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Abstract— This paper gives a solution to the problem of
verifying stability of networks consisting of integral input-to-
state stable (iISS) subsystems. The iISS small-gain theorem
developed recently has been restricted to interconnection of
two subsystems. For large-scale systems, stability criteria re-
lying only on gain-type information have been successful only
in dealing with input-to-state stable stable (ISS) subsystems.
To address the stability problem involving iISS subsystems
interconnected in general structure, this paper shows how to
construct Lyapunov functions of the network by means of
nonlinear sum of individual Lyapunov functions of subsystems
given in a dissipation formulation under an appropriate small-
gain condition.

I. INTRODUCTION

The notion of input-to-state stability (ISS) introduces the

concept of nonlinear gain between input and state in order

to deal with systems which do not admit finite linear gain

[25]. This notion is useful in stability and robustness analysis

of large-scale systems since system components are often

incompatible with linear-like properties. Decomposition of

a system into subsystems allowing for infinite linear gain

sometimes reduces conservativeness arising in stability and

robustness analysis [19], [28]. However, requiring bounded

state for arbitrary magnitude of input is still restrictive. For

instance, modules of biological networks are often not ISS

[11], [21]. The notion of iISS is a way to remove this

limitation [26], and considering networks of iISS subsys-

tems broadens the horizon of stability theory. Difficulties

of dealing with non-ISS systems have pushed forward the

development of new theoretical tools [3], [10], [1], [4], [21].

In contrast to networks of ISS systems for which a number

of small-gain-type results have become available recently,

e.g. [7], [20], [22], [8], [6], only a few attempts have been

made for networks of iISS systems. Most of Lyapunov-based

studies on small-gain criteria have employed the max-type

construction for networks whose Lyapunov function V is

defined as the weighted maximum of Lyapunov functions of
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individual subsystems Vi:

V (x) = max
i
Wi(Vi(xi)) (1)

This function was first employed for interconnected ISS

systems in [18]. The weights are represented by the nonlinear

functions Wi. In contrast, there have been only a few

results on the construction of sum-type Lyapunov functions

for networks whose Lyapunov function is defined as the

nonlinearly-weighted sum of Lyapunov functions of individ-

ual subsystems:

V (x) =
∑

i

Wi(Vi(xi)) (2)

A problem of constructing a function of the form (2) was

posed for general networks consisting of ISS subsystems in

[6] although no solution was derived. Recently, it has been

proved in [13] that the max-type construction (1) is never

able to yield a Lyapunov function1 if the network contains a

subsystem which is not ISS. The sum-type construction (2)

has some clear advantages over the max-type construction

since it yields smooth Lyapunov functions directly and it

is applicable to networks involving iISS subsystems which

are not ISS. Historically, the max-type construction belongs

to the idea of vector Lyapunov functions, while the sum-

type construction belongs to the idea of scalar Lyapunov

functions [23], [24]. The class of networks for which the

sum-type construction is solved has been limited to trivial

cases exhibiting explicit energy-type conservation or finite

linear gain systems such as finite Lp gain systems (See , e.g.,

[9], [6]). It was found recently that the sum-type construction

could give Lyapunov functions explicitly for feedback and

cascade connection of two iISS subsystems [10], [17], [12].

In the presence of more than two subsystems, the technique

proposed there could be extended to only a specific structure

of networks [15], i.e., cactus graphs.

An attempt to tackle iISS networks was made in [5] and

their investigation agrees that new tools are needed when

the network involves non-ISS subsystems. The problem of

guaranteeing stability of such a network remains unsolved

[13]. In [21], as a useful idea of circumventing the difficulty

of tackling the direct iISS formulation, a time embedded

formulation aiming at verifying input-to-output stability is

introduced in a trajectory-based setup. The ISS small-gain

condition can be still used for non-ISS subsystems by

assuming that the behavior of the subsystems is ISS after a

1If there exists a max-type Lyapunov function guaranteeing the stability
of all networks whose subsystems fulfill prescribed iISS properties, all the
subsystems are ISS.
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transient period and that a trajectory estimate of the network

during the period is available in a desired manner.

In these circumstances, the purpose of this paper is to

present a small-gain criterion for networks consisting of

iISS subsystems interconnected in general graph structure.

To the best of our knowledge, a methodology leading to the

construction of ISS or iISS sum-type Lyapunov functions for

general networks is presented for the first time in this paper.

In this paper, the symbol |x| denotes the Euclidean norm

of a real vector x ∈ R
n. A continuous function ω : R+ :=

[0,∞) → R+ is said to be positive definite if it satisfies

ω(0) = 0 and ω(s) > 0 holds for all s > 0. A continuous

function ω is of class K and written as ω ∈ K if it is positive

definite and strictly increasing; of class K∞ if it is of class

K and is unbounded. The symbol Id denotes the identity

function on R+. The symbols ∨ and ∧ denote logical sum

and logical product, respectively. All proofs are omitted due

to the space limitation.

