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Abstract— The Complex Proportional-Integral-Lead (CPIL)
compensator is a relatively new compensator structure that is
a variation of the commonly used PI-lead compensator. The
complex conjugate zeros provide additional design flexibility
compared with the standard structure. Until now, the potential
of the CPIL has only been examined for controller design via
frequency response. This paper examines the utility of the CPIL
for root locus design. We illustrate two design strategies by
considering compensator design for a double integrator and for
a second order system with a very lightly damped resonance.

I. INTRODUCTION

The complex Proportional-Integral-Lead (CPIL) compen-

sator was introduced in [1]. The CPIL compensator is a

variation of the commonly used PI-lead compensator (see

for example [2]), which is the cascade of a PI compensator

and a first-order lead compensator. The CPIL has one pole

at the origin and one negative real pole, but its zeros can

appear in complex conjugate pairs. Selection of the damping

ratio of the zeros of the CPIL provides additional design

flexibility compared to the standard PI-lead. While others

have employed damping ratios less than one for Proportional-

Integral-Derivative (PID) compensators, a close relative of

the CPIL, their work has specifically addressed gain com-

pensation rather than phase compensation (see for example

[3]). Until now, the potential of the CPIL compensator has

only been examined for frequency response controller design

[4], [5].

This paper analyses the utility of the CPIL for root locus

design and illustrates two design strategies. In the first

strategy, we specify the desired overshoot and settling time

and determine corresponding dominant desired closed-loop

second-order poles [6], [7]. We then determine the CPIL

compensator providing (1) the angle contribution at those

locations in the complex plane so that those desired poles are

on the root locus and (2) the correct gain. As is common for

this strategy, the assumption that the second-order poles are

dominant is often not entirely accurate. The version of CPIL

compensator presented here provides two design parameters

– the damping ratio of the zeros and the relative angle

contribution of the poles and zeros – that can be manipulated

to achieve the specifications or at least improve the result.

Prior work only examined the effect of the damping ratio of

the zeros.

In the second design strategy, we specify the angle of de-

parture of two lightly damped open-loop complex conjugate
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poles, and we manipulate the design parameters of the CPIL

to optimize the controller effort, overshoot, and settling time

for these specific departure angles. We then search over the

space of departure angles to find the best CPIL design.

This paper is organized as follows. Section II reviews the

CPIL compensator and its design parameters. Section III

presents the application of the strategy of dominant second-

order poles to a double integrator, Section IV the strategy of

optimal angle of departure second order system with a very

lightly damped resonance. Section V contains concluding

remarks.

II. CPIL COMPENSATOR REVIEW

Consider the point −u + jv in the second quadrant of

the complex plan (i.e., u > 0 and v > 0). The following

generalized CPIL compensator

Ccpil(s) =
(s+u)2 +2ζ ωz(s+u)+ω2

z

s(s+u+ p)
(1)

contributes phase angle

φcpil ≡ ∠Ccpil(u+ jv) =
3

2
φm −45◦− arctan

(u

v

)

(2)

at −u+ jv, when

ωz = v

(

−ζ tan(φm −δ )+
√

ζ 2 tan2(φm −δ )+1

)

, (3)

and

p = v

(

1+ sin(φm +2δ )

cos(φm +2δ )

)

, (4)

for ζ > 0 and

−90◦ < φm −δ < 90◦

−90◦ < φm +2δ < 90◦.
(5)

Note that the last two relations imply that −90◦ < φm < 90◦.

The phase contribution of the components of the compen-

sator are the following.

• The pole at the origin is −90◦− arctan(u/v).
• The pole at −(u+ p) contributes φm/2+δ −45◦.

• The two zeros contribute a total of φm −δ +90◦.

Note that the parameters ζ and δ do not affect the angle

contribution and serve as design variables for the control

engineer, provided they lie within certain limits. The param-

eter δ specifies the relative phase contribution of the poles

and zeros, and has not been addressed in earlier work. The

damping ratio ζ can be greater than 1.
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The limits on the selection of δ imply that

δmin =

{

−

(

45◦+ φm

2

)

for −90◦ < φm <−30◦

φm −90◦ for 30◦ ≤ φm < 90◦
(6)

δmax =

{

φm +90◦ for −90◦ < φm <−30◦

45◦−
φm

2
for −30◦ ≤ φm < 90◦

. (7)

To simplify the designer’s job, we introduce the parameter

−1 < α < 1 which specifies δ as follows

δ =

{

−αδmin for α < 0

αδmax for α > 0
. (8)

III. DESIGN FOR DOMINANT POLES

To illustrate root locus design for dominant second-order

poles with the CPIL compensator, we consider a double

integrator plant with transfer function

P(s) =
1

s2
. (9)

Our closed-loop performance specifications are

• zero steady-state error for a constant input disturbance

• 20% overshoot

• 2% setting time of 3 sec.

