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Abstract— In this work, we present a controlled active vision
tracking scheme that makes use of 3-D range data and 2-D
reflectance data collected with a 3-D Laser Radar (3DLADAR)
system. Specifically, our algorithm employs the Active Contour
Framework along with a detection algorithm involving feedback
to effectively maintain visual tracking of an object in adverse
scenarios. As opposed to typical 2D systems, in which tracking is
limited by a lack of contrast, 3DLADAR provides the capability
to improve aim point tracking by encoding depth information
so that the scene can be resolved for all spatial dimensions.
We demonstrate the proposed algorithm both qualitatively and
quantitatively on several challenging tracking scenarios.

I. INTRODUCTION

A well studied problem in controlled active vision is the
fundamental task of visually tracking a deformable object
in an adversarial environment [4], [15]. In this work, we
present a new tracking scheme using imagery taken with the
3-D Laser Radar (3DLADAR) system developed at MIT-
Lincoln Labs [1]. Specifically, our algorithm employs the
Active Contour Framework [5], [9], [6] as well as a detection
algorithm based on appearance models to efficiently track a
“target” under challenging scenarios. As opposed to typical
2D systems [16], [2], in which tracking is limited by a lack
of contrast, 3DLADAR provides the capability to improve
aim point tracking by encoding range and angle-angle infor-
mation. Typical environments in which 3DLADAR can be
used are shown in Figure 1. Consequently, we can tackle the
problem with the following two pronged approach:
• First, use image segmentation in a coarse manner to

capture ‘target” features.
• Second, use a point set registration scheme to align

features to a template model.
However, to appreciate the contributions presented in this
paper, we briefly revisit some results that have been made
pertaining to the field of visual tracking which specifically
invokes principles of feedback and control theory.

The first class of visual tracking schemes propose the use
of a finite dimensional representation of continuous curves.
Specifically, the B-Spline representation is often used for the
“snake” model [15]. From this, Isard and Blake propose the
Condensation algorithm [4]. Similarly, with the use of B-
Splines and assuming a unimodal distribution of the state
vector, the unscented Kalman Filter is introduced for rigid
object tracking [7], [11]. A major drawback associated with
these tracking schemes is the fact that they track only a
finite dimensional group of a target parameters, and do not
explicitly handle the local deformation of an object.

Recent work has addressed this by using an implicit
representation of the contour via level set methods to handle
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Fig. 1. Several Environments for which 3DLADAR is employed.

the local deformation of the object [10], [6]. In particular,
Yezzi and Soatto decouple motion into two distinct parts: a
“global” rigid motion and a “deformation”, which is given by
any departure from rigidity [17]. This enables the algorithm
to appropriately track through clutter and occlusions. In a
similar fashion, Rathi et al. [12] use particle filtering in
conjunction with active contours to track deformable objects.
While their approach is able to track objects in more chal-
lenging sequences, it becomes increasingly computationally
burdensome. To this end, [8] propose an unscented Kalman
Filtering approach with the additional step of learning shape
information prior to tracking. We note that while our method
shares similarities with the above tracking schemes, namely
the use of active contours, one fundamental difference is
that we do not require the notion of multiple hypothesis to
account for clutter, occlusions, and erratic behavior. Instead,
we treat these artifacts as events that are to be captured via
appearance models, which are learned online. Moreover, the
multiple hypothesis nature of both [12], [8] are generally
not ideal for the 3DLADAR imagery at hand, and are
likely to fail when facing occlusions. This is because the
background in 3D range data is not as distinguishable as
in pure 2D imagery, which causes a poor estimate of the
object’s location. Lastly, our algorithm requires no “off-line”
step such as shape learning and is able to cope with various
targets.

The remainder of this document is organized as follows: In
the next section, we introduce the mathematics and concepts
associated with active contour segmentation as well as the
notion of appearance models. In particular, we derive an
entirely new segmentation technique to specifically handle
range imagery. In Section III, we describe the integration
and development of the active contour tracker (ACT) in a
systematic manner involving feedback to tackle the problem
of 3DLADAR tracking. We then demonstrate the robustness
of the algorithm to turbulence and occlusions on several
challenging tracking scenarios in Section IV. Finally, we give
concluding remarks in Section V.
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Fig. 2. Flow chart describing overall operation of the tracker.