II. NETWORK OF iISS SYSTEMS

Consider a network Σ consisting of n subsystems Σi, i =
1, 2, ..., n where n ≥ 2. Let x = [xT1 , . . . , x

T
n ]T ∈ R

N be the

state vector of Σ, where the state vector of each subsystem is

xi ∈ R
Ni , and N :=

∑

Ni holds. Suppose that the dynamics

of the i-th subsystem Σi is governed by

Σi : ẋi = fi(x1, . . . , xn, r), (3)

where r ∈ R
M and fi : R

N+M → R
Ni . For each i ∈

{1, 2, ..., n}, the subsystem (3) is assumed to have a unique

maximal solution xi(t) for any given initial condition xi(0)∈
R
Ni and any locally L∞-inputs xj : [0,∞)→R

Nj , j 6= i, and

r : [0,∞)→R
M . For instance, this can be guaranteed by the

local Lipschitz condition on fi. Using f = [fT1 , . . . , f
T
n ]T :

R
N+M → R

N , the overall network Σ is written as

Σ : ẋ = f(x, r) . (4)

The knowledge of f is not assumed. Instead, this paper

assumes that a dissipation inequality of each subsystem Σi
is known as follows:

Assumption 1: For each i = 1, 2, ..., n, there exist a C
1

function Vi : R
Ni → R+ and continuous functions α̂i ∈ K,

σ̂i,j , κ̂i ∈ K ∪ {0} and αi, αi ∈ K∞ such that

αi(|xi|) ≤ Vi(xi) ≤ αi(|xi|), xi ∈ R
Ni (5)

V̇i(xi) ≤ −α̂i(|xi|) +

n
∑

j=1

σ̂i,j(|xj |) + κ̂i(|r|) (6)

hold along the trajectories xi(t) for all xj ∈ R
Nj , j 6= i and

all r ∈ R
M , where σ̂i,i ≡ 0, i = 1, 2, ..., n.

The inequality (6) is called a dissipation inequality and

means that each subsystem Σi with the inputs xj , j 6= i

and r is integral input-to-state stable (iISS), and that Vi
is an iISS Lyapunov function for the disconnected Σi [2].

Under a stronger assumption α̂i ∈ K∞, the subsystem Σi is

guaranteed to be input-to-state stable (ISS), and Vi is an ISS

Lyapunov function [27]. By definition [26], the set of ISS

systems is a strict subset of the set of iISS systems. The goal

of this paper is to construct an iISS Lyapunov function V (x)
of the network Σ with respect to input r and state x, and to

find a condition under which such construction is possible.

Remark 1: The function Vi is an iISS Lyapunov function

of Σi even when α̂i is only positive definite [2]. To allow

each Σi to form cycles in Σ, this paper assumes α̂i ∈ K
which is a strict subset of positive definite functions. It

is proved in [12] that a feedback interconnection of iISS

systems defined with the dissipation inequalities (6) is guar-

anteed to be iISS only if for each i the function α̂i can

be bounded from below by a class K function. For cascade

connection, α̂i ∈ K is not necessary. Such relaxation is not

covered by this paper.

Remark 2: If a subsystem Σi is ISS, the existence of βi,

χi,j , χi ∈ K (χi,i=0) satisfying the implication of the form

|xi| ≥

n
∑

j=1

χi,j(|xj |) + χi(|r|) ⇒ V̇i(xi) ≤ −βi(|xi|) (7)

is an alternative to (6) [27]. The characterization (7) referred

to as the implication formulation is used for ISS networks

in [20], [22], [8] with some equivalent variations in the

conditional |xi| ≥
∑n

j=1 χi,j(|xj |) + χi(|r|). If subsystems

are not ISS, we do not have such implication formulation.

III. SUM-TYPE LYAPUNOV FUNCTIONS

Define Â, Ŝ, D̂,Λ: s=[s1, s2, ..., sn]
T ∈R

n
+ 7→ z∈R

n
+ by

z = Â(s)

=











α̂1 ◦ α
−1
1 (s1)

α̂2 ◦ α
−1
2 (s2)
...

α̂n ◦ α−1
n (sn)











=











α̂1 0 · · · 0

0 α̂2
. . .

...
...

. . .
. . . 0

0 · · · 0 α̂n





















α−1
1 (s1)
α−1

2 (s2)
...

α−1
n (sn)











z = Ŝ(s)

=

















∑

j 6=1

σ̂1,j◦ α
−1

j (sj)

∑

j 6=2

σ̂2,j ◦ α
−1

j (sj)
...∑

j 6=n

σ̂n,j ◦ α
−1

j (sj)

















=











0 σ̂12 · · · σ̂1,n

σ̂21 0
. . .