The first specification implies the need for integral control.

The corresponding dominant second-order poles for the

overshoot and settling time specifications are pdes =−u±v j

where u = 1.3333 and v = 2.6026. Since

∠P(−1.333+2.603 j) =−234.3◦ (10)

the CPIL compensator must contribute φcpil = 54.3◦ at −u+
v j.

To use the CPIL compensator, we must first determine φm

from (2)

φm =
2

3

(

φcpil + arctan
(u

v

))

+30◦. (11)

Evaluating this expression gives φm = 84.3◦.
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Fig. 1. Root locus of P(s)CPIL(s)

We begin the design iteration process by considering the

case of α = 0 and ζ = 1, which gives a standard PIL with

a double real zero. Subsequently, we will vary both of these

parameters to observe the effect on the root locus and on the

closed loop. Applying (1)-(4) α = 0 and ζ = 1 leads to

CPIL =
s2 +2.928s+2.143

s(s+53.18)
(12)

which has two zeros at −1.464. Fig. 1 shows the root locus of

P(s)CPIL(s). The gain corresponding to the desired dominant

poles is K = 191. The two remaining closed-loop poles for

this gain are 0.967 and −49.4.

Fig. 2 shows the step response of the closed-loop system.

The settling time is 2.6 seconds, but the zeros at −1.464 lead

to an excessive overshoot of 39%.
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Fig. 2. Step response of GCL,PIL

The controller effort is another important quantity. The

closed-loop transfer function from reference to controller

effort is
U(s)

R(s)
=

KC(s)

1+KP(s)C(s)
. (13)

Fig. 3 shows that for the controller (12) and gain K = 191

the maximum controller effort is 191.
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Fig. 3. Controller effort of GCL,PIL

To improve the overshoot and controller effort, we adjust

the parameter α in the range [-0.9 to 0.9] and ζ in the

range [0.3 to 1.7]. Fig. 4 shows the effect of α and ζ on

the overshoot. Increasing α decreases the overshoot slightly

while ζ has little effect.
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Fig. 4. Overshoot as a function of α for several damping ratios

Fig. 5 shows that all values of α and ζ satisfy the the

settling time specification. Settling time decreases slightly

with increasing α , and for relatively large α decreasing the

damping ratio also decreases the settling time slightly.
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Fig. 5. Settling time as a function of α for several damping ratios

The parameter α has its biggest effect on the maximum

controller effort (Fig. 6). Again, the effect of ζ is very small,

but the controller effort increases with increases rapidly with

α .

The results of this analysis suggest that the primary

optimization is trading off the effect of α on the overshoot

and controller effort, since the settling time specification is

achieved and ζ has only a minor effect on the quantities of

interest.
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Fig. 6. Maximum controller effort of α for several damping ratios

Fig. 7 shows some root loci of P(s)CPIL(s), including the

locations of the desired closed-loop poles, for different αs

and ζ s. For α = −0.9, the root loci are “open”, while the

root loci are “closed” for α = 0 and α = 0.9. For ζ < 1 the

loci contain two complex conjugate zeros, ζ = 1 leads to a

double real zero, and zeros for ζ > 1 yields two distinct real

zeros.

IV. DESIGN FOR ANGLE OF DEPARTURE

To illustrate root locus design for optimal angle of depar-

ture, we consider the second order plant transfer function

P(s) =
1

s2 +1
. (14)

The closed-loop performance specifications are

• zero steady-state error for a constant input disturbance

• closed-loop damping ratio greater than than 0.5

• 2% settling time less than 8 seconds

• controller effort less than 4 times the minimum.

To guarantee stability, we first specify an angle of depar-

ture φdep at the pole pa = j to point into the left-half plane

(LHP). Given φdep, we then can calculate the phase φcpil that

the CPIL compensator must contribute using

φcpil =−180◦+∑
k

∠(pa − pk)−∑
l

∠(pa − zl)+φdep. (15)

Since any angle of departure in the range 90◦ to 270◦

points into the LHP, we specify the angle of departure in

this range. Our initial choice of φdep is 120◦, which leads to

φcpil = 30◦ at pa from (15). Applying (11) gives φm = 50◦.

Again, we begin the design iteration process by consider-

ing the case of α = 0 and ζ = 1, which leads to

CPIL =
s2 +0.7279s+0.1325

s2 +2.747s
. (16)

Fig. 8 shows the root locus of P(s)CPIL(s). Since a closed-

loop damping ratio ζCL higher than 0.5 is desired, we

determine the maximum closed-loop damping ratio, which is

ζCL = 0.30. The corresponding gain is K = 6, giving the four

closed-loop poles −0.159,−0.922, and −0.833±2.891 j.