II. PRELIMINARIES

In this section, we introduce two new concepts for this pa-
per: Segmentation with Thresholding Active Contours (TAC)
and Appearance Models. These concepts will be essential for
the proposed tracking algorithm.

A. Thresholding Active Contours (TAC)

To define the TAC, consider an image I over the domain
Ω ∈ R2 that is partitioned into regions by an evolving
contour C, where C is embedded as the zero level set
of a signed distance function φ : Rn → R such that
C = {x|φ(x) = 0} [14], [10]. The shape of the evolving
contour is described by the Heaviside function, Hφ, which
is 1 when φ < −ε, 0 when φ > ε, and has a smooth transition
in the interval [−ε, ε]. Similarly, the interface at the zero level
set can be denoted by δφ, the derivative of Hφ, which is 1
when φ = 0 and 0 at distance ε from the interface.

To incorporate statistical information into the segmenta-
tion, let us denote the probability of a point being located
inside or outside of the curve as Gin or Gout respectively.
Furthermore, we assume that these probabilities are Gaus-
sian: Gin = N (µin,Σin) and Gout = N (µout,Σout), where
N denotes the normal distribution. In the case of 3DLADAR,
reflectance and range data represent two linearly independent
measures. Thus, µin, µout, Σin, and Σout are each vector
valued. Consequently, Gin and Gout each map R2 → R.
Unlike most segmentation techniques, this statistical infor-
mation is not used directly, but rather is used indirectly to
create a shape model

S(x) = Hε2

[
log
(
Gin(I(x))

)
− log

(
Gout(I(x))

)]
, (1)

which serves as a labeling function with ε2 being the
threshold for our “estimated” shape. The image shape model
S is the most likely shape of the object given current
statistical estimates. Note that to mitigate the addition of
another parameter, ε2 is simply a scalar multiple of ε. From
this, the segmenting curve is driven towards this shape by

minimizing the following energy

Eimage(φ) = ‖Hφ− S‖2 =
1
2

∫
Ω

(Hφ(x)− S(x))2dx. (2)

Specifically, this energy is the L2 distance between the shape
of the current segmentation and the current estimate of the
“correct” shape. Using the calculus of variations, we are then
able to compute the gradient ∇φEimage as follows:

∇φEimage = δφ.(Hφ(x)− S(x)) + βout
µ .∇φµout+

βout
Σ .∇φΣout − βin

µ .∇φµin − βin
Σ.∇φΣin (3)

where the expressions of the coefficients βin
µ and βin

Σ are given
by

βin
µ =

∫
Ω

γ(u)Σ−1
in (I(u)− µin)du

βin
Σ =

1
2

∫
Ω

γ(u).(Σ1
in(I(u)− µin)(I(u)− µin)TΣ−1

in − (4)

Σ−1
in )du (5)

with γ(x) = (Hφ(x) − S(x)).δε2
(

log( Gin(I(x))
Gout(I(x))

)
. In par-

ticular, because we deal with 3D range data as well as 2D
reflectance data, βin

µ ∈ R2 and βin
µ ∈ R4. Likewise, both βout

µ

and βout
Σ can be computed by replacing µin with µout and Σin

with Σout in Equation (4). The expression of the gradients
for each of the statistical moments are

∇φµin = δφ.

(
I − µin

Ain

)
, ∇φµout = δφ.

(
I − µout

Aout

)
∇φΣin = δφ.

(
(I − µin)(I − µin)T − Σin

Ain

)
∇φΣout = δφ.

