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Abstract— We study the cooperative control problem for a
group of autonomous surface vehicles (ASV) with uncertain dy-
namics. A new decentralized cooperative controller is developed
for a group of underactuated surface vehicles by employing the
neural network-based dynamic surface approach, graph theory
and Lyapunov stability theory. Using this design, it does not
require to calculate the numerical derivatives of the virtual
control signals as in traditional backstepping-based design. The
advantages of the proposed cooperative controller are that, in
addition to achieve a desired formation, the uncertain dynamics
such as coriolis and centripetal force, hydrodynamic damping,
unmodelled hydrodynamics, disturbances from environment
can be compensated by on-line learning. An illustrative example
is provided to demonstrate the effectiveness of the proposed
approach.

I. INTRODUCTION

Cooperative and coordinated control of the multi-agent
(vehicle) systems have been an active subject in system
and control, motivated by different applications in engi-
neering, such as cooperative disaster search and rescue,
coordinated resource exploration and exploitation, distributed
environmental monitoring, situation awareness for military
purpose and so on. To achieve a desired formation, several
methods have been proposed, which include leader-follower
strategy [1], virtual structure method [2], behavioral approach
[3], graph theory-based method [4], [5], artificial potential
mechanism [16] and so on.

Due to the limited sensing capabilities and communication
bandwidth of autonomous agents, one of the most challeng-
ing problem in cooperative control is to design a decen-
tralized control law to achieve global behavior using only
local information. Many feedback control schemes have been
suggested in the literature to achieve the desired formation
[4], [5], [6], [7], [8], [9], [10]. In terms agent dynamics,
these results are developed using identical single integrators
[6], [10], double integrators [9], linear dynamics [4], [7] and
fully-actuated nonholonomic integrators [8], [10]. In these
studies, the emphasis is on the communication constraints
rather than on the individual dynamics. The topology of the
communication network plays a key role in the formation
stabilization. These results are clean and elegant. However,
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most vehicles in the real world may have more complicated
nonlinear dynamics as they undergo maneuvers in the haz-
ardous environment.

In most cases, the cooperative control problem is reduced
to an agreement or consensus problem of some variables of
interest. This method has been wildly applied to cooperative
control of ariel vehicles [14], ground vehicles [15] and
surface vehicles. Decentralized cooperative control of surface
vehicles has been studied in [17], [18], [19]. In [17], a decen-
tralized coordination control scheme is proposed for a group
of underactuated marine vehicles with communication con-
straints. In [18], a path following formation control scheme
is proposed for surface vehicles where the path variables
are synchronized using the passivity-based synchronization
algorithm. In [19], the authors considered the coordinated
path following problem of networked autonomous vehicles
with discrete time periodic communications. One character-
istics of these studies is that most of them typically use
some variants of the model in [25], assuming that the model
parameters are perfectly known or known with a small degree
of uncertainty. In practice, it is quite hard to acquire the
model parameters accurately, especially with hydrodynamic
damping matrix. The presence of uncertain dynamics, in the
form of functional uncertainties, unmodelled hydrodynamics
and disturbances from environment, is a common problem.
Therefore, how to achieve the cooperative control in the pres-
ence of uncertain dynamics needs to be further investigated.

Recently, in order to achieve cooperative control of multi-
agent systems with uncertainties, some decentralized adap-
tive control algorithms have been proposed. In [13], the
consensus problem of multi-agent systems with second-order
nonlinear dynamics is solved by employing the backstepping
technique and neural network (NN). In [12], a decentralized
cooperative controller is proposed for multiple nonholonomic
mobile robots with the aid of the Lyapunov stability theory,
graph theory and adaptive backstepping. However, the tradi-
tional backstepping-based design suffers from the ”explosion
of complexity” problem. It is noticed that these controllers
are complicated for the sake of the needs to calculate the
derivatives of virtual control signals. Especially, when the
state information of the neighbors enter into the virtual
control law, the ”explosion of complexity” problem is more
serious though the system order is two.

