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Abstract— This paper, which is the second of two parts, is
built upon the vector space of symbolic systems represented by
probabilistic finite State automata (PFSA) reported in the first
part. This second part addresses the Hilbert space construction
for model identification, where order reduction is achieved via
orthogonal projection. To this end, a family of inner products
is constructed and the norm induced by an inner product is
interpreted as a measure of information contained in the PFSA,
which also quantifies the error due to model order reduction.
A numerical example elucidates the process of model order
reduction by orthogonal projection from the space of PFSA
onto a subspace that belongs to the class of shifts of finite type.

I. INTRODUCTION

System identification and model order reduction are active

areas of research in many fields of science and engineering.

For example, in the classical continuous domain, dynam-

ical models of physical processes and human-engineered

systems frequently involve a very large number of dif-

ferential or difference equations. Due to the constraint of

computational resources, model reduction is essential for

such large-order systems [1]. In this respect, symbolization-

based techniques [2] have been developed for probabilistic

representation of dynamical systems to compensate for cer-

tain inadequacies of classical time-domain and frequency-

domain system identification. Probabilistic finite state au-

tomata (PFSA) have emerged as a useful mathematical model

for identification of uncertain dynamical systems.

The work reported in this paper is built upon the con-

cepts of symbolic dynamics [3] and language theory [4][5],

instead of classical continuous-domain modeling [6]. The

basic approach is symbolic dynamic filtering (SDF) [7][8]

that partitions the (possibly pre-processed) time series or

image data observed from the underlying physical process

to generate strings of symbols. Then, semantic models are

constructed in the symbolic domain as PFSA.

The model reduction techniques for symbolic systems

are not well studied as those in the classical continuous

domain except for a few cases for Markov chains. Kotsalis

and Dahleh [9] reported a reduction scheme for partially
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observed irreducible Markov chains, based on the L1-

metric of the asymptotic observed outputs. This method

only applies to nearly completely decomposable Markov

chains, which is a very restricted model. Deng et al. [10]

proposed an information-theoretic framework to aggregate

large-scale Markov chains., where the Kullback-Leibler (K-

L) divergence [11] was employed as a metric to measure the

distance between two stationary Markov chains; however,

the K-L divergence is not a true metric in the mathematical

sense. Chattopadhyay and Ray [12] introduced the concept

of projective composition for projection of PFSA to an

arbitrary structure. Although the projective composition has

a nice property of preserving the long-term distribution over

the states of the projected model, it is not an orthogonal

projection and the projection error is difficult to interpret.

The main contribution of this paper lies in the construc-

tion of a family of inner products on the vector space of

PFSA [13]. An inner product on the vector space would allow

formulation of model order reduction problems by orthogo-

nal projection in a Hilbert space setting, where quantification

of the projection error is numerically efficient. This error

due to model reduction could also be interpreted in terms

of information loss, analogous to the entropy rate [14]. In

addition, the proposed analytical approach has the following

potential benefits.

1) Development of a mathematical tool to enhance the un-

derstanding of stochastic regular languages for solving

the associated problems in symbolic dynamics.

2) Establishment of a link between the theories of formal

languages and functional analysis.

The technical contents of this second part are built upon

the vector space of PFSA, which is reported in the first

part [13]. Therefore, it is necessary to refer to the algebraic

framework of the vector space formulated in the first part to

build the topological framework of an inner product space

in this paper.

II. PRELIMINARIES

Given a (finite) alphabet Σ of symbols, the set BΣ ,
2Σ⋆

Σω is defined to be the σ-algebra generated by the set{
L : L = xΣω where x ∈ Σ⋆

}
. Let the space of all positive

probability measures on BΣ, which contains a finite number

of Nerode equivalence classes [12], be denoted by P
+
f . More

explicitly, P
+
f = {p : BΣ → (0, 1] such that |Np| < ∞},
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where Np denotes a partition induced by Nerode equiva-

lence [13].

Let Ã , {G = (Q, Σ, δ, q0, π̃) : π̃(q, σ) > 0 for all q ∈
Q and all σ ∈ Σ}. Algorithm 1 in the first part [13] has

been constructed in the context of the probabilistic Nerode

equivalence Np such that a map H̃ : Ã → P
+
f is surjective.

Definition II.1 (PFSA equivalence) Two PFSA G̃ and G
are said to be equivalent if the associated probabilities are

equal, i.e., H̃(G̃) = H̃(G). The equivalence class of G is

denoted as Ξ(G) , {G̃ ∈ A : H̃(G̃) = H̃(G)}.

