = 100 · Qbat

Qmax
bat

. In this paper we

slightly modify this definition into SoC = 100 ·
Qbat−Qref

bat

Qmax
bat

,

hence shifting the zero of the state of charge at the desired

SoC value Qref
bat. In order to implement an MPC algorithm

that can execute in real time, we identify a linear autore-

gressive (ARX) model for the battery dynamics by using

data from simulations of the high fidelity SHEV model. The

identification procedure indicates that the integral model

SoC(k + 1) = SoC(k) − γPbat(k) (12)

is satisfactory since it achieves a fit of more than 85% on

the UDDS (Urban Dynamometer Driving Schedule) cycle.

By increasing the model order (ARX up to 10 poles, 10
zeros), the identified models show pole-zeros cancellations,

and less than 2% improvement. Thus, we use (12) counting

on the capability of MPC to counteract model imperfections.

From (9), (11), (12), the MPC prediction model is

x(k + 1) = Ax(k) + Bu(k) (13a)

y(k) = Cx(k) + Du(k), (13b)

where x = [ Pgen SoC Pbus ]
′
, u = [ ∆P Pxt Pbrk ]

′
, y = Pbat,

and

A =
[

1 0 0
γ 1 −γ
0 0 1

]

, B =
[

1 1 0
γ γ −γ
0 0 0

]

,
C = [−1 0 1 ] ,

D = [−1 −1 1 ] .

Basing on (13), the MPC optimal control problem is

min
U(k)

x(N |k)Px(N |k) +
N−1
∑

i=0

x(i|k)′Qx(i|k)

+u(i|k)′Ru(i|k) + y(i|k)′Sy(i|k) (14a)

s.t. x(i + 1|k) = Ax(i|k) + Bu(i|k) (14b)

y(i|k) = Cx(i|k) + Du(i|k) (14c)

x ≤ x(i|k) ≤ x, N = 0, . . . , Nc (14d)

u ≤ u(i|k) ≤ u, N = 0, . . . , Nu − 1 (14e)

y ≤ y(i|k) ≤ y, N = 0, . . . , Nc (14f)

x(0|k) = x(k) (14g)

u(i|k) = Kx(j|k) i = Nu, . . . , N − 1 (14h)

where U(k) = (u(0|k), . . . , u(Nu − 1)), N is the predic-

tion horizon, Nu ≤ N is the control horizon, and Nc is

the constraint horizon. The state, input, and output bounds

in (14d)–(14f) are

x =

[

Pmax
gen

SoCmax

∞

]

, x =

[

Pmin
gen

SoCmin

−∞

]

,
y = [ Pmax

bat ] ,
y = [ Pmin

bat ] ,

u =
[

∆Pmax
gen
∞
∞

]

, u =

[

∆Pmin
gen

0
0

]

,

and the positive semidefinite cost matrix weights are

Q =
[

0 0 0
0 qSoC 0
0 0 0

]

, R =

[

r∆ 0 0
0 ρ 0
0 0 ρ

]

, S = [ sbat ] .

Since Pbrk and Pxt should be non-zero only on aggressive

maneuvers, ρ is significantly larger than the other weights.

The terminal state weight P in (14a) and the terminal gain

K in (14h) can be set to zero, or used to improve stability

properties, as explained later.

At every control cycle k, the MPC algorithm solves

optimization problem (14) initialized by (14g) at the current

measured/estimated state x(k). The first element of the

optimal control sequence U∗(k), is used to compute the

control input, the requested generator power, battery power

and friction brake power, that are passed to the lower level

controllers according to the implemented architecture,

v(k) =

[

Pgen(k)+[u∗(0|k)]1+[u∗(0|k)]2
Pbus(k)−Pgen(k)−[u∗(0|k)]1−[u∗(0|k)]2+[u∗(0|k)]3

[u∗(0|k)]3

]

,

where [u]i is the i − th component of vector u.