To solve the above problems, in this paper we propose
a new decentralized cooperative controller for underactuated
ASVs, using NN-based dynamic surface control (DSC) ap-
proach [23], [24]. The DSC approach simplifies the controller
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design by introducing first-order filters, and is incorporated
into neural network-based adaptive control design framework
for systems in strict-feedback form in [24]. It is shown
that our proposed controller can make a group of ASVs
converge to a trajectory relative to a time-varying reference
signal. Since the proposed algorithm only depends on the
local information of its neighbors, it works in a distributed
manner. In addition, by employing the NN approximation,
the unknown dynamics such as the coriolis and centripetal
force, hydrodynamic damping, unmodelled hydrodynamics
and disturbances from environment are compensated by on-
line learning. Compared with the existing results, the main
contributions of this paper are as follows: First, the coop-
erative control problem for ASVs with uncertain dynamics
is first considered and solved. Second, our NN-based DSC
approach leads to a much simpler cooperative controller than
traditional backstepping-based design. Third, the cooperative
controller requires a minimum of system identification of
vehicle model and shows robustness to uncertain dynamics.

This paper is organized as follows: Section II gives the
problem formulation. Section III presents the NN-based DSC
control design. Section IV gives the main stability results.
An example to illustrate the proposed method is presented
in Section V. Concluding remarks are given in section VI.

Notations: Rn denotes the n-dimensional Euclidean Space.
|| · || denotes the Euclidean norm. || · ||F denotes the
Frobenius norm. (·)ij denotes the element of | · | in the
row i, column j. λmin(·) denotes the smallest eigenvalue
of a square matrix (·). ⊗ denotes the Kronecker product. Let
X = [x1, ..., xN ]T , Y = [y1, ..., yN ]T . Then, we say X ≤ Y
if and only if xi ≤ yi, for all 1 ≤ i ≤ N . |X| Denotes
[|x1|, ..., |xN |]T .

II. PROBLEM FORMULATION

Consider a group of N underactuated ASVs, each of which
has the following dynamics found in [25] with kinematics

η̇i =

cosψi − sinψi 0
sinψi cosψi 0
0 0 1

 νi (1)

and kinetics

Miν̇i + Ci(νi)νi +Di(νi)νi + gi(νi) = τi + τiw (2)

where ηi = [xi, yi, ψi]
T ∈ R3 is the position vector in the

earth-fixed reference frame; νi = [ui, vi, ri]
T ∈ R3 is the

velocity vector in the body-fixed reference frame; Mi ∈
R3×3, Ci(νi) ∈ R3×3, Di(νi) ∈ R3×3, gi(νi) ∈ R3 denote
the inertia matrix , coriolis/centripetal matrix, damping ma-
trix and model uncertainties, respectively; τiw ∈ R3 denotes
the disturbances from environment ; τi = [τiu, 0, τir]

T ∈ R3

is the control vector with τiu the surge force and τir the yaw
moment.

In this paper, each ASV is assumed to know its own
states and have access to the state information from a subset
of vehicle group called neighbor set denoted by Ni ⊆
{1, ..., N} \ {i}. If each ASV is considered as a node, the
neighbor relation can be described by a graph G = {V, E},

where V = {n1, ..., nN} is a node set and E = {(ni, nj) ∈
v×v} is an edge set with element (ni, nj) that describes the
communication from node i to node j. Further, the adjacency
matrix A = (aij) is a N × N matrix given by aij = 1,
if (ni, nj) ∈ E , and aij = 0, otherwise. For simplicity,
we assume that the communications between ASVs are
bidirectional, which means aij = aji. The Laplacian matrix
L = (lij) associated to the graph G is defined as lij = −aij ,
if j ̸= i, and lij =

∑N
k=1 aik, otherwise.

Let qi = [xi, yi]
T and given a desired relative position P

described by ρij = ρi−ρj (1 ≤ i, j ≤ N) and a time-varying
reference trajectory qr, the cooperative control problem is
stated as follows:

Cooperative Control Problem: Given a team of N ASVs
described by the model in (1) (2), design a control law τi for
the ith ASV such that qi−ρi → qj−ρj → qr, 1 ≤ i, j ≤ N ,
in the presence of uncertain dynamics. Moreover, each ASV
i only has access to the local information from its neighbors.