By defining a quotient space A , Ã /Ξ, the associated

quotient map is obtained as:

H : A −→ P
+
f (1)

Since a quotient map is injective, H becomes a bijection.

Remark II.1 For a PFSA G, each state q ∈ Q is a Nerode

equivalence class S ∈ NH(G). By Algorithm 1 in the first

part [13], it follows that

π̃(q, σ) = p(σ|S) ,
p(xσ)

p(x)
, ∀x ∈ S (2)

So far the vector space (P+
f ,⊕,⊙) is established. By use

of the bijection H and its inverse F (see Algorithm 1 in the

first part [13]), new vector addition and scalar multiplication

operations are introduced on the quotient space A .

Definition II.2 (Vector space A ) Let G1, G2 ∈ A and

k ∈ R. Then, following the definitions of vector addition

⊕ and scalar multiplication ⊙ in the space of PFSA in the

first part [13],

• The addition operation + : A ×A → A is defined as

G1 + G2 = F(H(G1) ⊕H(G2))

• The scalar multiplication operation · : R × A → A is

defined as

k · G1 = F(k ⊙ (H(G1))

Remark II.2 Since F , H
−1, it follows from the Def-

inition II.2 that H(G1 + G2) = H(G1) ⊕ H(G2) and

H(k ·G1) = k⊙H(G1). Therefore, the bijection H is linear

and hence H is an isomorphism between the vector spaces

(P+
f ,⊕,⊙) and (A , +, ·).

Definition II.3 (Symbolic White Noise) The zero element

e of the vector space P
+
f , defined as, e(x) = 1

|Σ||x| , ∀x ∈
Σ⋆, is called symbolic white noise.

Note that e(σ|x) = 1
|Σ| , ∀σ ∈ Σ, x ∈ Σ⋆. The symbolic

white noise can be modeled by a one-state PFSA, with the

uniform distribution of symbol generation. For this process,

every string of the same length has equal probability of

occurrence and the knowledge of the history does not provide

any information for predicting the future.

III. CONSTRUCTION OF A FAMILY OF INNER PRODUCTS

In order to build a framework for generating a family of

inner products, a measure space (Σ⋆, 2Σ⋆

, µ) is constructed,

where the finite measure µ : 2Σ⋆

→ [0, 1] has the following

properties.

• µ(∅) = 0 and µ(Σ⋆) = 1;

• µ
( ⋃∞

k=1{xk}
)

=
∑∞

k=1 µ
(
{xk}

)
∀xk ∈ Σ⋆

The second condition in the above statement implies that

a non-negative measure is assigned to each of the singleton

strings (including the null string ǫ), which are considered to

be mutually disjoint measurable sets. Thus, for any collection

of strings, L ∈ 2Σ⋆

, µ(L) =
∑

x∈L µ({x}).
The conditional probability p(·|·) : Σ×Σ⋆ → [0, 1] is now

treated as a vector function for a given string x ∈ Σ⋆, and

is denoted by p(·|x) : Σ⋆ → R
|Σ| such that

p(·|x) , [p(σ1|x), p(σ2|x), . . . , p(σ|Σ||x)] (3)

It follows from Eq. (3) that
∑|Σ|

j=1 p(σj |x) = 1 ∀x ∈ Σ.

Definition III.1 Given p1, p2 ∈ P
+
f , an equivalence rela-

tion is defined as: p1 ∼ p2 if p1(·|x) = p2(·|x), µ − a.e.,
which implyies that

µ ({x ∈ Σ⋆ : p1(·|x) 6= p2(·|x)}) = 0 (4)

A quotient space is defined as: Q = P
+
f /∼ based on the

above equivalence relation ∼.

Remark III.1 If the following condition is imposed on the

measure µ in Definition III.1:

µ(x) > 0, ∀x ∈ Σ⋆ (5)

then the µ-a.e. condition becomes everywhere. That is, the

relation p1 ∼ p2 becomes equivalent to to p1 = p2. In other

words, Q = P
+
f provided that Eq. (5) holds.

Proposition III.1 (Q,⊕,⊙) is a subspace of the vector

space (P+
f ,⊕,⊙).