...
...

. . .
. . . σ̂n−1,n

σ̂n,1 · · · σ̂n,n−1 0





















α−1
1 (s1)
α−1

2 (s2)
...

α−1
n (sn)











D̂(s) =











s1 + δ̂1(s1)

s2 + δ̂2(s2)
...

sn + δ̂n(sn)











, Λ(s) =









λ1(s1)
λ2(s2)

...

λn(sn)









.

Note that the last identity in both Â and Ŝ shown above

is not a matrix operation since their entries are functions.

The matrix-like representation helps us see the structure of

the operators. Indeed, Â, D̂ and Λ have the same diagonal

structure while Ŝ is not diagonal. The functions λi and δ̂i
have yet to be determined. The following is a result in [13].

Theorem 1: Suppose that there exist continuous functions

1972
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Fig. 1. An example of a general network.
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of a fictitious arc.
(b) Complete graph with Fi,j .

Fig. 2. Rearrangement of weights to obtain a fictitious complete graph.

λi : R+ → R+, i = 1, 2, ..., n, such that

λi(s) > 0, ∀s ∈ (0,∞), i = 1, 2, ..., n (8)
∫ ∞

1

λi(s)ds = ∞, i = 1, 2, ..., n (9)

{ lim
s→∞

α̂i(s) = ∞ ∨ lim sup
s→∞

λi(s) <∞},

i = 1, 2, ..., n (10)

Λ(s)T [−D̂−1◦ Â(s) + Ŝ(s)] ≤ 0, ∀s ∈ R
n
+ (11)

hold for some δ̂1, δ̂2,..., δ̂n ∈ K∞. Then the network Σ is

iISS with respect to input r and state x. If

α̂i ∈ K∞, i = 1, 2, ..., n (12)

lim inf
si→∞

λi(si) > 0, i = 1, 2, ..., n (13)

are satisfied additionally, then the network Σ is ISS. Further-

more, an iISS (ISS) Lyapunov function is

V (x) =

n
∑

i=1

∫ Vi(xi)

0

λi(s)ds . (14)

In this paper, the form (14) is referred to as the sum-type

construction of Lyapunov functions. This sum form is the

key to the success in constructing a Lyapunov function of

the overall network involving non-ISS subsystems [13].

Remark 3: The global asymptotic stability of x = 0 for

r(t) ≡ 0 needs neither (10) nor the class K∞ property of δ̂i.

IV. GENERAL NETWORKS

This section presents the main results which give a solu-

tion Λ(s) to the problem formulated in Theorem 1. Without

any loss of generality, we can assume the following:

Assumption 2: There are no isolated subsystems, i.e.,






n
∑

j=1

σ̂i,j 6= 0 ∨

n
∑

j=1

σ̂j,i 6= 0







, i = 1, 2, ..., n.

Since isolated subsystems are iISS or ISS, we can focus on

the rest of the network. Or alternatively, to avoid Assumption

2, one can add small σ̂j,i 6= 0 fictitiously. The existence

of such a sufficiently small σ̂j,i is guaranteed whenever the

original problem in Theorem 1 has a solution.

We shall introduce basic concepts of weighted directed

graphs [29]. The terms “weighted” and “directed” are omit-

ted when they are clear from the context. The vertex set and

the arc set of a directed graph G are denoted by V(G) and

A(G), respectively. In this paper, a walk is an alternating

sequence of vertices and connecting arcs, beginning and

ending with a vertex. A walk is a path if it has no repeated

vertices. A walk is a cycle if it starts and ends at the same

vertex but otherwise has no repeated vertices. Given a path

or a cycle U of length k, we employ the following notation:

|U | = k, U = (u(1), u(2), ..., u(k), u(k + 1)),

where u(i)’s listed above are “all” the vertices comprising U

and they are listed in the “reversed” order of appearance. If

U is a cycle, we have u(1) = u(k+1). The starting vertex of

the path U is u(k+1), and the ending vertex is u(1). When

an arc is represented by the ordered pair (i, j), it is directed

away from the j-th vertex and directed toward the i-th vertex.

Let C(G) denote the set of all directed cycles contained in

the graph G. Let P(G) denote the set of all directed paths

contained in the graph G. The length of cycles (resp. paths)

is larger than or equal to two (resp. one).

