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Abstract— The paper presents a unified control architecture 

for motion planning and navigation of constrained systems. It 

provides a systematic approach for planning any motion that 

may be specified by equations of algebraic or differential 

constraints. It is based upon one dynamic control model for 

constrained systems, which is not sensitive to the constraint 

kind and order. The preplanned reference motion may be 

executed by nonlinear control algorithms. 

I. INTRODUCTION 

onstrained nonholonomic systems require nonlinear 

control methods since their linearized control models 

are usually not controllable [1]. A nonlinear control 

design process consists of three basic steps: model building, 

a controller design and its implementation. Usually modeling 

and control design are related to constraints on a system.  

In the paper we consider control oriented dynamic 

modeling and a controller design for constrained systems. 

We show that in the modeling step, we may obtain a unified 

dynamic model suitable for designing controllers despite of 

the kind and order of constraints imposed on a system.  

The first motivation for this research is that mechanical 

systems are subjected to material and non-material 

constraints. The latter ones are task, control and design 

based, and they may be specified by differential equations of 

high order. We refer to them as programmed constraints 

[2,3]. They are non-material since they may be put by a 

designer like a trajectory to follow, which is specified by an 

algebraic equation but is not treated as a constraint in control 

setting [1,4]. The trajectory is either given a priori or by a 

motion planner and next it is passed to a controller [5-7]. An 

industrial manipulator, holonomic by its nature, may become 

nonholonomic when constraints are imposed upon its motion 

properties [9]. A space vehicle is nonholonomic due to the 

conservation of its angular momentum. Also, a leader-

follower system that consists of a couple of robots is a 

noholonomic system dedicated to navigate towards task 

based missions, which are not treated as constraints on 

motion [10-13]. Then, there was no unified constraint 

formulation for control applications. An exception is the 

second order nonholonomic constraint due to an unactuated 

degree of freedom [8]. 

Secondly, a control framework that incorporates a system 

dynamics, i.e. model-based, is developed on traditional two-
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level tracking control architecture for nonholonomic 

systems. The lower control level operates within a kinematic 

model to stabilize a system motion to a desired trajectory. 

The upper control level uses a dynamic model and stabilizes 

feedback obtained on the lower control level [12,14]. The 

underlying dynamics is based on the Lagrange approach, so 

first order nonholonomic constraints may be merged into it. 

Finally, latest results in modeling constrained systems 

showed that material and programmed constraints might be 

presented in a unified constraint formulation suitable to 

control design [9,15]. This is in contrast to classical 

analytical mechanics that offers methods of the generation of 

dynamic models of systems with first and second order 

nonholonomic constraints [16]. Constraints on motion 

specified by equations of high order could not be included 

into these dynamic models. The Lagrange approach is used 

the most often for model building in control. It is not suitable 

then due to the constraint order it may incorporate and the 

reduction procedure that has to be performed. Thus, there 

were neither systematic nor unified approaches to modeling 

systems with constraints of order higher than one.  

A unification of modeling constrained systems, in both 

kinematic and dynamics settings are presented in the paper. 

It yields the generalized programmed motion equations 

(GPME) that may capture systems with high order 

constraints [2]. It results in a unified control oriented models 

of constrained systems and design of a new control strategy.  

II. A UNIFIED SPECIFICATION OF CONSTRAINED SYSTEMS 

A. Sources of Constraints on Control Systems 

In mechanics, a type of a nonholonomic constraint arises 

from a condition of rolling without slipping. It is first order 

and of the material type. For space vehicles, a first order 

nonholonomic constraint results from the conservation of the 

angular momentum but it is referred to as the conservation 

law not as a kinematic constraint [16,17]. In control, there 

are more constraint sources. A wheeled vehicle undergoes 

motion constraints that depend on its design, its interaction 

with the environment, control design and task specifications 

[1,4]. They are not treated as constraints. However, they may 

be regarded as non-material constraints, i.e. in control setting 

types of constraints may be as follows [3,15]: 

1. Material constraints [16]. 

2. Conservation laws [16,17]. 

3. Design constraints – they may arise from bounded linear 

and angular velocities, the lateral acceleration, or from a 

bounded trajectory curvature for wheeled vehicles [1,4]. 
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4. Control constraints – they arise mostly from the limitation 

of a number of control inputs [8,15]. 