A. Terminal cost and engine efficiency approximation

In order to obtain local Lyapunov stability, the terminal

cost in (14) can be used. To achieve this, the terminal weight

P and terminal gain K can be selected basing on the LQR

problem for the reduced order system

x̃(k + 1) = Ãx̃(k) + B̃ũ(k) (15a)

Ã =
[

1 0
γ 1

]

, B̃ =
[

1
γ

]

(15b)

where x̃ = [ Pgen−Pbus SoC ]
′
, ũ = [ ∆Pgen ], and we use

as LQR weights Q̃ =
[

0 0
0 qSoC

]

, R̃ = [ r∆ ] to match the

cost in (14a) for subsystem (15). By solving the Riccati

equation for (15) using Q̃, R̃, and obtaining P̃ , K̃ as cost-

to-go and LQR gain, one can construct the terminal cost

and the terminal controller gain for (14) as P = C̃ ′P̃ C̃,

K = [ (K̃C̃)′ 0 0 ]
′
, where C̃ =

[

1 0 −1
0 1 0

]

. For this choice of

weights, whenever the constraints in (14) are not active and

the power request is constant, say P e
bus, the MPC command

is coincident with the LQR controller that stabilizes (13) on

the equilibrium xe = [P e
gen SoCe P e

bus], where P e
gen = P e

bus

and SoCe = 0. The set where the constraints are inactive

can be computed as indicated in [10].

If Lyapunov stability is not the primary concern, one can

set K = 0 and P = 0 in (14) and modify (14a) to include

an approximation of η∗
sys

−1, that is, an approximation of

the inverse engine-generator efficiency along the optimal

curve ζ∗sys. This is possible thanks to the power smoothing

control algorithm that forces the engine to operate along

ζ∗sys. In cases such as the one shown in Figure 2(a) a one-

dimensional approximation of the inverse efficiency is not

appropriate because the engine-generator does not operate

along a curve. In order to maintain (14) as a quadratic

programming problem, a quadratic approximation of η∗
sys

−1

is included in (14),

η̃sys(Pgen(i|k)) = a1Pgen(i|k)2 + a1Pgen(i|k) + a0. (16)

When (16) is included in (14a), the MPC controller trade-

offs between the base smoothing power control objectives,

and running at operating at the power where (16) is min-

imum, the maximum engine efficiency point. By adding a

weight (i.e., by scaling the coefficients ai, i = 0, 1, 2) the

different performance trade-offs are found. However, (16)

introduces a “bias” in the generator power and hence the

closed-loop system does not necessarily stabilizes on xe

anymore, but it may results in a steady-state SoC offset.
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B. Synthesis of the explicit MPC law

Although the MPC optimal control problem (14) results in

a constrained quadratic program that can be easily solved at

high rates in standard computers, real-time solution of (14)

in standard automotive hardware may present computational

problems. An important advantage of linear MPC is that the

quadratic program (14) can be solved explicitly [9]. In this

case the command is obtained by evaluating the control law

u = γMPC(x) = Fjx + Gj (17a)

j : Hjx ≤ Kj (17b)

where j ∈ {1, . . . , s}, and matrices Fj , Hj and vectors

Gj , Kj , for j = {1, . . . , s}, are computed for instance by

the algorithm in [9]. Control law (17) defines a continuous

piecewise affine state feedback law, where (17b) defines a

partition of the state space in s polyhedral regions, and (17a)

defines the input function for each region. The computation

of the input from (17) requires checking inequalities (17b)

until ̄ ∈ {1, . . . , s} is found, such that (17b) is satisfied for

j = ̄, then the evaluation of (17a) for j = ̄.

The explicit feedback law is also used to analyze the

closed-loop system, obtained by substituting (17) in (13),

x(k + 1) = (A + BFj)x(k) + BGj (18a)

y(k) = (C + DFj)x(k) + DGj (18b)

j : Hjx(k) ≤ Kj (18c)

which is a piecewise affine dynamical system. The stability

of (18) can be analyzed globally by using piecewise quadratic

Lyapunov functions [11], and locally [12] by finding the

region ı̄ ∈ {1, . . . , s} that contains the origin, and computing

the eigenvalues of (A + BFı̄). In this case, the domain of

attraction is a set X ⊃ XPI, where XPI is the maximum

positively invariant set contained in SSPI = {x : Hı̄x ≤ Kı̄}
for dynamics x(k + 1) = (A + BFı̄)x(k) + BGı̄.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

The controller designed in Section IV is first tested in

simulation in closed-loop with a high-fidelity proprietary

model that simulates not only all the vehicle subsystems -

engine, vehicle dynamics, loads, etc.-, but also the whole

control software that operates within the different ECUs.