Proof: It follows from the definitions of vector addition

⊕ and scalar multiplication ⊙ in the space of PFSA in the

first part [13] that

(p1 ⊕ p2)(τ |x) =
p1(τ |x)p2(τ |x)∑

α∈Σ p1(α|x)p2(α|x)
(6)

(k ⊙ p1)(τ |x) =
pk
1(τ |x)∑

α∈Σ pk
1(α|x)

(7)

for all τ ∈ Σ, x ∈ Σ⋆ and k ∈ R.

Both of the above equations are consistent under the equiva-

lence relation ∼, which means, p1 ∼ p̃1 and p2 ∼ p̃2 implies

(p1 ⊕ p2) ∼ (p̃1 ⊕ p̃2) and (k ⊙ p1) ∼ (k ⊙ p̃1).

Definition III.2 On the vector space Q over the real field

R, a function 〈·, ·〉 : Q × Q → R is defined as

〈p1, p2〉 =
1

2

∑

σi,σj∈Σ

∑

x∈Σ⋆

log
p1(xσi)

p1(xσj)
log

p2(xσi)

p2(xσj)
µ({x})

(8)
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Remark III.2 In Eq. (8), the summation over x ∈ Σ⋆ could

be recognized as an integration over Σ⋆ with the measure

µ. In this case, the integration degenerates to a summation

because Σ⋆ is countable.

Theorem III.1 (Pre-Hilbert Space) In Definition III.2, the

function 〈·, ·〉 : Q × Q → R is an inner product. That is,

(Q,⊕,⊙, 〈·, ·〉) forms a pre-Hilbert space over the real field

R.

Proof: While the symmetry property, i.e., 〈p1, p2〉 =
〈p2, p1〉, is obvious, positive-definiteness is established as

follows.

〈p, p〉 =
1

2

∑

σi,σj∈Σ

∑

x∈Σ⋆

(
log

p(xσi)

p(xσj)

)2

µ({x}) ≥ 0 (9)

If 〈p, p〉 = 0, non-negativity of each term in the summation

mandates that, for µ-almost every x ∈ Σ⋆, log p(xσi)
p(xσj)

=

0. Therefore, p(σi|x) = 1
|Σ| , ∀σi ∈ Σ and it follows from

Definition II.3 that p ∼ e.

The linearity property is established as follows.

〈a ⊙ p1, p2〉

=
1

2

∑

σi,σj∈Σ

∑

x∈Σ⋆

log
(a ⊙ p1)(xσi)

(a ⊙ p1)(xσj)
log

p2(xσi)

p2(xσj)
µ({x})

=
1

2

∑

σi,σj∈Σ

∑

x∈Σ⋆

log
pa
1(xσi)

pa
1(xσj)

log
p2(xσi)

p2(xσj)
µ({x})

=
a

2

∑

σi,σj∈Σ

∑

x∈Σ⋆

log
p1(xσi)

p1(xσj)
log

p2(xσi)

p2(xσj)
µ({x})

= a〈p1, p2〉 (10)

and

〈p1 ⊕ p2, p3〉

=
1

2

∑

σi,σj∈Σ

∑

x∈Σ⋆

log
(p1 ⊕ p2)(xσi)

(p1 ⊕ p2)(xσj)
log

p3(xσi)

p3(xσj)
µ({x})

=
1

2

∑

σi,σj∈Σ

∑

x∈Σ⋆

log
p1(xσi)p2(xσi)

p1(xσj)p2(xσj)
log

p3(xσi)

p3(xσj)
µ({x})

=
1

2

∑

σi,σj∈Σ

∑

x∈Σ⋆

(
log

p1(xσi)

p1(xσj)
+ log

p2(xσi)

p2(xσj)

)

· log
p3(xσi)

p3(xσj)
µ({x})

= 〈p1, p3〉 + 〈p2, p3〉 (11)

Now the map H : A −→ P
+
f in Eq. (1) is used to define

an inner product on the space A in terms of 〈·, ·〉.

Definition III.3 The inner product 〈·, ·〉A : A × A → R is

defined as

〈G1, G2〉A = 〈H(G1),H(G2)〉 (12)

By Remark III.1, this makes the map H an isometric iso-

morphism between the two pre-Hilbert spaces provided that

Eq. (5) holds. Otherwise, a quotient space for Ã needs to

be defined to construct A similar to what is done in the

standard Lp space.. To simplify the notations, we abuse the

notation A to represent a well-defined quotient space of Ã .

The following result is generated based on Algorithm 1 in

the first part [13].