Let G denote the directed graph of the network Σ. The

vertices of G are the subsystems Σi, while the arcs are the

signal flows between the subsystems. In other words, the

zero-nonzero structure of Ŝ(s) introduced in Section III is the

transpose of the adjacency matrix of the directed graph G. In

order to associate the network Σ with a “weighted” directed

graph, we introduce αi ∈ K, σi,j ∈ K ∪ {0} satisfying

n
∑

i=1

[

−α̂i(si) +

n
∑

j=1

σ̂i,j(sj)
]

=

∑

U∈C(G)

K(U)

|U |
∑

i=1

[

−αu(i)(su(i)) + σu(i),u(i+1)(su(i+1))
]

+
∑

T∈P(G)

K(T )

{ |T |
∑

i=1

[

−αt(i)(st(i)) + σt(i),t(i+1)(st(i+1))
]

− αt(|T |+1)(st(|T |+1))

}

. (15)

for [s1, s3, ..., sn]
T∈ R

n
+, where K : C(G) ∪ P(G) → R+.

The above decomposes the problem formulated in Theorem

1 into cycles and paths. However, notice that the functions λi
interlace multiple cycles and paths in (11). The function K :
C(G)∪P(G) → R+ determines whether the sum taken along

a particular cycle U or a particular path T appears in (11)

and how large its contribution to the sum is. Since there are

1973



no isolated vertices, the network Σ with an arbitrary structure

always admits a decomposition of the form (15) with

α̂i(s) = wiαi(s), σ̂i,j(s) = wi,jσi,j(s), (16)

where wi and wi,j are positive real numbers satisfying

wi =

n
∑

j=1

wi,j =
∑

U∈{W∈C(G)∪P(G):V(W )∋i}

K(U) (17)

wi,j =
∑

U∈{W∈C(G)∪P(G):A(W )∋(i,j)}

K(U). (18)

The decomposition (15) of α̂i and σ̂i,j into αi and σi,j is

not unique. We define the weight of the arc (i, j) of G as

the function σi,j(s). An example of a general network and

its weighted directed graph is illustrated in Fig.1. Due to

the non-uniqueness of the decomposition (15), the weighted

graph is not uniquely determined from the network Σ al-

though there always exists a weighted graph for each Σ. We

employ the following convention for i = 1, 2, ..., n:

ηi(s) =

{

α−1
i (s) if limτ→∞ αi(τ) > s

∞ otherwise
(19)

which is a slightly abused notation of inverse operation on

αi. The benefit of the notation is discussed in Remark 9.

We now build a weighted complete directed graph from

G by adding fictitious arcs and weights. Consider Fi,j ∈ K,

i, j = 1, 2, ..., n, satisfying the following properties:

Fi,j(s) ≥ max

{

max
1 ≤ q ≤ n

q 6= i,q 6= j

Fi,q ◦ α
−1
q ◦ αq ◦ ηq ◦ τqFq,j(s),

σi,j(s)

}

,

∀s ∈ R+, i, j = 1, 2, ..., n, i 6= j (20)

Fi,i(s) ≥ max
1 ≤ q ≤ n

q 6= i

Fi,q ◦ α
−1
q ◦ αq ◦ ηq ◦ τqFq,i(s),

∀s ∈ R+, i = 1, 2, ..., n (21)

α−1
i ◦ αi ◦ ηi ◦ ciFi,i(s) ≤ s, ∀s ∈ R+, i = 1, 2, ..., n (22)

lim
s→∞

Fi,j(s) <∞ ∨

lim
s→∞

max

{

max
1 ≤ q ≤ n

q 6= i,q 6= j

Fi,q ◦ α
−1
q ◦ αq ◦ ηq ◦ τqFq,j(s),

σi,j(s)

}

= ∞,

i, j = 1, 2, ..., n, i 6= j (23)

lim
s→∞

Fi,i(s) <∞ ∨

lim
s→∞

max
1 ≤ q ≤ n

q 6= i

Fi,q ◦ α
−1
q ◦ αq ◦ ηq ◦ τqFq,i(s) = ∞,

i = 1, 2, ..., n (24)

The parameters τi, ci ∈ R+, i = 1, 2, ..., n will be chosen

later so that the above “class K” functions Fi,j exist. Using

Fi,j given for all pairs (i, j) of i, j = 1, 2, ..., n, we can

define a weighted complete directed graph2. The weight

functions Fi,j are assigned to individual arcs connecting

all possible pairs in V(G). Some arcs are fictitious so that

they are not present in the original graph G. The function

Fi,j replaces the original weight σi,j if the arc (i, j) exists

in the original graph G. The rearrangement of the weights

2A complete directed graph is a directed graph in which each ordered
pair of vertices is connected by an arc.

to define the complete graph is illustrated by Fig.2. This

rearrangement allows us to find the functions λi which are

compatible with all the cycles and paths comprising G. Now,

we are in position to state the main result which gives the

functions λi solving (11). The proof is based on the tools

developed in Section V.

