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Abstract— When iterative learning control (ILC) is applied
to improve a system’s tracking performance, the trial-invariant
reference input is typically known or contained in a prescribed
set of signals. Current ILC algorithms, however, neglect this
information and only exploit the trial-invariance of the input
signal. In this paper we propose a novel ILC design that
explicitly incorporates the additional knowledge on the trial-
invariant input. The proposed design approach results in a
reduced-order ILC, in the sense that the order of its trial-
domain description equals the number of given trial-invariant
input signals that are to be tracked. In contrast, current ILC
algorithms yield a trial-domain controller of order N , the ILC
trial length in discrete time. We discuss the advantages and
disadvantages of reduced-order ILC when it is designed to
minimize a 2-norm based objective.

I. INTRODUCTION

Iterative learning control (ILC) is an open-loop control

strategy that improves the performance of a system executing

the same task over and over again by learning from previous

iterations/trials [1], [2], [3]. Consider a discrete-time, single-

input single-output (SISO), linear time-invariant (LTI) plant

G(q) with input ul(k) and output yl(k), where k is an

independent variable representing time and q is the one-

sample-advance operator. The system is commanded to track

a given reference command r(k) over and over again, where

the trials are labeled by the index l. We assume that each trial

has the same length N and that prior to each trial the plant

is returned to its zero initial condition [3]. An ILC relies on

the repeatability of the input signal to reduce/eliminate the

tracking error el(k) = r(k) − yl(k) as l → ∞. To this end,

the input ul+1(k) is updated using the input ul(k) and the

error el(k) from the previous trial, where the ILC update

algorithm is most commonly of the following form:

ul+1(k) = Q(q) [ul(k) + L(q)el(k)] , (1)

with Q(q) and L(q) LTI filters. To achieve superior tracking

for l → ∞, ILC relies upon the Internal Model Principle

(IMP), which states that if a disturbance/reference signal can

be regarded as the output of an autonomous system, includ-

ing this system in a stable feedback loop guarantees perfect

asymptotic rejection/tracking [4], [5]. Although the role of

the IMP was recognized early in the development of ILC,

even leading to the development of ILC algorithms for re-

jecting/tracking iteration-varying disturbances/references [6],

[7], the full power of this principle was never exploited.
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As we show below, one consequence of this oversight in

the existing ILC literature is that to date all ILC algorithms

produce trial-domain dynamics whose order is greater than

necessary when the goal is simply to track a prescribed (set

of) reference input(s). Our primary contribution here is to

show how lower-order trial-domain dynamics result from

carefully exploiting knowledge on the reference input.

To explain our contribution in more detail, define the

supervectors

ul =
[
ul(0) ul(1) · · · ul(N − 1)

]T
, (2a)

yl =
[
yl(τ) yl(τ + 1) · · · yl(τ + N − 1)

]T
, (2b)

r =
[
r(τ) r(τ + 1) · · · r(τ + N − 1)

]T
, (2c)

el =
[
el(τ) el(τ + 1) · · · el(τ + N − 1)

]T
, (2d)

where τ denotes the relative degree of G(q). In this “lifted

notation” [3], [8], the plant G(q) translates into

yl = Gul , (3)

while the trial-domain description of the ILC algorithm (1)

amounts to:

ul+1 = Q(ul + Lel) . (4)

The matrices G,Q and L are (as described in more detail

below) the Toeplitz matrices formed from the impulse re-

sponses of the plant G(q) and the filters Q(q) and L(q),
respectively.

It is well-known in the ILC literature that (4) achieves

perfect asymptotic rejection/tracking of any trial-invariant

input if and only if Q = IN . In this case, the controller

(4) can be described in the (trial-domain) state space as
{
xl+1 = INxl + Lel

ul = xl

. (5)

Since the matrix L is generally nonsingular, this state-space

model is minimal and emphasizes that the ILC is of order

N . Consequently, the closed-loop system resulting from the

combination of the ILC (4) with the static trial-domain plant

(3) is of order N .

In this paper, we show that there also exist ILCs of order

less than N that still yield perfect asymptotic tracking for

l → ∞. Such an ILC will have the following structure:
{
xl+1 = Inxl + BKel

ul = CKxl

. (6)

where n < N is the controller order and CK is constrained

to a specific value (see Section II-C). As we show below, it

is possible to track up to n linearly independent prescribed

reference signals using a controller of order n.
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To summarize, current ILC algorithms achieve tracking

of any trial-invariant reference input and are of order N ,

whereas it is possible to track n particular reference in-

puts using an ILC algorithm of reduced order n < N .

In this paper we develop this idea in detail and discuss

its implications. The former ILCs are here referred to as

full-order, while the latter are called reduced-order ILCs.

To allow a comparison between both ILCs, the common

full-order norm-optimal ILC design strategy [3], [9] is

extended to reduced-order ILCs. Comparison of full-order

norm-optimal ILCs and reduced-order norm-optimal ILCs,

designed according to the same objective, shows that (i)

reduced-order norm-optimal ILCs generally result in simpler

learning dynamics and transient behavior; (ii) with a reduced-

order norm-optimal ILC the closed-loop stability is more

robust to plant model errors; and (iii) only for the reduced-

order norm-optimal ILCs a model/plant mismatch degrades

the perfect asymptotic tracking performance.

The remaining content of this paper is laid out as follows:

Section II introduces some details on the IMP, formulates

the ILC problem and details the reduced-order ILC design.

Its advantages and disadvantages over full-order ILC are

discussed in Section III and illustrated in Section IV by a

numerical example. Section V concludes the paper.