(
(I − µout)(I − µout)T − Σout

Aout

)
With the above results, we can now place the image fidelity
term in the overall GAC scheme. That is, to minimize this
energy via gradient descent, φ is updated at each iteration
according to

dφ

dt
= −∇φEimage + λδφ · div

(
∇φ
|∇φ|

)
(6)
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Fig. 3. Flow chart describing the process for re-acquiring objects that have
temporarily moved out of view.

where the second term in the right-hand-side acts as a
regularizing term that penalizes high curvatures. We note
that while other active contour energy and segmentation
methodologies can be employed, the above scheme leverages
the image shape model created from statistical information.
This allows for more robust segmentations for 3DLADAR
imagery, where under-segmentation is preferred as opposed
to over-segmentation. This preference is driven by the fact
that each pixel identified as “on-target” in the final segmenta-
tion corresponds to a 3D point on the real target. Hence, an
under-segmentation ensures that all “on-target” points can
be used to understand the shape and pose of the target in
world coordinates without being distracted by “off-target”
background points.

B. Appearance Models

In a video sequence, we make the assumption of temporal
coherency and assume that characteristics of the object will
vary slowly over time. With this assumption, we employ ap-
pearance models to aid in pre-processing the data, detecting
tracking failures, and re-acquiring lost objects.

Three primary aspects of the appearance models exist:
Gaussian statistical models, probability density functions
(PDFs), and shape information. Gaussian statistical models
Gin and Gout, as described in Section II-A, are stored at
each iteration to aid in re-acquisition of the object when it is
temporarily occluded. In addition, full intensity histograms of
the reflectance data present in the object and background are
scaled to produce PDFs Pin and Pout that are stored at each
iteration. This allows the tracker to compare the PDFs of new
segmentations with recent segmentations to detect tracking
failures and subsequently re-acquire the object. PDFs are
always compared using the Bhattacharyya measure,

B
(
P1(x), P2(x)

)
=

k∑
x=0

√
P1(x) · P2(x)dx, (7)

where P1 and P2 are any two PDFs [3]. The Bhattacharyya
measure is a useful tool because it provides a scalar value
in the range [0, 1] corresponding to the similarity of the two
PDFs. Finally, shape information such as the area (in pixels)
of the object in recent frames are stored to help detect when
the object is occluded or moving out of view.

III. TRACKING ALGORITHM

In this section, we discuss the procedure that the tracker
follows to continually estimate the 3D location of the object

Fig. 5. Flow chart describing the process for re-acquiring objects that have
been temporarily occluded.

in the 3DLADAR sequence. The tracker combines segmen-
tation and detection in a robust tracking framework. In short,
the 3DLADAR data is pre-processed and a joint 2D/3D
segmentation is performed at each iteration to find all 3D data
points on the target. If necessary, steps are taken to re-acquire
lost objects using feedback and exploiting the temporal
coherency of the video sequence. Figure 2 summarizes the
tracking algorithm from a high level and system perspective.

A. Pre-processing 3D Range Data

As mentioned in the introduction of this note, 3DLADAR
offers the capability to resolve all spatial dimensions given
the angle-angle and range information. However, unlike
typical 2D systems, the notion of an “image” is not im-
mediately available and an image must be formed based
on specific assumptions about the acquisition of 3DLADAR
data. Moreover, because the 3DLADAR imaging system is
not fully developed, we demonstrate results on a simulated
3DLADAR environment, which is pictorially seen in Figure
4.

That is, the 3DLADAR platform delivers several short-
pulsed lasers at specific instance of time in hopes of actively
illuminating the target. For convenience, we label these series
of pulses as a “frame.” For each “frame,” the corresponding
photon arrival time is recorded by the focal plane of an
avalanche photo-diode (APD) array. In some cases, arrival
times may never be recorded. For instance, if the laser pulse
misses the target in clear sky and is never reflected back
to the imaging platform. In any event, much of scene will
not be recorded for a single frame due to poorly reflected
photons. Luckily, the laser pulses are delivered at a pre-
specified frequency that is generally much higher than real-
time imaging systems.

From this, we are now able to define an “image” as a
combination of frames that have been taken over a certain
period. Each pixel value of the resulting image is formed
by choosing the statistical mode of the values received
throughout a series of frames at each pixel location. Addi-
tionally, because of the temporal coherency inherent to time-
varying imagery, median filtering is performed temporally
from image to image to mitigate artifacts caused from the
imaging system.