Remark 1: In the literature, the vehicles are usually mod-
eled as single integrators, double integrators or fully-actuated
nonholonomic integrators. However, these simplified models
may not be adequate to describe the practical dynamics of
ASVs as they undergo the maneuvers on the widely-changing
sea condition. This paper considers vehicles in the real world
with practical model of underactuated ASV. To the best of
our knowledge, there are very few studies that consider the
cooperative problem of underactuated surface vehicles with
uncertain dynamics.

In this paper, we make use of the Lemma 1 and the
following assumptions:

Lemma 1: ∀δ > 0, there exists a smooth function φ(.)
such that φ(0) = 0 and |χ| ≤ χφ(χ) + δ,∀χ ∈ R.

Assumption 1: Assume that the communication graph G is
undirected, fixed and connected.

Assumption 2: Assume that |τiw| ≤ τiwd, where τiwd ∈ R3

is a positive constant vector.
Assumption 3: The time-varying reference trajectory qr is

continuous, and [qr, q̇r, q̈r]T ∈ Ωd with a known compact
set Ωd = {(qr, q̇r, q̈r) : ∥qr∥2 + ∥q̇r∥2 + ∥q̈r∥2 ≤ B0} ⊂ R6

whose size B0 is a positive constant.
Definition 1: [21]Consider a system ẋi = f(X)+d, where

X = [x1, ..., xi, ..., xn]
T ,f : Rn → R is a function and d is

a disturbance term. For all bounded xj , j ̸= i and d, if there
exists a scalar function V (xi) ∈ C1 such that

1) V (xi) is globally positive definite and radially un-
bounded;

2) V̇ (xi) < 0 if |xi| > b, where b is a positive constant
and its magnitude is related to the bounds of xj , j ̸= i
and d;

then, the variable xi is passive-bounded.
Assumption 4: Assume that the sway velocity vi is passive-

bounded and satisfies |v̇i| ≤ vd where vd is a positive
constant.

Remark 2: Passive-boundedness of the sway dynamics has
been systematically analyzed considering different cases in
[21]. This assumption is highly realistic in practice since
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the hydrodynamics damping force dominates in the sway
direction and the sway speed is damped out by this force.

III. COOPERATIVE CONTROLLER DESIGN

In this section, we present the cooperative control design
using the NN-based DSC approach. Before the cooperative
controller design, we make the following state transforma-
tion. By assumption 4, the vehicle dynamics in (1) and (2)
can be rewritten as

q̇i = ωi + wi (3)
ψi = r (4)

M̄i ˙̄νi = fi(νi) + τ̄i + τ̄iw (5)

where qi = [xi, yi]
T , ωi = [ωi1, ωi2]

T =
[ui cosψi, ui sinψi]

T , ν̄i = [ui, ri]
T , τ̄i =

[τiu, τir]
T , wi = [−vi sinψi, vi cosψi]

T and the function
fi(νi) = −C̄i(νi)νi − D̄i(νi)νi − ḡ(νi) with the matrix
M̄i ∈ R2×2, C̄i ∈ R2×3, D̄i ∈ R2×3. The cooperative
controller design follows two steps.

A. kinematic control design

First, let Si1 = qi−ρi−qr where qr represents the desired
trajectory. Recalling (3), we have

Ṡi1 = ωi + wi − q̇r (6)

Consider the virtual control ω̄i = [ω̄i1, ω̄i2]
T as

ω̄i = −Ki1

∑
j∈Ni

(Si1 − Sj1) + q̇r −Ki2Si1 − wi (7)

where Ki1 > 0,Ki2 > 0. Let ω̄i = [ūi cos ψ̄i, ūi sin ψ̄i]
T ,

then, the signals ūi and ψ̄i can be solved by

ψ̄i = atan2(ω̄i2, ω̄i1) + 2βπ (8)
ūi = ω̄i1 cos ψ̄i + ω̄i2 sin ψ̄i

where atan2(y, x) returns the arc tangent of y/x with a
continuous range of (−π, π]. The integer β is chosen such
that ψ̄i is continuous. Introduce two new states ψid and uid
and let ψ̄i and ūi pass through two first-order filters with time
constants γi1 and γi2 to obtain ψid and uid, respectively