Proposition III.2 Let Gi = (Qi, Σ, δi, q
i
0, π̃i) ∈ A , i =

1, 2. The inner product can be computed as:

〈G1, G2〉A =
1

2

∑

σi,σj∈Σ

∑

q∈Q

log
π̃1(q, σi)

π̃1(q, σj)
log

π̃2(q, σi)

π̃2(q, σj)
µ(q)

(13)

where Q = {q1

⋂
q2 : q1 ∈ Q1, q2 ∈ Q2}.

If G1 and G2 have the same structure, then Q = Q1 = Q2

and Eq. (13) can be used directly to compute 〈G1, G2〉A. If

G1 and G2 do not have the same structure, a synchronized

composition [12] G1 ⊗ G2 and G2 ⊗ G1 needs to be

constructed to have a common structure, namely,

〈G1, G2〉A = 〈G1 ⊗ G2, G2 ⊗ G1〉A (14)

The measure µ in Eq. (8) is user-selectable such that any

choice of the finite measure µ yields a valid inner product.

As an example, if the measure µ is selected as

µ({x}) ,
|x|

2|x|+1|Σ||x|
, (15)

then µ depends only on the length of the string. It makes

sense to assign a smaller measure on a longer string since

the probability of its occurrence is small. On the other hand,

the rationale of assigning zero measure on the null string ǫ,

i.e., µ(ǫ) = 0 is as follows. Since the null string ǫ is in the

initial state q0, imposing µ(ǫ) = 0 puts less weight on the

initial state. Alternatively, if the initial state q0 is important,

then a non-zero measure must be assigned on the null string.

The following measure, for example, could be considered in

this regard:

µ({x}) ,
1

2|x||Σ||x|

IV. COMPUTATION OF THE MEASURE µ

The following definitions are introduced to compute the

measure µ defined in Eq. (15) for each state of a given PFSA.

Definition IV.1 Let the map mn : 2Σ⋆

→ [0, 1] be defined

as

mn(L) ,
|{x ∈ L : |x| = n}|

|Σ|n
∀L ⊆ Σ⋆ (16)

Remark IV.1 mn(L) is the ratio of the number of strings

of length n in the set L to the total number of strings of

length n in Σ⋆ and represents the size of the set L in terms

of strings of length n.

Definition IV.2 (Uniformizer of PFSA) Given a PFSA

G = (Q, Σ, δ, q0, π̃), the PFSA G′ is called the
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uniformizer of G if G′ = (Q, Σ, δ, q0, π̃
′), where

π̃′(q, σ) = 1
|Σ| , ∀q ∈ Q, ∀σ ∈ Σ.

The uniformizer of a PFSA G is denoted by U(G). The

uniformizer simply modifies the original probability morph

function to a uniform distribution over the symbols to each

state. Note that U(G) retains the graph connectivity of G.

Proposition IV.1 Given a PFSA G = (Q, Σ, δ, q0, π̃G), then

mn = m0

(
ΠU(G)

)n

(17)

where mn , [mn(q1), mn(q2), . . . , mn(q|Q|)], ΠU(G) is the

state transition matrix for the uniformizer U(G), and

m0(q) =

{
1 if q = q0

0 if q 6= q0

Proof: For any qi ∈ Q and n ∈ N, it follows that

|Σ|n+1mn+1(qi) = |{x ∈ qi : |x| = n + 1}|

= |Σ|n
∑

δ(qj ,σ)=qi

mn(qj)

mn+1(qi) =
1

|Σ|

∑

δ(qj ,σ)=qi

mn(qj)

=
∑

δ(qj ,σ)=qi

π̃U(G)(qj , σ)mn(qj) (18)

Following the definition of a state transition probability

matrix in the first part [13], a matrix representation of

Eq. (18) is obtained as

mn+1 = mnΠU(G) (19)

by following Eq. (17) and this completes the proof.

Let us define fa(q) ,
∑∞

i=0 mi(q) · ai, where 0 < a < 1.

Then, given a PFSA G = (Q, Σ, δ, q0, π̃) ∈ A , let us denote

fa , [fa(q1), fa(q2), . . . , fa(q|Q|)]. Then,

fa =
∞∑

i=0

mi · a
i (20)

Now, it follows from Eq. (17) that

fa = m0

∞∑

i=0

(
aΠU(G)

)i

= m0

(
I − a · ΠU(G)

)−1

(21)

The last step is valid since ‖a · ΠU(G)‖∞ < 1.

