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Abstract— A geometric generalization of discrete-time linear
deadbeat observer is presented. The proposed method to
generate a deadbeat observer for a given nonlinear system
is constructive and makes use of sets that can be computed
iteratively. For demonstration, derivations of observer dynamics
are provided for various example systems. Based on the method,
a simple algorithm that computes the deadbeat gain for a linear
system with scalar output is given.

I. INTRODUCTION

Observer design for linear systems is generally acknowl-

edged to be understood well enough. For discrete-time linear

system x+ = Ax with output y = Cx, Luenberger observer

[8] dynamics read

x̂+ = Ax̂+ L(y − Cx̂) (1)

and designing the observer is nothing but choosing an

observer gain L that places the eigenvalues of matrix A−LC
within the unit circle. Simple and elegant, anyone would

hardly doubt that this construction is the construction for

linear systems. However, perhaps due arguably to over-

elegance of the notation, it is nontrivial to unearth the

true mechanism (if it exists) running behind Luenberger

observer in order to generalize it in some natural way

for nonlinear systems. In this paper we aim to provide a

geometric interpretation of the righthand side of (1) for the

particular case where matrix A−LC is nilpotent, i.e., when

the observer is deadbeat. Our interpretation allows one to

construct deadbeat observers for nonlinear systems provided

that certain conditions (Assumption 1 and Assumption 2)

hold. We now note and later demonstrate that when the

system is linear those assumptions are minimal for a deadbeat

observer to exist. The literature on observers accommodates

significant results. See, for instance, [5], [4], [9], [13], [11],

[3], [1], [14].

The toy example that we keep in the back of our mind

while we attempt to reach a generalization is the simple case

where A is a rotation matrix in R2

A =

[
cos θ − sin θ
sin θ cos θ

]

with angle of rotation θ different from 0 and π. Letting y =
x2, i.e., C = [0 1], the deadbeat observer turns out to be

x̂+ = Ax̂+

[
cos 2θ/ sin θ
sin 2θ/ sin θ

]

(y − Cx̂)

S.E. Tuna is with Department of Electrical and Electronics En-
gineering, Middle East Technical University, 06531 Ankara, Turkey.
tuna@eee.metu.edu.tr

which can be rewritten as

x̂+ = A

(

x̂+

[
cot θ
1

]

(y − Cx̂)

)

Now we state the key observation in this paper: The term

in brackets is the intersection of two equivalence classes

(sometimes called congruence classes [6]). Namely,

x̂+

[
cot θ
1

]

(y − Cx̂) = (x̂+A null(C)) ∩ (x+ null(C))

as shown in Fig. 1. Based on this observation, one con-

x + null(C)
θx

x̂

x̂ + A null(C)

x̂ +






cot θ

1




 (y − Cx̂)

︸ ︷︷ ︸

Fig. 1. Intersection of two equivalence classes.

tribution of this paper is intended to be in showing that

such equivalence classes can be defined even for nonlin-

ear systems of arbitrary order, which in turn allows one

to construct deadbeat observers. There is another possible

contribution that is of more practical nature: We present

a simple algorithm that computes, for linear systems with

scalar output, deadbeat gain L by iteratively intersecting

linear subspaces. (Devising reliable numerical techniques to

compute deadbeat gain for discrete-time linear systems had

once been an active field of research; see, for instance, [2],

[7], [12].)

The remainder of the paper is organized as follows. Next

section contains some preliminary material. In Section III we

give the formal problem definition. Section IV is where we

describe the sets that we use in construction of the deadbeat

observer. We state and prove the main result in Section V. An

extension of the main result where we consider the case with

input (x+ = f(x, u)) is in Section VI. We provide examples

in Section VII, where we construct deadbeat observers for

two different third order systems. In Section VIII we present

an algorithm to compute the deadbeat observer gain for a

linear system with scalar output.
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II. PRELIMINARIES

Identity matrix is denoted by I . Null space and range space

of a matrix M ∈ Rm×n are denoted by N (M) and R(M),
respectively. Given map µ : X → Y , µ−1(·) denotes the

inverse map in the general sense that for y ∈ Y , µ−1(y) is

the set of all x ∈ X satisfying µ(x) = y. That is, we will not

need µ be bijective when talking about its inverse. Note that

y /∈ µ(X ) will imply µ−1(y) = ∅. Linear maps x 7→ Mx
will not be exempt from this notation. The reader should not

think that M is a nonsingular matrix when we write M−1y.