Theorem 2: Consider αi ∈ K, σi,j ∈ K∪{0} and αi, αi ∈
K∞, i, j = 1, 2, ..., n, satisfying (15) and

(H1)

{

lim
s→∞

αj(s)=∞∨ lim
s→∞

n
∑

i=1

σi,j(s)<∞

}

,
j=1, 2,

..., n.

Suppose that there exist ci > 1, i = 1, 2, ..., n such that

α−1
u(1)◦ αu(1) ◦ ηu(1)◦ cu(1)σu(1),u(2)◦

α−1
u(2)◦ αu(2) ◦ ηu(2)◦ cu(2)σu(2),u(3) ◦ · · · ◦

α−1
u(k)◦ αu(k) ◦ ηu(k)◦ cu(k)σu(k),u(k+1)(s)

≤ s, ∀s∈R+ (25)

holds for all cycles U ∈C(G), where k ∈ {2, 3, ..., n} denotes

the length of each cycle U . Let τi and ψ ≥ 0 be such that

1 < τi < ci, i = 1, 2, ..., n (26)
(

τi

ci

)ψ

≤ τi − 1, i = 1, 2, ..., n (27)

are satisfied. Pick class K functions Fi,j , i, j = 1, 2, ..., n,

such that (20)-(24) are satisfied. Define class K functions λi,

i = 1, 2, ..., n, by

λi(s) =

[

1

τi
αi(α

−1
i (s))

]ψ
∏

j∈V(G)−{i}

[

Fj,i(α
−1
i (s))

]ψ+1
.

(28)

Let νi: (0,∞) → R+, i = 1, 2, ..., n, be continuous functions

fulfilling

0 < νi(s) <∞, s ∈ (0,∞) (29)

lim
s→∞

αi(s) = ∞ ∨ lim
s→∞

νi(s) <∞ (30)

λ̄i(s)νi(s) : non-decreasing continuous for s∈(0,∞) (31)

and

νu(j) ◦ αu(j) ◦ ηu(j) ◦ τu(j)σu(j),u(j+1)(s)

≤ νu(j+1) ◦ αu(j+1)(s), ∀s ∈ (0,∞),

j = 1, 2, ..., |U | (32)

for all cycles U ∈ C(G). Then non-decreasing continuous

functions λi : R+ → R+, i = 1, 2, ..., n, defined by

λi(s) = λi(s)νi(s), s ∈ (0,∞), i = 1, 2, ..., n (33)

λi(0) = lim
s→0+

λi(s)νi(s) (34)

satisfy (8), (9) and (10), and achieve (11) with δ̂i(s) = bis,

i = 1, 2, ..., n, for some bi > 0.

It is stressed that the constants τi, ψ satisfying (26)-(27)

and the functions νi, i = 1, 2, ..., n, satisfying (29)-(32)

always exist and can be chosen easily (See Remark 5 for νi).

The following proves the existence of the desired Fi,j(s).
Lemma 1: Consider αi ∈ K, σi,j ∈ K∪{0} and αi, αi ∈

K∞, i, j = 1, 2, ..., n, satisfying (H1). Suppose that there

1974



exist ci > 1, i = 1, 2, ..., n such that (25) holds for all

cycles U ∈ C(G), where k ∈ {2, 3, ..., n} denotes the length

of each cycle U . Let τi be such that (26) is satisfied. Then

there exist class K functions Fi,j , i, j = 1, 2, ..., n, satisfying

(20)-(24) and

{ lim
s→∞

αj(s)=∞ ∨ lim
s→∞

n
∑

i=1

Fi,j(s)<∞}, j=1, 2, ..., n
(35)

The set of functions λi given in (33) yields an iISS

Lyapunov function in the form of (14). Since λi are of class

K, the network is guaranteed to be ISS in the case of (12).

Note that (H1) is fulfilled by α1, ..., αn ∈ K∞. Theorem 2

demonstrates that the collection of the inequalities in (25) is

a sufficient condition for the iISS and ISS of the network Σ.

It is the property that small-gain conditions are satisfied for

all cycles in the “original” graph G. The “fictitious” complete

graph (Fig.2(b)) allows us to write a systematic formula of

λi in terms of Fi,j as in (28). By virtue of the notation of

ηi’s, the conditions (25) are invariant under cyclic shifting

of vertices. The reader might be concerned that the left hand

side of (25) would not be well-defined for all s ∈ R+ due to

the inverse maps in ηi’s. The assumption (H1) ensures that

the left hand side is well-defined for all s ∈ R+.