Proposition IV.2 Given a PFSA G = (Q, Σ, δ, q0, π̃) ∈ A ,

let us denote the measure µ , [µ(q1), µ(q2), . . . , µ(q|Q|)].
Then,

µ =
m0

4

(
I −

1

2
ΠU(G)

)−1

ΠU(G)

(
I −

1

2
ΠU(G)

)−1

(22)

Proof: For any q ∈ Q, we have

µ(q) =
∑

x∈q

µ({x})

=
∞∑

i=0

(
mi(q)|Σ|i

) i

2i+1|Σ|i

=

∞∑

i=0

mi(q)
i

2i+1
(23)

It follows from Eq. (21) that

dfa

da
=

1

a2

∞∑

i=0

mi · i · a
i+1 (24)

Comparing Eqs. (23) and (24), we obtain

µ =

(
a2 dfa

da

)

a= 1

2

(25)

Since the convergence regions of
dfa

da
and fa are the same,

convergence of µ(q) is guranteed. The fact that dA−1

dt
=

−A−1 dA
dt

A−1 for the invertible matrix A depending on a

parameter t implies

µ =

(
a2m0

(
I − a · ΠU(G)

)−1

ΠU(G)

·
(
I − a · ΠU(G)

)−1
)

a= 1

2

=
m0

4

(
I −

1

2
ΠU(G)

)−1

ΠU(G)

(
I −

1

2
ΠU(G)

)−1

(26)

V. INTERPRETATION OF THE INNER PRODUCT

In the literature of information theory [14], the entropy

rate of a PFSA G is defined as

h(G) , −
∑

q∈Q

℘(q)

[
∑

σ∈Σ

π̃(q, σ) log π̃(q, σ)

]
(27)

while in the present formulation, the induced norm of G is

‖G‖A ,

√√√√√
∑

q∈Q


µ(q)

2

∑

σi,σj∈Σ

(
log

( π̃(q, σi)

π̃(q, σj

))2

 (28)

Equations (27) and (28) have structural similarity in the

sense that both are represented as a weighted sum over the

states. However, the following two major differences are

noteworthy.

1) For each state q ∈ Q, a weight µ(q) is used in Eq. (28)

instead of the stationary probability ℘(q) in Eq. (27).

2) The root mean square (rms) difference of logarithm

of the probabilities of a pair of symbols conditioned

on each state is used instead of the expectation of

logarithm of a symbol’s conditional probability. This

rms value is a norm that is a consequence of the inner

product.
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Fig. 1. Comparison of (1 − h(G)) and ‖G‖A of an i.i.d process.

In contrast to the entropy (rate) which is a measure of the

uncertainty, the ideal deterministic symbolic system should

have the maximum norm while the completely random

process should have a zero norm. For an independent and

identically distributed (i.i.d.) process, namely, a single-state

PFSA G, over the binary alphabet Σ = {0, 1}, let the

probabilities of generating the symbol 0 and the symbol 1
be α and (1 − α), respectively, with α ∈ (0, 1).

Figure 1 compares (1 − h(G)) (solid line) and
2
π

tan−1(‖G‖A) (dashed line), where the entropy rate h(G)
has the range [0, 1] and the norm curve is transformed from

[0,∞) to [0, 1]. It is observed that the profiles for (1−h(G))
and 2

π
tan−1(‖G‖A) are qualitatively similar. Hence, it is

possible to interpret the norm in Eq. (28) as a measure of

certainty or information contained in G.

The K-L divergence [14] of two i.i.d. processes with

probability mass functions P1 and P2 is

D(P1‖P2) ,
∑

i

P1(i) log
P1(i)

P2(i)
(29)

Let E be the Symbolic White Noise, i.e., the i.i.d. process

with uniform distribution over the symbols. Then, Figure

2 compares the induced distance ρ(E, G2) , ‖E − G2‖A

(dash-dot line), the K-L divergence D(E‖G2) (solid line),

and the K-L divergence D(G2‖E) (dashed line) versus the

probability parameter α. It is seen that these three curves

are qualitatively very similar as all of them approach infinity

when α approaches 0 or 1 and achieve the minimum at 0 if

α = 0.5. An advantage of the proposed measure is that ρ is

a metric but K-L divergence is not.

VI. ORTHOGONAL PROJECTION AND MODEL ORDER

REDUCTION

The space A of PFSA is not complete because a Cauchy

sequence of PFSA with an increasingly number of states

will have the limit point that is not a finite-state machine.

However, in practice, a finite-dimensional subspace could

be adequate for feature extraction from symbolic sequences.