(In our case M need even not be square.) For instance, for

M = [0 0] we have M−1y = ∅ for y 6= 0 and M−10 = R2.

The set of nonnegative integers is denoted by N and R>0

denotes the set of strictly positive real numbers.

III. PROBLEM DEFINITION

Consider the following discrete-time system

x+ = f(x) (2a)

y = h(x) (2b)

where x ∈ X ⊂ Rn is the state, x+ is the state at the

next time instant, and y ∈ Y ⊂ Rm is the output or the

measurement. The solution of system (2) at time k ∈ N,

starting at initial condition x ∈ X is denoted by φ(k, x).
Note that φ(0, x) = x and φ(k+1, x) = f(φ(k, x)) for all

x and k.

Now consider the following cascade system

x+ = f(x) (3a)

x̂+ ∈ g(x̂, h(x)) (3b)

We denote a solution of subsystem (3b) by ψ(k, x̂, x).
We then have ψ(0, x̂, x) = x̂ and ψ(k + 1, x̂, x) ∈
g(ψ(k, x̂, x), h(φ(k, x))) for all x, x̂, and k. We now use

(3) to define deadbeat observer.

Definition 1: Given g : X × Y ⇉ X , system

x̂+ ∈ g(x̂, y)

is said to be a deadbeat observer for system (2) if there exists

p ≥ 1 such that all solutions of system (3) satisfy

ψ(k, x̂, x) = φ(k, x)

for all x, x̂ ∈ X and k ≥ p.

Definition 2: System (2) is said to be deadbeat observable

if there exists a deadbeat observer for it.

In this paper we present a procedure to construct a dead-

beat observer for system (2) provided that certain conditions

(Assumption 1 and Assumption 2) hold. Our construction

will make use of some sets, which we define in the next

section. Before moving on into the next section, however,

we choose to remind the reader of a standard fact regarding

the observability of linear systems. Then we provide a

Lemma 1 as a geometric equivalent of that well-known

result. Lemma 1 will find use later when we attempt to

interpret and display the generality of the assumptions we

will have made.

The following criterion, known as Popov-Belevitch-

Hautus (PBH) test, is an elegant tool for checking (deadbeat)

observability.

Proposition 1 (PBH Test): The linear system

x+ = Ax (4a)

y = Cx (4b)

with A ∈ Rn×n and C ∈ Rm×n is deadbeat observable if

and only if

rank

[
A− λI
C

]

= n for all λ 6= 0 (5)

where λ is a complex scalar.

The below result is a geometric equivalent of PBH test.

Lemma 1: Given A ∈ Rn×n and C ∈ Rm×n, let subspace

Sk of Rn be defined as Sk := ASk−1 ∩S0 for k = 1, 2, . . .
with S0 := N (C). Then system (4) is deadbeat observable

if and only if

Sn = {0} . (6)

Proof: For simplicity we provide the demonstration for

the case where each Sk is a subspace of Cn (over field C).

The case Sk ⊂ Rn is a little longer to prove yet it is true.

We first show (6) =⇒ (5). Suppose (5) fails. That is, there

exists an eigenvector v ∈ C
n and a nonzero eigenvalue λ ∈ C

such that Av = λv and Cv = 0. Now suppose for some k we

have v ∈ Sk. Then, since v is an eigenvector with a nonzero

eigenvalue, we can write v ∈ ASk. Observe that v ∈ S0 for

Cv = 0. As a result v ∈ ASk ∩ S0 = Sk+1. By induction

therefore we have v ∈ Sk for all k, which means that (6)

fails.

Now we demonstrate the other direction (5) =⇒ (6). We

first claim that Sk+1 ⊂ Sk for all k. We use induction to

justify our claim. Suppose Sk+1 ⊂ Sk for some k. Then we

can write

Sk+2 = ASk+1 ∩ S0

⊂ ASk ∩ S0

= Sk+1 .