We design the MPC controller with Ts = 1, where the

terminal cost weight P and the terminal controller K in (14a)

are set to zero, and the quadratic approximation of the

efficiency (16) is used, resulting in the cost function

J =
N−1
∑

k=0

r∆∆Pgen(i|k)2 + ρ(Pbrk(i|k)2 + Pxt(i|k)2) +

sbatPbat(i|k)2 + qSoCSoC(i|k)2 + qη η̃sys(Peng(k|t)).

where r∆, ρ, sbat, qSoC , qη are positive weights. The

constraint bounds are Pmin
bat = −30kW, Pmax

bat = 40kW,

Pmax
gen = 80kW, ∆Pmax

gen = −∆Pmin
gen = 11kW, SoCmin =

40−SoCr, SoCmax = 60−SoCr, and SoCr = 50 (note that

SoC is in percentage). The constraints on the state-of-charge

are “softened” to avoid infeasibility caused by unmodelled

loads and uncertainties.

The simulations are used to select the main calibration

parameters of the MPC controller, such as the length of

the horizon and the weights in (14a). Basing on simulation

results we choose horizons N = 20, Nu = 4, Nc = 6.

Also, simulation results are used to select the range where

electric-vehicle (EV) operation mode is enforced. We define

a generator power threshold P EV
gen such that if [u(k)]1 ≤ P EV

gen,

the engine is turned off. P EV
gen is selected by analyzing the

engine efficiency achieved in simulation, looking for the low

power region where the efficiency drops sharply.

After verifying in simulations that the controller is im-

plemented correctly, we have deployed it in the standard

ECU, for experimental testing. In order to do this, we

have synthesized the explicit MPC law (17), that in our

application is composed of s = 127 regions, for a total of 589
inequalities. The controller uses about 2% of the available

memory and less than 1% of the available computational

capabilities, in the worst case. By analyzing the closed-loop

system (18), we verified that the controller is locally stable

under a constant bus power request, even though due to the

use of (16), SoC = 0 is not guaranteed at the equilibrium.

The controller is experimentally tested on a fully func-

tional and drivable series hybrid electric vehicle prototype in

a dynamometer chassis roll, where a human driver follows

the UDDS cycle reference. The focus of the test is the correct

operation of the controller designed in Section IV and the

evaluation of the impact on fuel consumption. To this end,

the results of the controller are compared with two rule-

based strategies, a load following one and a load-levelling

one, calibrated by the results of dynamic programming [2]

and ECMS [4]. Additional details on the base strategies and

on the prototype vehicle are available on [13].

In Figure 3 we show the generator, battery, and motor

power during two specific intervals of the UDDS cycle,

where the power smoothing effects are evident. Initially, the

engine is turned off. Then, when the engine is turned on at

t = 859s, most of the bus power variations are absorbed

primarily by the battery, while the generator power (and the

engine power as a consequence) varies slowly, so that the

engine operating point is maintained close to the optimal

curve.

Figure 4(a) reports the velocity and the reference profile

during the full cycle, showing that the velocity profile of

the driving cycle is correctly tracked, and that the controller

provides the requested power. Figure 4(b) shows the SoC

time history during the full driving cycle. During a short

interval around t = 100s, the minimum SoC constraint is

violated by a small amount. This may happen due to unmod-

elled dynamics and uncertainties. However, since the SoC

constraints are softened, the controller continues operating

and recover rapidly, bringing the SoC back to the desired

range. Figure 5 shows the engine operating point with respect

to the optimal system efficiency curve η∗
sys. The operating

points are all concentrated in a small band around η∗
sys,
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Fig. 3. Power transients t ∈ [855, 871]s during the UDDS cycle: generator
power (solid), battery power (dash-dot), bus power (dash).

which is possible thanks to the transient smoothing behavior

induced by the proposed controller. We have compared the

fuel economy results over three executions of the cycle per

each controller, and we have applied an empirical formula

to adjust for the (small) difference between initial and final

SoC. The proposed control strategy provides a fuel economy

improvement of more than 4.5% with respect to the two base

strategies.
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Fig. 4. Experimental results on UDDS cycle. Velocity and SoC.

VI. CONCLUSIONS

We have presented an energy management strategy that

focuses on optimizing the engine efficiency for a series

hybrid electric vehicle. While the stationary optimal effi-

ciency is optimized by exploiting the fact that in the SHEV

the engine is mechanically disconnected from the traction

wheels, and hence its operating point can be arbitrarily

chosen, the transients and their negative effects on fuel

economy are reduced by using the battery as a buffer to
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Fig. 5. Experimental results on UDDS cycle. Engine operating points,
optimal efficiency curve ζ∗sys, and iso-efficiency curves.

smoothen the engine operating point variations. For this

purpose, we have designed a model predictive controller

that optimally manages the transients from one operating

point to another. The experimental results executed on a fully

functional vehicle on a chassis-roll dynamometer using the

UDDS cycle show fuel economy improvements with respect

to two base strategies.
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