It is verified easily that the small-gain condition (25) with

ci > 1 implies the existence of i ∈ {1, 2, ..., |U |} satisfying

lim
s→∞

αu(i)(s)=∞ ∨ lim
s→∞

αu(i)(s)> lim
s→∞

σu(i),u(i+1)(s)
(36)

for each cycle U ∈ C(G). Using (16) and (17), we can also

prove the existence of i ∈ {1, 2, ..., n} satisfying

lim
s→∞

α̂i(s) = ∞ ∨ lim
s→∞

α̂i(s) > lim
s→∞

n
∑

j=1

σ̂i,j(s) (37)

Hence, the small-gain condition (25) implies that at least one

subsystem Σi should be ISS with respect to the combined

input consisting of all the signals from the other subsystems.

This fact conforms to a necessity condition derived in [14]

for the stability of iISS networks. In the case of r(t) ≡ 0,

the strict inequality signs in (36) and (37) can be replaced

by non-strict ones (See Section VI).

Remark 4: The functions Fi,j , i 6= j, can be computed

by evaluating arcs with σp,q’s and vertices with ηp’s in all

paths from j to i in G. We do not have to evaluate walks

which are not paths, thanks to (22). The functions Fi,i can

be determined by evaluating σp,q’s and ηp’s along all cycles

starting and ending at i in G.

Remark 5: The simplest choice of continuous functions

νi : (0,∞) → R+, i = 1, 2, ..., n fulfilling (29)-(32) is

ν1(s) = ν2(s) = ... = νn(s) = constant > 0. (38)

A non-constant choice of νi, i = 1, 2, ..., n is

νi(s) = ν ◦ Fl,i ◦ α
−1
i (s), i = 1, 2, ..., n (39)

defined with any l ∈ V(G) and any non-decreasing continu-

ous function ν satisfying 0 < ν(s) < ∞ for s ∈ (0,∞).
Indeed, the properties (29)-(32) follow from Fl,i ∈ K,

(35), (20), (21) and (22). The above examples of νi’s are

non-decreasing functions. It is worth noting that decreasing

functions are also eligible. This feature contrasts with the

previous results [16], [17], [15]. To see this point, consider

the network Σ which is a cycle graph and satisfies γjαj(s) =
σi,j(s), γj > 0 and αi(s) = αi(s) = s for i = 1, 2, ..., n,

Then the choice

νi(s) = gi[αi(s)]
−nψ−n+1, i = 1, 2, ..., n (40)

fulfills (29)-(32) for appropriate constants gi > 0. In this

case, the functions λi, i = 1, 2, ..., n, become positive

constants and the small-gain condition is γ1γ2 · · · γn < 1.

Remark 6: A condition similar to (25) has been devel-

oped for networks of ISS subsystems within an implication

formulation of Σi [20], [22], [8]. It is stressed that even if

the subsystems are restricted to ISS ones, the implication

formulation and this paper take different definitions of gains

appearing in the small-gain conditions. Although the implica-

tion formulation naturally leads to a stability test in the form

of a set of multiple small-gain conditions, the implication

formulation is valid only for ISS subsystems. In contrast, the

dissipation formulation used in Assumption 1 is “applicable”

to iISS as well as ISS subsystems. The applicability, however,

does not automatically guarantee the capability to establish

the stability of networks containing non-ISS subsystems [13].

For assuring the capability, this paper employs the sum-type

Lyapunov function (14) and it is linked to the multiple small-

gain conditions as in (25).

Remark 7: If the graph G contains no cycle, the problem

(11) is always solvable. Since the small-gain condition (25) is

required for only cycles, the functions Fi,j , i, j = 1, 2, ..., n
are guaranteed to exist and the functions in (33) satisfy (8),

(9) and (10), and solve (11). It is stressed that this holds true

under the assumption of αi ∈ K, i = 1, 2, ..., n, and (H1).

This fact is consistent with the n = 2 result in [12].

V. CYCLE NETWORKS

This section has two objectives. One is to solve the

stability problem posed by Theorem 1 for cycle networks.

The other is to provide the key tools to obtain the main

results presented in Section IV. Consider the network Σ
which admits the following representation:

n
∑

i=1

[

−α̂i(si) +
n

∑

j=1

σ̂i,j(sj)
]

=
n

∑

i=1

[

−αi(si) + σi,q(sq)
]

,

q(i) = (i mod n) + 1, ∀s ∈ R
n
+, (41)

where αi∈K and σi,q∈K. The identity (41) implies that the

weighted directed graph G of Σ is a cycle of length n. An

example for n = 5 is shown in Fig.3(a). For a cycle network

of arbitrary length, the identity (41) follows immediately

from α̂i=αi and σ̂i,j=σi,j .
The next lemma generates weighting functions Fi,j for all

possible ordered pairs of the vertices in the graph G, which

plays a key role in computing a solution Λ to (11).