Since S1 ⊂ S0 our claim is valid. A trivial implication of

our claim then follows: dimSk+1 ≤ dimSk for all k. Let

us now suppose (6) fails. That is, dimSn ≥ 1. Note that

dimS0 ≤ n. Therefore dimSn ≥ 1 and dimSk+1 ≤ dimSk

imply the existence of some ℓ ∈ {0, 1, . . . , n−1} such that

dimSℓ+1 = dimSℓ ≥ 1. Since Sℓ+1 ⊂ Sℓ, both Sℓ+1 and

Sℓ having the same dimension implies Sℓ+1 = Sℓ. Hence we

obtained Sℓ = ASℓ∩S0 which allows us to write Sℓ ⊂ ASℓ.

Since dimSℓ ≥ dimASℓ we deduce that Sℓ = ASℓ. Since

dimSℓ ≥ 1, equality ASℓ = Sℓ implies that there exists an

eigenvector v ∈ Sℓ and a nonzero eigenvalue λ ∈ C such

that Av = λv. Note also that Cv = 0 because Sℓ ⊂ S0.

Hence (5) fails.

Remark 1: It is clear from the proof that if (6) fails then

dimSk ≥ 1 for all k.
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IV. SETS

In this section we define certain sets (more formally,

equivalence classes) associated with system (2). For x ∈ X
we define

[x]0 := h−1(h(x)) .

Note that when h(x) = Cx, where C ∈ Rm×n, we have

[x]0 = x+N (C). We then let for k = 0, 1, . . .

[x]k+1 := [x]+k ∩ [x]0

where

[x]+k := f([f−1(x)]k) .

Note that [x]+k = ∅ when x /∈ f(X ) since then f−1(x) = ∅.

Remark 2: Note that [x]k+1 ⊂ [x]k and [x]+k+1 ⊂ [x]+k for

all x and k.

The following two assumptions will be invoked in our

main theorem. In hope of making them appear somewhat

meaningful and revealing their generality we provide the

conditions that they would boil down to for linear systems.

Assumption 1: There exists p ≥ 1 such that, for each x ∈
X , set [x]p−1 is either singleton or empty set.

Assumption 1 is equivalent to deadbeat observability for

linear systems. Below result formalizes this.

Theorem 1: Linear system (4) is deadbeat observable if

and only if Assumption 1 holds.

Proof: Let Sk for k = 0, 1, . . . be defined as in

Lemma 1. Note then that [x]0 = x + S0. We claim that

the following holds

[x]k =

{
x+ Sk for x ∈ R(Ak)

∅ for x /∈ R(Ak)
(7)

for all k. We employ induction to establish our claim.

Suppose (7) holds for some k. Then we can write

[x]+k = A[A−1x]k

= A[A−1x ∩R(Ak)]k .

Note that A−1x ∩R(Ak) 6= ∅ if and only if x ∈ R(Ak+1).
Since [x]k+1 = [x]+k ∩ [x]0, we deduce that [x]k+1 = ∅ for

x /∈ R(Ak+1). Otherwise if x ∈ R(Ak+1) then there exists

some η ∈ R(Ak) such that Aη = x. Using this η we can

construct the equality A−1x = η +N (A) and we can write

[x]k+1 = [x]+k ∩ [x]0

= A[A−1x]k ∩ [x]0

= A[η +N (A)]k ∩ [x]0

= A(η + (N (A) ∩R(Ak)) + Sk) ∩ [x]0

= (Aη +ASk) ∩ (x+ S0)

= (x +ASk) ∩ (x+ S0)

= x+ (ASk ∩ S0)

= x+ Sk+1 .

Since (7) holds for k = 0, our claim is valid.

Now suppose that the system is deadbeat observable. Then

by (7) we see that Assumption 1 holds with p = n + 1

thanks to Lemma 1. If however the system is not deadbeat

observable, then by Remark 1 dimSk ≥ 1 for all k. We

deduce by (7) therefore that [0]k can never be singleton nor

is it empty. Hence Assumption 1 must fail.

Assumption 2: Given x, x̂ ∈ X and k; x̂ ∈ [x]+k implies

[x̂]+k = [x]+k .

Theorem 2: Assumption 2 comes for free for linear sys-

tem (4).

Proof: Evident.

Last we let [x]+
−1 := X and define map π : X × Y →

{−1, 0, 1, . . . , p− 2} as

π(x̂, y) := max {−1, 0, 1, . . . , p− 2}
subject to [x̂]+π(x̂, y) ∩ h−1(y) 6= ∅

where p is as in Assumption 1.

V. THE RESULT

Below is our main theorem.