γi1ψ̇id = ψ̄i − ψid, γi2u̇id = ūi − uid (9)

Next, let Si2 = ψi − ψid, and from (4), it follows that

Ṡi2 = ri − ψ̇id (10)

Choose the virtual control law r̄i as

r̄i = ψ̇id − ki2Si2 (11)

where ki2 > 0. Similarly, introduce a new state rid and let
r̄i pass through a first-order filter with a time constant γi3
to obtain rid

γi3ṙid = r̄i − rid (12)

B. kinetic control design

Define Si3 = [ui − uid, ri − rid]
T and from (5), we have

M̄iṠi3 = fi(νi) + τ̄i + τ̄iw − M̄i[u̇id, ṙid]
T (13)

In (13), without the explicit knowledge of C̄i, D̄i, ḡ, fi(ν) is
an unknown function. Hence, we can use NN to approximate
it as follows [22]:

fi(νi) =WT
i σ(V

T
i ν⃗i) + ϵi (14)

where ν⃗i = [νTi , 1]
T ∈ R4, Wi, Vi are the weights of the NN

and ϵi is the approximation error satisfying ∥ϵi∥ ≤ ϵ∗i . By
assumption 2, there exists a positive constant vector ϱi such
that |τ̄iw| ≤ ϱi where ϱi ∈ R2 is a constant vector. Consider
the kinetic control law as

τ̄i = M̄i[u̇id, ṙid]
T−ŴT

i σ(V̂
T
i ν⃗i)−Ki3Si3−φ(Si3)ϱ̂i (15)

where Ŵi, V̂i, ϱ̂i are the estimates of Wi, Vi, ϱi and are
updated as

˙̂
Wi = ΓWi [(σ̂ − σ̂′V̂ T

i ν⃗i)S
T
i3 − kWiŴi]

˙̂
Vi = ΓVi [ν⃗iS

T
i3Ŵ

T
i σ̂

′ − kVi V̂i] (16)
˙̂ϱi = Γϱi [φ(Si3)Si3 − kϱi ϱ̂i]

where Ki3 > 0, kWi > 0, kVi > 0, kϱi > 0,ΓWi > 0,ΓVi >
0,Γϱi > 0.

Remark 3: By observing the form of the controller in (7)
(11) (15), we can see that each ASV i only uses the informa-
tion of its neighbors according to the communication graph.
Therefore, the proposed control algorithm is decentralized.

Remark 4: By incorporating the DSC technique, our
design leads to a much simpler cooperative controller than
the traditional backstepping-based design. In fact, using
the traditional backstepping-based method, the higher order
derivatives of ψ̄i, ūi, r̄i have to appear in the kinetic control
law τ̄i. As a result, the expression of τ̄i would be much more
complicated. Due to the multi-input multi-output character-
istics of the system and the entering states of the neighbors
into the virtual control (7), the ”explosion of complexity”
problem is serious in this case though the system order is
two.

Remark 5: The vehicle kinetics in [20] only contains the
linearly parameterized uncertainty, i.e, the uncertain parts of
the kinetics are in form of θT f(.) where θ is an unknown
constant and f(.) is a known smooth function. Therefore, the
adaptive control method given in [20] can not be applied to
our case where the uncertain part fi(νi) is totally unknown.