B. Pre-processing 2D Reflectance Data

Processing of the 2D data is also important. Because
the object and background may be multi-modal in the
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Fig. 4. Simulated Environment for Producing 3DLADAR Imagery with Atmospheric Turbulence.

reflectance data, pre-processing ensures that the object is
distinguishable from the background so that segmentation
may proceed with ease. First, the PDF of the object (Pin) and
background (Pout) are estimated using the reflectance data
and the segmentation result from the previous frame. Next, a
foreground histogram, PFG is formed by removing intensity
components of the background from intensity components of
the foreground,

PFG =
{
Pin − Pout (Pin − Pout) > 0
0 otherwise. (8)

and re-normalizing so that ‖PFG‖ = 1. Finally, a new image
is created corresponding to the likelihood that each pixel is
a member of the foreground. Hence, the final result of 2D
reflectance pre-processing is

Ĩref(x) = PFG(Iref(x)). (9)

C. Re-acquisition (Out-of-View)

If the 3DLADAR device can not accurately follow the
movement of the object based on estimates from the tracker,
the object may appear to move out of the image domain, and
therefore out of the field of view. If this occurs, the procedure
shown in Figure 3 is used to detect the object and re-acquire
the track once it returns to the FOV.

When searching for the object after it has left view, only
the reflectance data is utilized. This is because the object
may change its 3D position dramatically during the time
it is out of view. Conversely, the reflectance properties of
the object should remain constant. Additionally, we assume
that the object will reappear near the position (in image
coordinates) that it was last seen. One can achieve this
by constructing a probability map of a likely “target” via
P(x) = PFG(Iref(x)).

D. Re-acquisition (Occlusion)

Another failure mode of the tracker occurs when another
object in the scene occludes the object of interest, blocking

it from view. The procedure shown in Figure 5 is used to
re-acquire after the occlusion.

Occlusions of this type are typically shorter and often
portions of the object remain visible during most of the
occlusion. Hence, we assume that the object will remain at a
similar 3D depth and retain its 2D reflectance characteristics.
For this case, both types of 3DLADAR data are used. Again,
we assume that the object will reappear near the position (in
image coordinates) that is was last seen.

To re-acquire the object, the shape model S described in
Section II-A is constructed using the statistical models Gin

and Gout from the last successful frame. This shape model
is then thresholded to create a binary mask selecting candi-
date regions that may represent the object. Then, candidate
regions that are far from the last known location of the object
are excluded and the remaining region is assumed to be the
object’s current location. If the detected object has a size
similar to the object when it was lost, a successful detection
has occurred, and tracking will continue normally at the next
iteration. Otherwise, this detection procedure will be repeated
until the object is successfully re-acquired.

E. Target Appearance Model Update

After segmentation or re-acquisition has occurred suc-
cessfully, the object’s appearance model is updated. This
process consists of adding current information such as Pin,
size of the object (in pixels) and the (x, y) location in
image coordinates of the object’s centroid to a history of
recent values. These values are used to determine appropriate
values and thresholds during pre-processing and detection for
subsequent frames.

F. Registration and Pose Estimation

Now that segmentation has been performed, a point cloud
estimate can be extracted using the specifications of the
imaging 3DLADAR system (e.g., slant path, viewing angle).
From this, the problem then becomes one of pose estimation
or point set registration. In particular, we have experimented
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Frame 6 Frame 118 Frame 195 Frame 210

Frame 380 Frame 421 Frame 448 Frame 492
Fig. 6. Visual tracking results of a truck passing through a noisy environment with several varying tree occlusions.

Frame 12 Frame 113 Frame 204 Frame 223

Frame 245 Frame 268 Frame 450 Frame 491
Fig. 7. Visual tracking results of a car passing through a clutter environment that includes complete occlusions as well as non-cooperative targets.

with both the ICP methodology as well a variant of ICP
using particle filtering [13]. Although the corresponding
pose results were obtained at MIT-Lincoln Labs and are
not present in this work, we should note the pose of the
target remained sufficiently accurate throughout all tracking
scenarios.