Theorem 3: Suppose Assumptions 1-2 hold. Then system

x̂+ ∈ f([x̂]+π(x̂, y) ∩ h−1(y)) (8)

is a deadbeat observer for system (2).

Proof: We claim the following

x̂ ∈ [x]+ℓ−1 =⇒ x̂+ ∈ [f(x)]+ℓ (9)

for all ℓ ∈ {0, 1, . . . , p − 1}. Let us prove our claim.

Note that x̂ ∈ [x]+ℓ−1 yields [x̂]+ℓ−1 = [x]+ℓ−1 by Assump-

tion 2. Since [x]+ℓ−1 6= ∅ we have [x]+ℓ−1 ∩ [x]0 6= ∅ and,

consequently, [x̂]+ℓ−1 ∩ [x]0 6= ∅. Remark 2 then yields

[x̂]+π(x̂, h(x)) ⊂ [x̂]+ℓ−1. Starting from (8) we can proceed as

x̂+ ∈ f([x̂]+π(x̂, y) ∩ h−1(y))

= f([x̂]+π(x̂, h(x)) ∩ h−1(h(x)))

⊂ f([x̂]+ℓ−1 ∩ [x]0)

= f([x]+ℓ−1 ∩ [x]0)

= f([x]ℓ) (10)

⊂ f([f−1(f(x))]ℓ)

= [f(x)]+ℓ .

Hence (9) holds. In particular, (10) gives us

x̂ ∈ [x]+ℓ−1 =⇒ x̂+ ∈ f([x]ℓ) (11)

for all ℓ ∈ {0, 1, . . . , p− 1}. Note that x̂ ∈ [x]+−1 holds for

all x, x̂. Therefore (9) and Remark 2 imply the existence of

ℓ∗ ∈ {0, 1, . . . , p− 1} such that

ψ(k, x̂, x) ∈ [φ(k, x)]+p−2 (12)

for all k ≥ ℓ∗. Also, Assumption 1 yields us

[φ(k, x)]p−1 = φ(k, x) (13)

for all k ≥ p − 1. Combining (11), (12), and (13) we can

write

ψ(k, x̂, x) = φ(k, x)

for all k ≥ p. Hence the result.
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Corollary 1: Consider linear system (4) with A ∈ R
n×n

and C ∈ R1×n. Suppose pair (C, A) is observable1. Let Sk

for k = 0, 1, . . . be defined as in Lemma 1. Then system

x̂+ = A((x̂ +ASn−2) ∩ (CT (CCT )−1y + S0))

is a deadbeat observer for system (4).

VI. SYSTEM WITH INPUT

In this section we look at the case where the evolution of

system to be observed is dependent not only on the initial

condition but also on some exogenous signal, which we call

the input. To construct a deadbeat observer for such system

we again make use of sets.

Consider the system

x+ = f(x, u) (14a)

y = h(x) (14b)

where u ∈ U ⊂ Rq is the input or some known disturbance

(e.g. time). Let u = (u0, u1, . . .), uk ∈ U , denote an input

sequence. The solution of system (14) at time k, starting

at initial condition x ∈ X , and having evolved under the

influence of input sequence u is denoted by φ(k, x, u). Note

that φ(0, x, u) = x and φ(k+1, x, u) = f(φ(k, x, u), uk)
for all x, u, and k.

Now consider the following cascade system

x+ = f(x, u) (15a)

x̂+ ∈ g(x̂, h(x), u) (15b)

We denote a solution of subsystem (15b) by ψ(k, x̂, x, u).
We then have ψ(0, x̂, x, u) = x̂ and ψ(k + 1, x̂, x, u) ∈
g(ψ(k, x̂, x, u), h(φ(k, x, u)), uk) for all x, x̂, u, and k.

Definition 3: Given g : X × Y × U ⇉ X , system

x̂+ ∈ g(x̂, y, u)

is said to be a deadbeat observer for system (14) if there

exists p ≥ 1 such that solutions of system (15) satisfy

ψ(k, x̂, x, u) = φ(k, x, u)

for all x, x̂, u, and k ≥ p.

How to define sets [x]k and [x]+k for system (14) is

obvious. We again let

[x]0 := h−1(h(x)) .

and (for k = 0, 1, . . .)

[x]k+1 := [x]+k ∩ [x]0

this time with

[x]+k :=
⋃

f(η, u)=x

f([η]k, u) .