Lemma 2: Consider αi ∈ K, σi,j ∈ K∪{0} and αi, αi ∈
K∞, i = 1, 2, ..., n, j = (i mod n) + 1, satisfying

(J1) { lim
s→∞

αj(s)=∞ ∨ lim
s→∞

σi,j(s)<∞ },

j = 1, 2, ..., n, i = (j − 2 mod n) + 1 .
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Suppose that there exist ci > 1, i = 1, 2, ..., n such that

α−1
1 ◦ α1 ◦ η1◦ c1σ1,2 ◦

α−1
2 ◦ α2 ◦ η2◦ c2σ2,3 ◦ · · · ◦

α−1
n−1◦ αn−1 ◦ ηn−1◦ cn−1σn−1,n ◦

α−1
n ◦ αn ◦ ηn◦ cnσn,1(s) ≤ s, ∀s∈R+ (42)

holds. Let τi be such that (26) is satisfied. Then there exist

class K functions Fi,j , i, j = 1, 2, ..., n, such that

Fi,j(s) ≥ σi,j(s), ∀s ∈ R+,

i = 1, 2, ..., n, j = (i mod n) + 1 (43)

Fi,j(s) ≥ Fi,q ◦ α
−1
q ◦ αq ◦ ηq ◦ τqσq,j(s), ∀s ∈ R+,

i = 1, 2, ..., n, i+ 2 ≤ h ≤ i+ n,

q = (h− 2 mod n) + 1,

j = (h− 1 mod n) + 1 (44)

α−1
i ◦ αi ◦ ηi ◦ ciFi,i(s) ≤ s, ∀s ∈ R+, i=1, 2, ..., n (45)

lim
s→∞

Fi,j(s)<∞ ∨ lim
s→∞

σi,j(s)=∞,

i = 1, 2, ..., n, j = (i mod n) + 1 (46)

lim
s→∞

Fi,j(s)<∞ ∨

lim
s→∞

Fi,q ◦ α
−1
q ◦ αq ◦ ηq ◦ τqσq,j(s)=∞,

i = 1, 2, ..., n, i+ 2 ≤ h ≤ i+ n,

q = (h− 2 mod n) + 1,

j = (h− 1 mod n) + 1 (47)

and (35) hold.

Figure 3(b) illustrates how Fi,j is generated from the

weighted graph G. Based on the functions Fi,j defined for

all i, j = 1, 2, ..., n, the following theorem gives a set of

functions λi solving (11) for the cycle graph.

Theorem 3: Consider αi ∈ K, σi,j ∈ K∪{0} and αi, αi ∈
K∞, i = 1, 2, ..., n, j = (i mod n) + 1, satisfying (41) and

(J1). Suppose that there exist ci > 1, i = 1, 2, ..., n such

that (42) holds. Let τi and ψ ≥ 0 be such that (26) and (27)

are satisfied. Pick Fi,j ∈ K, i, j = 1, 2, ..., n, as in Lemma

2. Let V(G) = {1, 2, ..., n} and define class K functions λ̄i,

i = 1, 2, ..., n by (28). Let νi: (0,∞) → R+, i = 1, 2, ..., n,

be continuous functions fulfilling (29), (30), (31) and

νi ◦ αi ◦ ηi ◦ τiσi,j(s) ≤ νj ◦ αj(s), ∀s ∈ (0,∞),

j = (i mod n) + 1 (48)

Then non-decreasing continuous functions λi : R+ → R+,

i = 1, 2, ..., n, defined by (33) and (34) satisfy (8), (9) and

(10), and achieve (11) with δ̂i(s) = bis, i = 1, 2, ..., n, for

some bi > 0.

Combining Theorem 3 with Theorem 1, the set of func-

tions λi in (33) yields an iISS Lyapunov function of the

network Σ in the form of (14). The existence of ci > 1,

i = 1, 2, ..., n, satisfying (42) is a sufficient condition for

the iISS property of the cycle network. The network is

guaranteed to be ISS in the case of (12).

Outlining the proof of Theorem 2: Applying Theorem 3 to

all cycles U residing in G and satisfying K(U) 6= 0 allows

us to arrive at (11). The flexibility of “νi in Theorem 3” is

used for obtaining “λi in Theorem 2” so that the functions

“λi in Theorem 3” computed for all the cycles containing

the i-th vertex agree with each other.

Remark 8: The inequality (42) generalizes the iISS small-

gain condition developed for the two subsystems case [17].

Although setting n= 2 reduces Theorem 3 to the result in

[17], the formula of λi’s given in this paper is different

from the one given in [17]. The new formula renders the

construction of Lyapunov functions amenable to the general

structure of networks as in Section IV.