5. Programmed constraints – they may arise from task and 

requirement specifications put by designers [1,4,9,15].  

B. Control Oriented Constraint Formulation 

The idea is to develop a unified constraint formulation, 

which may include the constraint types listed above, and a 

unified dynamic model of a system with such constraints. 

The constraint formulation is proposed to be [2,15] 

0,, 11   )...,qqs(t,q,)q...,qqB(t,q, )(p(p))(p  ,           (1) 

where p is the constraint order, q - n-vector of generalized 

coordinates, B - full rank (k n) matrix, nk and s - k-vector. 

We assume that (1) are linear in p–th order derivative of 

coordinates or we can transform them to this form. They may 

specify both material and non-material constraints since the 

type of a constraint equation does not influence the 

generation of equations of motion of a system subjected to it. 

For p=0 we get a configuration constraint, which may be 

material and specify a constant distance between link ends or 

be a programmed constraint on a trajectory. When p=1 a 

constraint equation may be material and specify a condition 

of rolling without slipping. However, it may arise from the 

conservation law or be a programmed constraint on a desired 

velocity. Material constraints are of orders p=0 or p=1, the 

equation of the conservation law is of order p=1, and 

constraint equations for p>1 are of the non-material type.  

Definition 1: The equations of the constraints (1) are 

completely nonholonomic if they cannot be integrated, i.e. 

cannot be presented as equations of a lower order in 

coordinates.  

If we can integrate (1) (p-1) or less times, they are 

partially integrable. If (1) can be integrated completely, they 

are holonomic. We assume that (1) are completely 

nonholonomic. Definition 1 extends the definition of 

completely nonholonomic first order and second order 

constraints [8,17]. Necessary and sufficient integrability 

conditions for differential equations of arbitrary order such 

as (1) are formulated in [18].  

The unified constraints (1) can be presented in the 

standard state-space control form [17].  

III. A REFERENCE MODEL OF A CONSTRAINED SYSTEM 

A. A Dynamic Reference Model 

A unified dynamic model of a system with the constraints 

(1) is derived using the GPME applying the algorithm [19]. 

Algorithm 

Assume that (1) may be solved, at least locally, with respect 

to a vector 
)( pq  of dependent coordinates, i.e.  

),...,,,( )()()( ppp qqqtgq 
                          (2) 

and 
knk RqRqqqq   ,),,( . The selection is due to 

a designer, e.g. with respect to control inputs. 

1. Construct a function pP  such that 
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and T is the kinetic energy of an unconstrained system, )( pT  

is its p-th order time derivative, and 
)(

1

)(

0

p
n

p q
q

T
T 

 





. 

2. Construct a function pR  such that 

),,,...,,,( )1()()(

1

)( 



 ppp

p

n
p

pp qqqqqtRqQPR 



     (4) 
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pR  where equations (2) replace )( pq  
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4. Assuming that components of external forces satisfy 
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 , the generalized programmed motion 
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    =k+1,…,n   (6) 

Equations (6) and (1) admit the following properties. 

Property 1: Equations (6) are (n-k) second order differential 

equations and together with (1) can be presented as [2,9] 

,0,, 11 



 )...,qqs(t,q,)q...,qqB(t,q,

),qQ(t,q,D(q))qV(q,qM(q)

)(p(p))(p 


    (7) 

where M(q) is a (n-k)n inertia matrix, ),( qqV  is a (n-k)-

velocity dependent vector, D(q) is a (n-k)-vector of gravity 

forces, and ),,( qqtQ   is a (n-k)-vector of external forces. 

Equations (7) are a unified constrained dynamic model.  

2: Equations (7) are in the reduced-state form; constraint 

reaction forces are eliminated in the derivation.  

Property 3: Dynamic models of systems with constraints of 

order p=1, i.e. Lagrange’s based, transformed to the 

reduced-state form are peculiar cases of (7) [14,16,17]. 

B. A Kinematic Reference Model 

When the number of both material and programmed, or 

only programmed constraints is k<n, the program is partly 

specified. When n=k, i.e. B is a full rank (n n) matrix the 

program is fully specified. Then, instead of the unified 

dynamics (7), the constraints (1) become a unified kinematic 

reference model, i.e. 