The following result is a generalization of Theorem 3. (The

demonstration is parallel to that of Theorem 3 and hence

omitted.)

Theorem 4: Suppose Assumptions 1-2 hold. Then system

x̂+ ∈ f([x̂]+π(x̂, y) ∩ h−1(y), u)

is a deadbeat observer for system (14).

1That is, rank [CT ATCT . . . A(n−1)TCT ] = n.

VII. EXAMPLES

Here, for two third order nonlinear systems, we con-

struct deadbeat observers. In the first example we study

a simple autonomous homogeneous system and show that

the construction yields a homogeneous observer. Hence our

method may be thought to be somewhat natural in the vague

sense that the observer it generates inherits certain intrinsic

properties of the system. In the second example we aim

to provide a demonstration on observer construction for a

system with input.

A. Homogeneous system

Consider system (2) with

f(x) :=





x2

x
1/3
3

x31 + x32



 and h(x) := x1

where x = [x1 x2 x3]
T . Let X = R3 and Y = R. If we let

dilation ∆λ be

∆λ :=





λ 0 0
0 λ 0
0 0 λ3





with λ ∈ R, then we realize that

f(∆λx) = ∆λf(x) and h(∆λx) = λh(x) .

That is, the system is homogeneous [10] with respect to

dilation ∆. Before describing the relevant sets [x]k and [x]+k
we want to mention that f is bijective and its inverse is

f−1(x) =





(x3 − x31)
1/3

x1
x32



 (16)

Since h(x) = x1 we can write

[x]0 =











x1
α
β



 : α, β ∈ R






(17)

By (16) we can then proceed as

[x]+0 = f([f−1(x)]0)

= f















(x3 − x31)
1/3

γ
δ



 : γ, δ ∈ R











=






f









(x3 − x31)
1/3

γ
δ







 : γ, δ ∈ R







=











γ

δ1/3

x3 − x31 + γ3



 : γ, δ ∈ R






(18)

Recall that [x]1 = [x]+0 ∩ [x]0. Therefore intersecting sets

(17) and (18) we obtain

[x]1 =











x1
α
x3



 : α ∈ R






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We can now construct [x]+1 as

[x]+1 = f([f−1(x)]1)

= f















(x3 − x31)
1/3

γ
x32



 : γ ∈ R











=






f









(x3 − x31)
1/3

γ
x32







 : γ ∈ R







=











γ
x2

x3 − x31 + γ3



 : γ ∈ R






(19)

Now note that sets (17) and (19) intersect at a single point. In

particular, [x]2 = [x]+1 ∩ [x]0 = x. Therefore Assumption 1

is satisfied with p = 3. Observe also that

[x̂]+1 ∩ h−1(y)

=











γ
x̂2

x̂3 − x̂31 + γ3



 : γ ∈ R






∩











y
α
β



 : α, β ∈ R







=





y
x̂2

x̂3 − x̂31 + y3





which means that π(x̂, y) = p− 2 = 1 for all x̂ and y. The

dynamics of the deadbeat observer then read

x̂+ = f([x̂]+1 ∩ h−1(y))

=





x̂2
(x̂3 − x̂31 + y3)1/3

x̂32 + y3





We finally notice that

f([∆λx̂]
+
1 ∩ h−1(λy)) = ∆λf([x̂]

+
1 ∩ h−1(y)) .

That is, the deadbeat observer also is homogeneous with

respect to dilation ∆.

B. System with input

Our second example is again a third order system, this

time however with an input. Consider system (14) with

f(x, u) :=





x1x2x3
x3/x1√
x1x2u



 and h(x) := x1 .

Let X = R3
>0, Y = R>0, and U = R>0. Let us construct

the relevant sets [x]k and [x]+k . We begin with [x]0.