Remark 9: The notation (19) is helpful in avoiding listing

the number of combinations of cases divided in accordance

with the well-posedness of each α−1
i , which becomes enor-

mous as the number of subsystems increases. Another benefit

of using (19) is to be able to render the small-gain condition

(42) invariant under cyclic shifting of subsystems. In [10],

[17] for feedback interconnection of two iISS subsystems, it

is proved that the feedback system is stable if the stability

property of one subsystem is strong enough to compensate

the “weak stability” of the other subsystem. That is, one

subsystem is not required to be ISS, which implies that α−1
i

of that subsystem is not defined on the whole R+. Therefore,

the small-gain condition using α−1
i ’s becomes asymmetric

since one α−1
i is well-defined while the other α−1

i is not.

The key observation leading us to the employment of ηi’s is

that the other subsystem is required to have α−1
i making the

overall nonlinear loop gain less than the identity function

[10], [17]. The employment of ηi’s allows us to write the

small-gain condition in a symmetric way even in the presence

of iISS subsystems, which contrasts sharply with [15]. The

necessity of a subsystem equipped with an ISS property

which is strong enough to compensate the “weak stability”

of other subsystems is elaborated for stability of networks

of iISS systems in [14].

VI. NONLINEAR GAPS IN SMALL-GAIN CONDITIONS

In (25) and (42), the constants ci − 1 describe how much

the loop gain is smaller than the identity function in a linear

way. At the expense of some technical complexity in the

formula for λi, the small-gain condition (25) can be relaxed

into the existence of ωi ∈ K∞, i = 1, 2, ..., n, satisfying

α−1
u(1)◦ αu(1)◦ ηu(1)◦ (Id+ ωu(1)) ◦ σu(1),u(2)◦

α−1
u(2)◦ αu(2)◦ ηu(2)◦ (Id+ ωu(2)) ◦ σu(2),u(3) ◦ · · · ◦

α−1
u(k)◦ αu(k)◦ ηu(k)◦ (Id+ ωu(k)) ◦ σu(k),u(k+1)(s)

≤ s, ∀s∈R+ (49)

for all cycles U ∈ C(G). The property (25) just chooses the

linear function s + ωi(s) = cis in (49). All the results in

this paper remain valid even if the nonlinear gap functions

ωi ∈ K∞ are used instead of (ci − 1)s. The formula for λi
is omitted due to the space limitation.

We can relax ωi ∈ K∞ further and replace (H1) by another

assumption as far as the global asymptotic stability of the

equilibrium x=0 for r(t)≡0 is concerned. For instance, if

{

lim
s→∞

αi(s)=∞∨ lim
s→∞

αi(s)≥ lim
s→∞

σi,j(s), j=1, 2, ..., n
}

,

i=1, 2, ..., n (50)
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(a) Weighted graph G.
(b) Computing a weight F4,1

of a fictitious arc.

Fig. 3. Cycle network.

holds, we do not need (H1) and we can replace ci > 1, ≤
and s∈R+ in (25) by ci=1, < and s∈(0,∞), respectively.

A technique in [17] can be used to replace τi by τi(s) for

making the operation of η’s well-defined in computing Fi,j ∈
K. Note that the use of ci=1, < and s∈(0,∞) in (25) cannot

guarantee the global asymptotic stability of x = 0 unless

we assume (50) or another appropriate property [1]. When

the disturbance r is allowed to affect the network Σ, the

assumption (H1) cannot be removed as long as we use (14).

Recall that we use Assumption 1 instead of assuming a given

function f in (4). We make no assumption on the functions

κ̂i ∈ K ∪ {0} describing how severely r disturbs the worst

network in the set of Assumption 1. When lims→∞ αj(s)<
∞ and lims→∞ σi,j(s)=∞ hold, we need lims→∞ λj(s)=
∞ for establishing the global asymptotic stability. In this

case, since the term λj(Vj(xj))κj(|r|) cannot be bounded

by any function of |r|, we do not have the iISS property of

the overall network for that function V due to the zero-output

dissipativity an iISS system must possess [2].

VII. CONCLUDING REMARKS

This paper has presented a solution to the stability analysis

problem for general networks of iISS systems. Basically, the

philosophy behind the pursuit has a lot in common with the

work on ISS networks that has been rapidly developed in the

past several years [7], [20], [22], [8]. However, going beyond

ISS requires a substantial departure from their techniques.

The ISS gain functions are not guaranteed to be defined

for iISS subsystems [2]. The maximization in aggregating

individual Lyapunov functions of subsystems never yield

a Lyapunov function of the network when subsystems are

not ISS [13]. The key idea of this paper is to compute

a Lyapunov function of the entire network in the form of

summation of individual Lyapunov functions of subsystems.

This paper has developed techniques to make a breakthrough

in constructing such a Lyapunov function.

Providing a less conservative criterion by getting rid of

the proportional partitioning of α̂i and σ̂i,j as in (16) or

bypassing such explicit partitioning is a topic of future study.
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