IV. STABILITY ANALYSIS

In this section, we will analyze the stability of the closed-
loop system. First, recalling the control law and the adaptive
law in Section III, the closed-loop system can be rewritten
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as

Ṡi1 = −Ki1

∑
j∈Ni

(Si1 − Sj1)−Ki2Si1 (17)

+ωi − ω̄i

Ṡi2 = −ki2Si2 + ri − r̄i (18)
M̄iṠi3 = −Ki3Si3 − W̃T

i (σ̂ − σ̂′V̂ T
i ν⃗i)− (19)

ŴT
i σ̂

′Ṽ T
i ν⃗i + ϵi − di + τ̄iw − φ(Si3)ϱ̂i

In addition, define three new variables zi1, zi2, zi3 as

zi1 = ψid − ψ̄i, zi2 = uid − ūi, zi3 = rid − r̄i (20)

Then

żi1 = ψ̇id − ˙̄ψi = − zi1
γi1

(21)

+ζi1(Sk1, Sl2, Sl3, zl1, zl2, q
r, q̇r, q̈r, ẇi)

żi2 = u̇id − ˙̄ui = − z2
γi2

(22)

+ζi2(Sk1, Sl2, Sl3, zl1, zl2, q
r, q̇r, q̈r, ẇi)

żi3 = ṙid − ˙̄ri = − zi3
γi3

(23)

+ζi3(Sk1, Sl2, Sl3, zl1, zl2, zj3, q
r, q̇r, q̈r, ẇi)

where k ∈ Ni ∪ (∪k∈NiNk), l ∈ {i} ∪ Ni and
ζi1(·), ζi2(·), ζi3(·) are continuous functions. The next the-
orem gives our main result.

Theorem 1: Consider the closed-loop system consisting of
the vehicle dynamics in (1) (2), under the assumptions 1-4,
and the control laws in (7) (11) (15), the adaptive laws in
(16) and the first-order filters in (9) (12). For bounded initial
conditions, there exist Ki1 > 0,Ki2 > 0, ki2 > 0,Ki3 >
0,Γϱi > 0,ΓWi > 0,ΓVi > 0, kϱi > 0, kWi > 0, kVi >
0, and p > 0 satisfying V ≤ p , such that all the signals
in the closed-loop system are bounded, and the steady-state
tracking errors are smaller than the prescribed bounds.

Proof: Consider the following Lyapunov function candi-
date

V =
1

2

N∑
i=1

(

2∑
j=1

(ST
ijSij) + ST

i3M̄iSi3 +

3∑
j=1

z2ij + ϱ̃Ti Γ
−1
ϱi
ϱ̃i

+ tr{W̃T
i Γ−1

Wi
W̃i}+ tr{Ṽ T

i Γ−1
Vi
Ṽi})

Recalling (17)(18) and (19), the time derivative of V satisfies

V̇ =
N∑
i=1

(Si1(−Ki1

∑
j∈Ni

(Si1 − Sj1)−Ki2Si1 + ωi − ω̄i)

+ST
i2(−ki2Si2 + ri − r̄i) + ST

3 (−Ki3Si3

−W̃T
i (σ̂ − σ̂′V̂ T

i ν⃗i)− ŴT
i σ̂

′Ṽ T
i ν⃗i + ϵi − di + τ̄iw

−φ(Si3)ϱ̂i) +

3∑
j=1

zj żj + ϱ̃Ti Γ
−1
ϱi

˙̂ϱi

+tr{W̃T
i Γ−1

Wi

˙̂
Wi}+ tr{Ṽ T

i Γ−1
Vi

˙̂
Vi})

Since ui = (Si3)11 + ūi + zi2 and ψi = Si2 + ψ̄i + zi1, we
obtain

(ωi − ω̄i) =

[
((Si3)11 + ūi + zi2) cos(Si2 + ψ̄i + zi1)
((Si3)11 + ūi + zi2) sin(Si2 + ψ̄i + zi1)

]
−
[
ūi cos(ψ̄i)
ūi sin(ψ̄i)

]
(24)

Thus,

∥(ωi − ω̄i)∥ ≤ ζi4(Sl1, Si2, Si3, zi1, zi2, q
r
i , q̇

r, wi)

where l ∈ {i} ∪ Ni and ζi4 is a continuous function.
Using the Young’s inequality, the following inequalities

hold

Si2(ri − rid) ≤ S2
i2 +

1

4
S2
i3 (25)

Si2zi3 ≤ S2
i2 +

1

4
z2i3 (26)

ziżi ≤ −z
2
i

γi
+ |zi|ζi ≤ −z

2
i

γi
+ z2i +

1

4
ζ2i(27)