[x]0 =











x1
α
β



 : α, β > 0






(20)

Note that f satisfies the following

f









x1u/(x2x
2
3)

x2x
4
3/(x1u

2)
x1u/x

2
3



 , u



 = x

for all x and u. Hence we can write

[x]+0 =
⋃

u∈U

f









x1u/(x2x
2
3)

x2x
4
3/(x1u

2)
x1u/x

2
3





0

, u





=
⋃

u∈U

f















x1u/(x2x
2
3)

γ
δ



 : γ, δ > 0






, u





=
⋃

u∈U

f















x1u/(x2x
2
3)

x2x
4
3γ/(x1u

2)
x1uδ/x

2
3



 : γ, δ > 0






, u





=
⋃

u∈U






f









x1u/(x2x
2
3)

x2x
4
3γ/(x1u

2)
x1uδ/x

2
3



 , u



 : γ, δ > 0







=











x1γδ
x2δ
x3

√
γ



 : γ, δ > 0






(21)

Since [x]1 = [x]+0 ∩ [x]0, intersecting sets (20) and (21) we

obtain

[x]1 =











x1
x2/α

2

x3α



 : α > 0







We can now construct [x]+1 as

[x]+1 =
⋃

u∈U

f









x1u/(x2x
2
3)

x2x
4
3/(x1u

2)
x1u/x

2
3





1

, u





=
⋃

u∈U

f















x1u/(x2x
2
3)

x2x
4
3/(x1u

2γ2)
x1uγ/x

2
3



 : γ > 0






, u





=











x1/γ
x2γ
x3/γ



 : γ > 0






(22)

Now note that sets (20) and (22) intersect at a single point. In

particular, [x]2 = [x]+1 ∩ [x]0 = x. Therefore Assumption 1

is satisfied with p = 3. Observe also that

[x̂]+1 ∩ h−1(y)

=











x̂1/γ
x̂2γ
x̂3/γ



 : γ > 0






∩











y
α
β



 : α, β > 0







=





y
x̂1x̂2/y
x̂3y/x̂1





which means that π(x̂, y) = p− 2 = 1 for all x̂ and y. The

dynamics of the deadbeat observer then read

x̂+ = f([x̂]+1 ∩ h−1(y), u)

=





x̂2x̂3y
x̂3/x̂1√
x̂1x̂2u




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TABLE I

PERCENTAGES OF CASES WHERE dbLfun PERFORMED BETTER THAN

acker.

n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10

%51 %60 %67 %74 %80 %85 %87 %91

VIII. AN ALGORITHM FOR DEADBEAT GAIN

In this section we provide an algorithm to compute the

deadbeat observer gain for a linear system with scalar output.

(The algorithm directly follows from Corollary 1.) Namely,

given an observable pair (C, A) with C ∈ R1×n and A ∈
Rn×n, we provide a procedure to compute the gain L ∈
Rn×1 that renders matrix A − LC nilpotent. Below we let

null(·) be some function such that, given matrix M ∈ Rm×n

whose dimension of null space is k, null(M) is some n× k
matrix whose columns span the null space of M .

Algorithm 1: Given C ∈ R1×n and A ∈ Rn×n, the

following algorithm generates deadbeat gain L ∈ Rn×1.

X = null(C)

for i = 1 : n− 2

X = null

([
C

null((AX)T )T

])

end

Lpre = AX

L =
ALpre

CLpre
For the interested reader we below give a MATLAB

code. Exploiting Algorithm 1, this code generates a function

(which we named dbLfun) whose inputs are matrices C
and A. The output of the function, as its name indicates, is

the deadbeat gain L.

function L = dbLfun(C,A)

X = null(C);

for i = 1:length(A)-2

X = null([C;null((A*X)’)’]);

end

Lpre = A*X;

L = A*Lpre/(C*Lpre);

One can also use the built-in MATLAB function acker

to compute the deadbeat gain. We can therefore compare

dbLfun with acker via a numerical experiment. Table I

gives the experimental results. Number n is the dimen-

sion of the system (that is, the number of columns of

A matrix) and the numbers at the bottom row are the

percentages of the cases (among 104 random trials for

each n) in which dbLfun performed better than acker.

How we determine which one is better in a given case

is as follows. Given pair (C, A), we let L1 be the gain

resulting from dbLfun(C,A) and L2 be the gain given

by acker(A’,C’,zeros(n,1))’. Then we compare

norms |(A − L1C)
n| and |(A − L2C)

n|, neither of which

is zero due to round-off errors. The function yielding the

smaller norm is considered to be better.

IX. CONCLUSION

For nonlinear systems a method to construct a deadbeat

observer is proposed. The resultant observer can be consid-

ered as a generalization of the linear deadbeat observer. The

construction makes use of sets that are generated iteratively.

Through such iterations, observers are derived for two aca-

demic examples. Also, for computing the deadbeat gain for

a linear system with scalar output, an algorithm that works

no worse than an already existing one is given.
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