Fig. 9 shows the step response of the closed-loop system.

The settling time is 25 seconds and the overshoot is 19%.

Fig. 12 shows that the maximum control effort is 6.

To improve overshoot and to meet the given specifications,

we vary both α and ζ to observe their effects on the root

locus and on the closed-loop. We adjust α in the range of

[-0.9 to 0.9] and ζ in the range of [0.3 to 1.7].

Fig. 10 shows the effect of α and ζ on the closed-loop

damping ratio ζCL. For ζ ≥ 0.7, the closed-loop damping

ratio increases with increasing α and decreasing ζ . How-

ever, for ζ = 0.3, the closed-loop damping ratio reaches a

maximum of 0.59 at α = 0.2. (The shaded area indicates the

region where the corresponding specification is not met.) Fig.

10 shows that any design with ζ ≥ 0.7 and α ≥ 0.45 satisfies

the closed-loop damping ratio specification. Alternatively,

designs with ζ = 0.3 and 0.05 ≤ α ≤ 0.3 satisfy the closed-

loop damping ratio specification.
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Fig. 7. Root loci for different αs and ζ s
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Fig. 8. Root locus of P(s)CPIL(s)

Fig. 11 shows the effect of α and ζ on the overshoot. The

overshoot behaves differently for ζ = 0.3 than for greater

values. For comparison, we achieve an overshoot of 7% with

α = 0.2 and ζ = 0.3, but 18% with the same α and ζ = 0.7.

The controller effort increases rapidly with α (Fig. 13)

while ζ only has a minor effect. The minimum of the

maximum controller effort value is 2, and thus the maximum
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Fig. 9. Step response of GCL,PIL

controller effort should not exceed 8 in the final design.

Using ζ = 0.3 and α < 0.35 satisfies the maximum controller

effort specification. Using ζ ≥ 0.7 and α < 0.2 also satisfies

this specification.

Fig. 14 shows that the parameter α has a big effect on

the settling time, which decreases with increasing α . Larger

values of ζ also decrease the settling time. Only ζ = 0.3 and
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Fig. 10. Closed-loop damping ratio as a function of α for several values
of ζ

−1 −0.5 0 0.5 1
0

5

10

15

20

25

α

o
v

e
rs

h
o

o
t 

in
 %

 

 

ζ=0.3

ζ=0.7

ζ=1.0

ζ=1.3

ζ=1.7

Fig. 11. Overshoot as a function of α for several damping ratios

α > 0.05 and ζ = 0.7 with α > 0.7 satisfy the closed-loop

settling time specification.

Based on the performance specification and the percent

overshoot performance, the best design uses ζ = 0.3 and

α = 0.15 for an angle of departure of 120◦. Fig. 15 shows

the root locus of P(s)CCPIL(s) that is constructed with those

parameters. Fig. 16 shows the step response of the closed-

loop system.

Next we examine the effect of the angle of departure φdep

on the closed-loop response. Since, compared to α , ζ seems

only to have a minor impact on the closed-loop, we choose

ζ to be 0.3 and vary α and φdep.

Fig. 17 shows that the closed-loop damping ratio ζCL

increases with increasing φdep. For φdep ≥ 170◦, ζCL even

becomes 1 for a big range of α . The effect of φdep on

the overshoot is shown in Fig. 18. The overshoot decreases

with increasing φdep until it reaches 0, which corresponds

to ζCL = 1. Both the controller effort (Fig. 19) and settling

time (Fig. 20) increase with increasing φdep. The trade-off

is that increasing φdep decreases overshoot while increasing

controller effort and settling time.

V. CONCLUSION

This paper examined the utility of the CPIL for root locus

design. In that respect, two design strategies, namely the

design for dominant second-order poles and the design for

optimal angle of departure, were illustrated.
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Fig. 12. Controller effort of GCL,PIL
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Fig. 13. Maximum controller effort of α for several damping ratios

The two parameters of the CPIL ζ and α can serve as

design variables for the control engineer. In this work, their

influence on the root locus and the closed-loop response

was analysed. The results show that the usage of those

design variables leads to higher flexibility of the CPIL

and potentially, depending on the desired specifications, to

significantly better closed-loop properties.
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Fig. 14. Settling time as a function of α for several damping ratios
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Fig. 15. Root locus of P(s)CCPIL(s)
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Fig. 16. Step response of GCL,CPIL
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Fig. 18. Overshoot as a function of α for several values of φdep
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Fig. 19. Maximum controller effort as a function of α for several values
of φdep
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Fig. 20. Settling time as a function of α for several values of φdep
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