0,, 11   )...,qqs(t,q,)q...,qqB(t,q, )(p(p))(p  .       (8) 

When the unified kinematics (8) fully specifies motion, it has 

to be verified by analyzing its solutions if the constraints are 

eligible for a system, i.e. if it is capable of reaching desired 

positions, velocities and accelerations to follow programmed 

constraints, and if they do not violate any material constraint.  

IV. A UNIFIED CONTROL STRATEGY FOR TRACKING 

PREDEFINED MOTIONS  

A. Constrained Motion Planning 

For control purposes we introduce definitions. 

Definition 2 [19]: The unified dynamic model (7) is a 

reference dynamic model for a constrained motion, shortly 

the reference dynamics.  
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Specialized terms to the 

control law 

pq  

pq  

pq  

q  

q  

e  

e  

It is the extension of models reported in [14] which apply 

only to holonomic and first order nonholonomic systems.  

Definition 3: The unified kinematic model (8) is a reference 

kinematic model for a constrained motion, shortly the 

reference kinematics.  

It is the extension of kinematic models applied to control, 

e.g. reported in [1,17].  

The reference model, either dynamic or kinematic, may be 

employed to plan motion according to the constraints on a 

system. The selection of the scheme of the generation of the 

reference motion depends upon the constraints on a system.  

Definition 4: Constrained motion planning for a system 

subjected to the constraints (1) consists in finding time 

histories of programmed positions )(tq p and their time 

derivatives in motion consistent with the constraints.  

Specifically, trajectory planning consists in obtaining a 

solution )(tq p  of (7) or (8), in which a programmed 

constraint equation is algebraic.  

B. Constrained Motion Navigation 

Originally, the reference dynamics (7) is employed to 

design the model reference tracking control strategy for 

programmed motion, shortly - the strategy for programmed 

motion tracking [19,20]. It may be extended to encompass 

the reference kinematics (8). 
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Fig.1. Architecture of the model reference tracking control strategy for 

programmed motion. 

The control goal is as follows: Given a programmed 
motion specified by the constraints (1) and the system 

reference dynamics (7) or kinematics (8), design a feedback 

controller to track the desired programmed motion.  

Architecture of the strategy, presented in Fig. 1, is based 

upon two models: the reference dynamics (7) or kinematics 

(8), whose outputs are inputs to a tracking controller, and the 

unified dynamic control model  

.0)(

,

1 



qqB

τD(q)q)qC(q,qM(q) p




             (9) 

Equations (9) are the GPME for p=1. They consist of (n-k) 

equations of motion and k equations of material constrains 

and conservation laws. The matrix M(q) is then (n-k)n and 

B1(q) is a full rank (kn) matrix. Since the constraints are 

linear first order, ),( qqV   is replaced by qqqC ),( , which 

quantifies effects of Coriolis and centripetal forces. Other 

forces can be added to the left-hand side of (9).  

The following properties of (9) can be derived from 

properties 1-3. 

Property 4: The unified dynamic control model (9) is 

equivalent to the reduced-state Lagrange equations [17].  

Property 5: The unified dynamic control model (9) can be 

presented in a standard control form by reusing the constraint 

equations presented as 1qG(q)q   , where partition of q is 

),( 21 qqq  , knRq 1  and kRq 2  are vectors of 

independent and dependent coordinates, respectively. 

Columns of the matrix G(q) span the right null space of 

B1(q). It is a (n m) matrix, m=n-k, and has the form  

















)()( 11

1

12

)(

qBqB

I
G

mm
, 

where I is a (m m) identity matrix, )()( 11

1

12 qBqB is a locally 

smooth (km) matrix function. The matrix 1B (q) is 

expressed as )](),([ 12111 qBqBB  , )(11 qB  is a k (n-k) 

matrix function, and )(12 qB  is a (k k) locally nonsingular 

matrix function. Elimination of second order derivatives of 

dependent coordinates from the first of equations (9) yields 

,)(

,)(),()(

1

111

qqGq

qDqqqCqqM pccc







 
      (10) 

where ),()()( qGqMqM c   )()( qDqDc  , 

)(),()()(),( 1 qGqqCqGqMqqCc   . 

Equations (10) are exactly the reduced-state Lagrange 

equations of a nonholonomic system.  

Property 6: )(qM c  is a symmetric, positive definite (n-

k)(n-k) matrix [14,17]. 