IV. EXPERIMENTS

In this section, we demonstrate the algorithm’s robustness
to turbulence, occlusions, clutter, and erratic behavior on
several challenging video sequences. We also motivate the
need to fuse both 2D reflectance and 3D range data. In
particular, the sequences (both 2D and 3D) were simulated
by MIT-Lincoln Labs for several degrees of turbulence and
image sizes. However, in this paper, we only present results
for two levels of turbulence and image size of 64X64 pixels.
We note that MIT-Lincoln Labs currently has an active
32X32 APD array in the field, but are able to simulate
32X32, 64X64, and 128X128 image sizes.

A. Robustness to Varying Views, Occlusions, and Turbulence

Let us begin with the first sequence of a truck that moves
in open terrain. This is shown in Figure 6, where one can
see that target occupies much of the field of view (FOV).
Additionally, significant turbulence and several occlusions

by trees obfuscate the object’s visibility with respect to the
imaging camera. Nevertheless, the algorithm successfully
tracks the truck throughout the entire sequence.

The next sequence of which several frames are shown
in Figure 7, demonstrates the algorithm’s robustness to
complete occlusions as well as a clutter environment that
arises from non-cooperative objects moving around within
the scene. In particular, another car that is identical in
appearance (but not in depth), passes close to the target
of interest. However, the algorithm successfully tracks the
car throughout the sequence using the proposed tracking
technique.

B. Benefits of Coupling 2D and 3D Information

In Figure 8 and Figure 9, we demonstrate inherent prob-
lems that might occur when tracking with purely 2D re-
flectance imagery or 3D range imagery on a challenging
scenario. While similar to the sequence presented in Figure
7, here the imaging camera in this sequence loses track of
the vehicle as it begins to linger near the edge of the image
before visibility is completely lost. These experiments show
that tracking and detection can be performed by leveraging
both 2D and 3D information (as opposed to tracking with
reflectance or depth alone).

For example, if non-cooperative targets such as two cars
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Frame 700 Frame 783 Frame 808 Frame 822
Fig. 8. Visual tracking results of a target car near a similar car. Top Row: Using only 2D reflectance data, the segmentation fails and leaks onto the
nearby car. Bottom Row: Using combined reflectance and range data, the target car is tracked successfully.

Frame 113 Frame 156 Frame 209 Frame 342
Fig. 9. Visual tracking results of a target car as it moves out of the field of view and re-enters. Top Row: Using only 3D range data, the detection fails
and the system begins to track the background. Bottom Row: Using combined reflectance and range data, the target car is tracked successfully.

are present in a particular scene, it becomes increasingly
difficult to distinguish the target of interest from a statistical
point of view when using purely 2D reflectance. In the top
row of Figure 8, we see that the active contour leaks onto
the second car when the two approach each other. However,
when we include 3D depth information, the target can be
successfully distinguished. This is shown on the bottom row
of the same figure.

Moreover, Figure 9 presents the major drawback associ-
ated with using range information alone. In the case of erratic
behavior, whereby the object leaves the image view, detection
becomes unreliable. That is, when the truck leaves the FOV,
it will have a specific depth value, but when it re-enters its
depth value may be completely different. Unfortunately, in
such a case, the model for reacquisition is no longer valid
and detection will fail. By leveraging on 2D information, we
are able to detect and re-acquire in a more reliable fashion.

C. Quantifying Tracking Results with Ground Truth

Until now, we have provided qualitative tracking results
for several difficult sequences, but have yet compared this to
ground truth available by the simulator. In this section, we
revisit the important notion of being able to under-segment
the “target” such that pixels captured by the active contour
contain relatively few or no background features at the cost of

fewer target pixels. Thus, we consider the ability to capture
background pixels as a “False Positive” while missing target
pixels will be denoted as “False Negatives.”