For example, finite-order D-Markov machines [7] have been

used for anomaly detection. Since all finite-dimensional vec-

tor spaces over the real field R are guaranteed to be complete,

any closed finite subspace of A is a well-defined Hilbert
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Fig. 2. Comparison of ρ(E, G2), D(E‖G2), and D(G2‖E) versus
parameter α, where E is the Symbolic White Noise.

space. Therefore, an inner product in the space A admits

the orthogonal projection whose existence and uniqueness is

guaranteed on the Hilbert space.

Let PA2
: A1 → A2 denote the orthogonal projection

from a closed subspace A1 ⊂ A onto another smaller closed

subspace of A2 ⊂ A . Then, if {Vi}n
i=1 is an orthonormal

basis for the space A2, where n = dim(A2), it follows that

PA2
(G) =

n∑

i=1

〈G, Vi〉A · G (30)

The error due to projection onto the smaller dimensional

space A2 is obtained as ‖G−PA2
(G)‖A. In this setting, the

model reduction problem is formulated as follows.

Let a PFSA G on a space S̃ ⊂ A represent the semantic

model of a symbolic system. Let a desired sequence of lower

dimensional closed subspaces be chosen in A , which forms

a projection chain S1 ⊂ S2 ⊂ . . . ⊂ Sn ⊂ S̃ .

Let a cost functional f : A → [0,∞) be defined for G as

fG(S ) = ‖G − PS (G)‖A + g(PS (G)) (31)

where the first term on the right hand is the projection error,

interpreted as some form of information loss due to the

projection and the second term is a user-selected cost func-

tional of the projected model, which signifies the complexity

of the projected model. For example, it can be taken as

proportional to the number of states in PS (G). The objective

is to minimize the cost functional f over the projection chain;

this problem can be numerically efficiently solved in the

framework of the proposed orthogonal projection.

Now we present a numerical example using D-Markov

machines [7] that have been used for system identification

and anomaly detection. In this formulation, all D-Markov

machines with positive morph matrices form a subspace of

A . Let this D-Markov subspace with depth d be denoted

by Dd. (Note that d is a positive integer.) Figure 3 presents

two PFSA, G1 and G2, which are not D-Markov machines,

and their projections onto the space D1 are PD1
(G1) and

PD1
(G2), respectively. Figure 4 displays the projection errors

of PFSA G1 (solid line) and G2 (dashed line) onto the

projection chain D1 ⊂ D2 ⊂ . . . ⊂ D8, respectively. It is

observed that, for both G1 and G2, the projection errors
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Fig. 3. Projection of PFSA G1 and G2 on D1.
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Fig. 4. Projection errors of G1 and G2 on D-Markov subspaces.

decrease as the order d becomes larger. To interpret the

meaning of the projection, a symbol sequence of length

10, 000 is generated by simulating the PFSA G1 and then

the symbol sequence is used to obtain a D-Markov machine

with depth d = 1. The resulting output is shown in Figure

5, which is very close to the analytically derived projection

PD1
(G1) in Figure 3(b). That is, the lower order model

captured by the D-Markov algorithm from the simulated

symbolic sequence is very close to the optimal projection

point in the proposed Hilbert space setting.

VII. CONCLUSIONS AND FUTURE WORK

This second part of the two-part paper introduces a family

of inner products on the vector space of PFSA that is

constructed in the first part [13]. The objective here is to

develop a numerically efficient tool of model order reduction

for symbolic system identification. From this perspective,

the norm induced by the inner product is interpreted as

a measure of the information contained in the PFSA. The

process of order reduction in PFSA models is presented

as an orthogonal projection in the Hilbert space setting. A

numerical example is presented to illustrate the procedure.

While there are numerous research issues that need to

addressed before commercial codes of model identification

and order reduction can be made available, a few research

topics are presented below.

q1

{1}0.570

q2
{2}0.430

{1}0.732

{2}0.268

Fig. 5. 1D-Markov Machine based on simulated sequences from G1.

• For model reduction, the performance of different state

merging algorithms for PFSA model identification need

to be quantitatively evaluated by the induced metric.

• For pattern classification, PFSA models of symbolic

systems need to be chosen as feature vectors for pattern

classification in the space A .

• For optimization involving PFSA models, square of the

norm ‖ · ‖2
A, induced by the inner product, could be

used as a mathematical structure of the cost functional;

further theoretical research is necessary in this direction.
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