ST
i3di ≤ ∥Si3∥2 +

∥d∗i ∥2

4
(28)

ST
i3ϵi ≤ ∥Si3∥2 +

∥ϵ∗i ∥2

4
(29)

and by completion of squares, we have

−kWitr{W̃T
i Ŵi} ≤ −kWi∥W̃i∥2F +

kWi

4
∥Wi∥2F(30)

−kVitr{Ṽ T
i V̂i} ≤ −kVi∥Ṽi∥2F +

kVi

4
∥Vi∥2F (31)

−kϱi ϱ̃iϱ̂i ≤ −kϱi∥ϱ̃i∥2 +
kϱi

4
∥ϱi∥2 (32)

For any B0 > 0 and p > 0, the set Ωd = {(qr, q̇r, q̈r) :
∥qr∥2 + ∥q̇r∥2 + ∥q̈r∥2 ≤ B0} and the set Ω1 =
{
∑

k∈Ni∪(∪k∈Ni
Nk)

S2
k1 +

∑
l∈{i}∪Ni

(S2
l2 + ST

l3M̄lSl3 +∑2
m=1 z

2
lm) ≤ 2p}, Ω2 = {

∑
k∈Ni∪(∪k∈Ni

Nk)
S2
k1 +∑

l∈{i}∪Ni
(S2

l2 + ST
l3M̄lSl3 +

∑3
m=1 z

3
lm) ≤ 2p} , Ω3 =

{
∑

l∈{i}∪Ni
S2
l1 + S2

i2 + ST
i3M̄iSi3 +

∑2
m=1 z

2
im ≤ 2p} are

compact set. In addition, by Assumption 3, wi, ẇi are all
bounded. Thus, ζij(j = 1, 2) has a maximum Πij(j = 1, 2)
on Ωd × Ω1,ζi3 a maximum Πi3 on Ωd × Ω2 and ζi4 has a
maximum Πi4 on Ωd × Ω3.

From above, we derive that

V̇ ≤− ST
∗1((Λ1L+ Λ2)⊗ I2)S∗1 −

N∑
i=1

((ki2 − 2)S2
i2

−(λmin(Ki3)−
9

4
)∥Si3∥2 −

2∑
j=1

(
1

γij
− 1)z2ij

−(
1

γi3
− 5

4
)z2i3 − kWi∥W̃i∥2F

−kVi∥Ṽi∥2F − kϱi∥ϱ̃i∥2) + π
(33)

where S∗1 = [ST
11, ..., SN1]

T ∈ R2N ,π =∑N
i=1(

1
4

∑4
j=1 Π

2
ij+

1
4 (∥d

∗
i ∥2+∥ϵ∗i ∥2)+ϱiδ+ 1

4kWi∥Wi∥2F+
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1
4kVi∥Vi∥2F +

kϱi

4 ∥ϱi∥2) and Λ1 ∈ RN×N ,Λ2 ∈ RN×N are
diagonal matrixes with λmin(Ki1), λmin(Ki2) − 1 being
the diagonal entries, respectively.

Choosing λmin((Λ1L + Λ2) ⊗ I2) ≥ µ
2 , k2 ≥ 2 +

µ
2 ,

λmin(Ki3)− 9
4

λmax(Mi)
≥ µ

2 ,
1
γij

≥ 1 + µ
2 (j = 1, 2), 1

γi3
≥ 5

4 +
µ
2 ,min{ kWi

λmax(Γ
−1
Wi

)
,

kVi

λmax(Γ
−1
Vi

)
} ≥ µ

2 and substituting them

into (33), it leads to

V̇ ≤ −µV + π (34)

Let µ > π
p , then V̇ ≤ 0 on V = p. Thus, V ≤ p is an

invariant set,i.e, if V (0) ≤ p, then V (t) ≤ p for all t ≥ 0.
Hence, (34) holds for all V (0) ≤ p,∀t ≥ 0 and solving the
inequality (34) gives