Several images of the sequence in which we quantify our
tracking algorithm are shown in Figure 10. In particular, we
would like to point out that in order for one to compare
the ground truth with the tracked result as well as being
able to properly register the extracted 3D point set, one must
first only examine those points registered by the 3DLADAR
imaging system. That is, during the pre-processing step one
must artificially fill in certain regions of the image where the
avalanche photo-diode array did not receive a photon count
or image value. This again could be due to perhaps imaging
the sky where the arrival time is infinite (not reflected).
In turn, the visual images seen in this paper have been
pre-processed so that they are “smooth” and continuous
throughout each location in the x-y image plane. Thus, when
extracting “target” features, we only extract those points that
were initially registered by the imaging system. These filtered
masks and points are shown in the bottom row of Figure 10.

Consequently, we are now able to compare the filtered
binary masks with that of the ground truth. Interestingly,
we see in Figure 11 that our False Positives are very low
(below 1%) for each frame in each sequence of differing
image sizes and turbulence. Again, this should be particularly
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(a1) Frame 10 (b1) Frame 210 (d1) Frame 500

(a2) A.C. Mask (b2) A.C. Mask (d2) A.C. Mask

(a3) 3DLADAR
Mask

(b3) 3DLADAR
Mask

(d4) 3DLADAR
Mask

Fig. 10. Tracking Sequence of a Moving Target with Corresponding
Binary Masks Provided by Active Contour and 3DLADAR Masks. Top
Row: Tracked 3DLADAR Images. Middle Row: Binary Masks Associated
with Active Contour (A.C.). Bottom Row: 3DLADAR Filtered Mask for
Points Only Registered By System

important since we will be returning only “target” pixels and
should then ease the applicability of a point set registration
algorithm to estimate the target’s pose.

In regards to the False Negative’s, we tend to have a higher
percent error when facing occlusion as shown in Figure 12.
That is, we are not able to capture as much of the target as we
would like to. However, we still maintain track throughout
the sequence and do indeed recover from the tree occlusion
as seen in Figure 10. More importantly, the target pixels that
we do retain, when facing occlusions, are important features
for the ICP-like algorithms. Unfortunately, this detail is not
visible in the results shown. Ideally, point set registration
can be performed if one is given (few) quality features of
the target.

V. CONCLUSION

In this note, we have described a robust tracking algorithm
capable of continuously tracking a target in 3DLADAR
imagery despite the presence of noise, turbulence, occlusions,
and temporary motion of the target out of the field of
view. This is accomplished by combining geometric active
contours and reasonable heuristics, which are used to re-
acquire the target if tracking is disrupted. We also presented
experiments to demonstrate the algorithm’s robustness to
turbulence, occlusions, clutter, and erratic behavior on several
challenging video sequences.
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(a1) False Positive: 32X32 No
Turbulence

(b1) False Positive: 64X64 No
Turbulence

(c1)False Positive: 128X128 No
Turbulence

(a2) False Positive: 32X32 High
Turbulence

(b2) False Positive: 64X64 High
Turbulence

(c2)False Positive: 128X128 High
Turbulence

Fig. 11. Quantifying Segmentation Results with Ground Truth via False Positives. Top Row: False Positives for Image Sizes of 32X32, 64X64 and
128X128 with No Turbulence. Bottom Row: False Positives for Image Sizes of 32X32, 64X64 and 128X128 with High Turbulence. Note: Scales are
different for each image so that one can see small deviations in tracking.

(a1) False Negative: 32X32 No
Turbulence

(b1) False Negative: 64X64 No
Turbulence

(c1)False Negative: 128X128 No
Turbulence

(a2) False Negative: 32X32 High
Turbulence

(b2) False Negative: 64X64 High
Turbulence

(c2)False Negative: 128X128 High
Turbulence

Fig. 12. Quantifying Segmentation Results with Ground Truth via False Negatives. Top Row: False Negatives for Image Sizes of 32X32, 64X64 and
128X128 with No Turbulence. Bottom Row: False Negatives for Image Sizes of 32X32, 64X64 and 128X128 with High Turbulence. Note: Scales are
different for each image so that one can see small deviations in tracking.
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