Property 7: There exists a static state feedback :),,( 1 uqqU   

mmnm RRRR   such that the dynamics (10) can be 

transformed to the state-space control form. Indeed, 

introduce a new state variable ),(),( 211 xxqqx   , 

nRx 1 , mRx 2 , for which (10) takes the form 

.)(

,)(),()(

211

121121

xxGx

xDxxxCxxM pccc


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

 
       (11) 

Selecting :),,( 12 uxxU  
mmnm RRRR   as 

pccc xDxxxCuxM  )(),()( 12111
 , (11) yields 

,

,)(

2

211

ux

xxGx


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


                           (12) 

which is a desirable state-space control form. The controlled 

variable 2x  is usually a vector of controlled velocities.  

Property 8: Based on properties 4-7, all theoretical control 

results obtained for the Lagrange based control dynamics can 

be applied to the unified control dynamics (7).  

Dynamic 

control model 
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law 

Feedback 

loop 

 

Reference 

model 
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The strategy is not sensitive to the constraint order. This is 

in contrast to current control design approaches, in which 

each constraint type requires a control strategy modification.  

The strategy may be specialized in two ways. Firstly, it is 

applicable to systems with completely known or uncertain 

dynamics [20]. Secondly, different control laws may be 

employed to it, i.e. we may switch between controllers to 

ensure a desired tracking control precision. The block of 

“specialized terms to the control law” reflects these 

specializations. The modular strategy architecture enables 

replacing the reference dynamics (7) by the reference 

kinematics (8). The strategy is developed for tracking but it 

may be applied to more general tasks, e.g. to navigation 

robot formations [21].  

Main advantages of the strategy are as follows: 

- The reference dynamics (7) captures high order 

nonholonomic constraints on systems and enables planning 

any programmed motion. 

- It extends trajectory tracking to programmed motion 

tracking. 

- The separation of programmed constraints from others 

results in the unified dynamic control model (9) equivalent 

to models actually used in control theory. 

- The equivalence of (9) and the Lagrange based models 

promotes adaptation of existing control algorithms even 

these dedicated to holonomic systems. 

- It uses one dynamic control model (9) to a system 

subjected to the constraints (1).  

- A library of reference models for different tasks can be 

generated off-line and stored in a computer. 

V. EXAMPLES – CONSTRAINED MOTION NAVIGATION 

A. Material and Task Based Constraints 

Consider a two-wheeled robot whose kinematics is 

equivalent to that of a unicycle. Let  be the heading angle 

of the wheel, measured from the axis x and  - rotation angle 

due to rolling. Coordinates of the wheel contact point with 

the ground are (x,y). Nonholonomic material constraints due 

to rolling the wheels without slipping on a plane surface are 

,0cos   rx  0sin   ry .             (13) 

To show the GPME based Algorithm application, consider 

robot navigation along a trajectory of a specified change of 

its curvature profile. It results in the constraint 

  2/322
0

yx

yxyx
F









 ,                       (14) 

where F0 does not contain terms with third order time 

derivatives of variables. For simulations take the curvature 

profile =2sint +1. Both constraints (13) and (14) are 

transformed to the form (1). The reference dynamics (7) is 

derived using the Algorithm for p=3. The control dynamics 

(9) is derived for p=1 and it takes the material constraints 

(13) into account. Assuming that only control forces act 

upon the robot, its motion according to (13) and (14) is 

presented in Fig. 2. The controller is the computed torque.  

For the program specified by the third order differential 

equation (14), the Lagrange-based approach fails [2,9]. 

Different task based constraints and control laws can be 

applied to navigate the robot with no changes in the strategy.  
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Fig. 2. Programmed motion tracking for the reference motion (14) with 

σ=3: reference motion (), controlled motion (). 

B. Constraints on a Holonomic System 

Consider a two-link planar manipulator model whose two 

degrees of freedom are described by joint angles 21, . 

Select the constraint (14) for the end-effector motion. In the 

joint space it has the form 

,1212   FF                               (15) 

where 1F  and 2F  do not contain third time derivatives of the 

angles and include data about the end-effector trajectory 

curvature , which is =0.6+0.02t. The constraint (15) may 

mimic tasks like writing, scribing or painting. The reference 

dynamics is generated applying the Algorithm for p=3 and 

the control dynamics is developed as for any holonomic 

system. Fig. 3 shows the reference motion on the (x,y) plane. 