V ≤ π

µi
+ (V (0)− π

µi
)e−µit (35)

where it shows that V is bounded by πi

µi
, which means the

signals Si1, Si2, Si3, W̃i, Ṽi, zi1, zi2, zi3, ϱ̃i, 1 ≤ i ≤ N are
all bounded. Since Si1, 1 ≤ i ≤ N is bounded, we derive
that the consensus errors qi − ρi − qr are bounded, which
implies that qi−ρi → qj−ρj → qr, 1 ≤ i, j ≤ N . Therefore,
the cooperative control problem is solved.

Remark 6: In the foregoing theorem 1, it shows that
with the proposed control and adaptive laws, all signals in
the closed-loop system are bounded. Although bounded, the
compact set to which the error signals converge can be made
very small by choosing appropriate control parameters. For
examples, by increasing the value of Ki1, ki2,Ki2,Ki3, the
value of µi can be made large, such that π

µi
can be reduced

to any prescribed value.
Remark 7: This paper considers each ASV has access

to the reference trajectory qr. However, the proposed design
approach can be extended to the case where only a portion
of ASVs have access to the reference trajectory qr [11].

V. SIMULATION RESULTS

In this section, we simulate a scenario where five ASVs
are required to maintain a desired star geometry while the
formation centroid requires to follow a reference trajec-
tory. We consider the nonlinear model of an experimental
surface vehicle used in [21]. Without loss of generality,
some model uncertainties and time-varying disturbance are
introduced into the model, in particular, ḡi = [0.0122uv +
0.0142v2, 0, 0.0257ur + 0.0193r2v]T and τiw = [0.3 ∗
cos(0.5∗t)+0.1∗sin(0.3∗t), 0, 0.001∗sin(t)]T . Let the con-
trol parameters be ΓWi = 100, kWi = 0.1,ΓVi = 100, kVi =
0.1,Ki1 = diag(0.1, 0.1),Ki2 = diag(0.1, 0.1), ki2 =
2,Ki3 = diag(51.6, 13.8) and the time constants for the
filters be γi1 = 0.1, γi2 = 0.1, γi3 = 0.1. In addition,
ŴT

i σ(V̂
T
i ν⃗i) contain eight hidden neurons and the activation

function is selected as 1/(1 + exp(−ax)) with a = 1.
Suppose the information-exchange topologies among the

ASVs represented by L is given by

L =


1 −1 0 0 0
−1 2 0 −1 0
0 0 1 −1 0
0 −1 −1 3 −1
0 0 0 −1 1

 (36)

and the reference trajectory is qr = [0.1∗ t; 5∗ sin(π ∗ t/50)]
Simulation results are depicted in Fig 1-4. Fig 1 shows

the entire formation geometries of the five ASVs with
information-exchange given by (36). It can be observed that
the star formation is well established despite the existence
of the time-varying disturbances and unmodelled dynamics.
The surge speed ui and yaw angle ψi of the five ASVs are
shown in Fig 2. By applying the proposed control algorithm,
these variable are synchronized after several seconds. To
verify the learning ability of NN, the uncertainties in the
surge and yaw direction and outputs of NN related to ASV
1 are depicted in Fig 3. We notice that the uncertainties are
efficiently compensated by NN. The control efforts τiu, τir of
the five ASVs are shown in Fig 4. It confirms that the control
level is reasonable and no control saturation has occurred
during the adaptation process.
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Fig. 1. Formation trajectories in 2D plane

VI. CONCLUSIONS

This paper considers the cooperative control problem for
underactuated autonomous surface vehicles, in the presence
of the uncertain dynamics. Compared with the existing re-
sults, the NN-based dynamic surface control approach shows
some advantages to handle these uncertainties and avoids
the computation of virtual control derivatives. Based on Lya-
punov stability theory, the developed cooperative controller
guarantees that all signals in the closed-loop system are
bounded. Simulation results demonstrate the effectiveness of
the cooperative controller and the learning ability of NN.
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