It was selected to show that the programmed motion may be 

reachable for the end-effector for some time only. After 

reaching the position marked by the arrow, links of a given 

length cannot follow the program any more. This 

demonstrates that a program formulated for a system should 

be inspected via the reference motion outputs.  
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Fig. 3.  Reference programmed motion for the end-effector. 

C. Constraints from an Underactuation 

Consider again the manipulator model from Example B. It 

is now equipped with one actuator in the first joint. A control 

objective is to move the end-effector according to a 

programmed motion specified by (15). The reference 

y 

x 

 x 

y 
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dynamics for the underactuated manipulator is the same as in 

Example B but its control model is  

,
0
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2
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             (16) 

The equation for the unactuated joint is second order 

nonholonomic, since 2  is present in the inertia matrix [22]. 

From the first of equations (16) 2  may be obtained as 

 2

12122 sin)cos(
1

  
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and inserted to the first one yields 
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Using the partial feedback linearizing controller 
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equations (16) become 

.sin
1

)cos(
1

,

2
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Equations (18) can be expressed in the state space control 

form. Defining 2211  x,x , 13  x , 24  x , we obtain  
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             (19) 

where ),/sin,0,,()( 2

2

343  xxxxxf 

)/)cos(,,0,0()( 21  xexg  , with the - 1e  standard 

basis vector in 
1R , are the drift and control vector fields on 

2)2/,2/()2/,2/( R  . The selected controller 

is PD with gains ks=20, kd=10. Tracking results are 

presented in Fig. 4 and 5.  

D. Conservation Laws 

Consider a model of a space manipulator. It is the same as 

in Example B with a base added to it, which is described by a 

moment of inertia J and  - orientation angle relative to a 

fixed axis. Let 1 be the angle of the first link of mass 1m  

and length 1l  relative to the base, and 2 - the angle of the 

second link of mass 2m  and length 2 l  relative to the first. 

Masses are concentrated at link ends. The base is pinned to 

the ground at its center and it permits the body to rotate 

freely but prevents translation. Holonomic constraints arising 

from the linear momentum conservation in a real space 

manipulator are replaced with holonomic pinned constraints. 
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Fig. 4.  Programmed motion tracking by the PD controller. 
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Fig. 5.  End-effector position tracking errors ex , ey. 

When the angular momentum is conserved, e.g. it is zero, it 

become a nonholonomic constraint of the form 
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     (20) 

The structure of (20) is the same as the material constraint 

(13). Motion planning for the space manipulator as well as 

its navigation in space can be done in the same way as in 

Example A; for a case of trajectory tracking see [23].  

E. A Multibody Nonholonomic System 

A leader-follower system is usually treated as a separate 

control system comparing to a single robot. Let us show that 

it may be modeled and controlled in the same way as other 

constrained systems. Take a leader, which is the robot as in 

Example A. Two followers are robots of the same 

kinematics. Nonholonomic material constraints for the leader 

and followers are specified by (13) and the task based by 

(14) for .tsin 12   Using the Algorithm for p=3 and the 

strategy for programmed motion tracking, we obtain robot 

formation navigation presented in Fig. 6. 

F. A Fully Specified Program 

Consider a task of navigating a unicycle from Example A 

along a desired trajectory to a rest position. To this end, 

supplement the constraints (13) by one equation that 

specifies the trajectory, e.g. 

)5.0cos()( tt                         (21) 

and the second for the termination of motion after a specified 

time, say 20s. Select an initial velocity 10v m/s and 

)t(fv  . The reference kinematics is  
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where v is an extra state. Fig. 7 and 8 present navigation 

according to (22) using the Wen-Bayard controller. 
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Fig. 6.  Navigation of a robot formation for .1sin2  t  Squared line - 

leader motion, solid line – motion of the followers. 
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Fig. 7.  Programmed motion tracking by the Wen-Bayard controller().  
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Fig. 8.  Unicycle velocity components vx (), vy (ooo) vs. time. 

VI. CONCLUSIONS 

The paper presents the unified nonlinear control strategy 

for tracking motions specified by the equations of constraints 

referred to as programmed. The GPME modeling method is 

applied to design the strategy. The strategy is not sensitive to 

the kind and order of constraints put upon systems. Control 

laws dedicated to holonomic and nonholonomic systems may 

be employed in it. The tracking strategy surpasses other 

tracking strategies, since tracking any motion specified by 

equations of constraints of arbitrary order is available.  
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