To distinguish between time-domain and trial-domain dy-

namics, plain characters are used for the time domain, while

bold characters relate to the trial domain. As such, the

symbol q indicates the one-sample-advance operator in the

time domain, while the one-sample-advance operator in the

trial domain is denoted by q. That is: qxl(k) = xl(k + 1),
while qxl(k) = xl+1(k) 1.

II. METHODOLOGY

After a brief discussion on reference signal generation

(Section II-A), this section formulates the ILC design prob-

lem (Section II-B), presents the general structure of a

reduced-order ILC (Section II-C), and details its 2-norm

optimal design methodology used to illustrate the ideas

(Section II-D).

A. Trial-invariant Signal Generation

To track a signal generated by an autonomous system, the

IMP tells us to embed that autonomous system in a stable

closed-loop system. Let us analyse how a trial-invariant

signal can be produced by an autonomous system. First,

consider the signal generator ΣI(q) shown in Figure 1(a),

where q denotes the one-trial-advance operator. Determined

by its initial condition ξ0, this system can generate any

trial-invariant signal in R
N , as it yields wl = ξ0 for all

l = 0, 1, . . . Next, consider the signal generator ΣW(q)
shown in Figure 1(b). The trial-invariant signals generated

by ΣW(q) are restricted to the range of W ∈ R
N×n, where

n ≤ N . That is, they equal wl = Wξ0 for l = 0, 1, . . .,
and some arbitrary initial condition ξ0 ∈ R

n. Thus, by the

IMP, if we embed the system shown in Figure 1(a) inside a

1Notice that the boldfaced q notation is equivalent to the w-operator
introduced in [10] and developed in [8], [11].

(a)

(b)

wl

wl

q−1IN

q−1In W

+

+

Fig. 1. (a) Generator ΣI(q) of arbitrary trial-invariant signals in R
N ;

and (b) generator ΣW(q) of arbitrary trial-invariant signals in the range of
W ∈ R

N×n. Symbol q denotes the one-trial-advance operator.

stable closed loop, the resulting system will be able to track

any trial-invariant reference input, whereas if we embed the

system of Figure 1(b), the resulting system will only be able

to track reference inputs in the range of W ∈ R
N×n.

It is readily verified that the full-order ILC (5) contains the

signal generator ΣI(q), while we will show in Section II-C

that with a proper design of CK, the reduced-order ILC (6)

embeds ΣW(q) into the closed-loop system.

B. Problem Formulation

The ILC design is considered in discrete time, where the

discrete time instants are labeled by k = 0, 1, . . . Each trial

comprises N time samples and prior to each trial the plant

is returned to the same initial conditions, which are here

assumed zero without loss of generality [3]. We distinguish

between the plant and its model. The discrete-time plant is

denoted by G(q), it has relative degree τ and its impulse

response is indicated by g(k). The plant model is denoted

by Ĝ(q) and is assumed to have the same relative degree as

the plant. The model’s impulse response is indicated by ĝ(k).
The ILC design is formulated in trial domain according to

Figure 2, where the supervector signals are defined in (2).

Reformulating the plant’s convolution relation

yl(k) =

k∑

i=τ

g(i)ul(k − i) ,

in terms of the supervectors ul and yl yields the following

trial-domain plant G:

yl =









g(τ) 0 · · · 0

g(τ + 1) g(τ)
. . .

...
...

. . .
. . . 0

g(τ + N − 1) · · · g(τ + 1) g(τ)









︸ ︷︷ ︸

G

ul .

In a similar way, the trial-domain plant model Ĝ is derived

from ĝ(k).
Next, consider the exogenous input signal wl, which

combines the reference input and output disturbances. It is

trial-invariant: wl = w, for l = 0, 1, . . ., and confined to

the range of W ∈ R
N×n. That is, wl corresponds to the

autonomous output of ΣW(q), shown in Figure 1(b), from

an arbitrary initial condition ξ0 ∈ R
n. The matrix W is

assumed to have full column rank and hence, n ≤ N . An ILC
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−

wl el ul yl
K(q) G

+

Fig. 2. Trial-domain formulation of the ILC problem, where wl, el, ul and
yl correspond to the supervectors of the exogenous input, tracking error,
control signal and plant output, respectively, and G denotes the lifted system
matrix. An ILC corresponds to a trial-domain feedback controller K(q) that
yields perfect asymptotic tracking for trial-invariant inputs wl = w.

el ul

K(q)

K̃(q)

Ĝ−1Wq−1In ++

Fig. 3. Structure of an ILC K(q) that achieves perfect asymptotic tracking
of trial-invariant inputs in the range of W.

corresponds to a trial-domain feedback controller K(q) that

yields an internally stable closed-loop system and guarantees

perfect asymptotic tracking of the considered trial-invariant

inputs w, i.e. liml→∞ el = 0.

C. Internal Model Principle

The IMP [4], [5] states that K(q) achieves perfect asymp-

totic tracking of all inputs wl that can be generated by

ΣW(q) if and only if it admits a structure as shown in

Figure 3. The design of the controller part K̃(q) is free

as long as it guarantees internal closed-loop stability. The

controller structure of Figure 3 can also be understood from

the interpolation constraints [12]. Perfect asymptotic tracking

of trial-invariant inputs in the range of W requires the

closed-loop sensitivity to have n zeros at q = 1 with input

zero directions spanning the range of W. To this end, the

loop transfer matrix must have n poles at q = 1 with output

pole directions spanning the same subspace of R
N . The

multiple poles at q = 1 are created by enclosing q−1In in a

positive feedback loop, while the corresponding output pole

directions are determined by the blocks on the right-hand

side of this loop. Consequently, the output pole directions

are determined by the series connection of Ĝ−1W from the

controller, and the plant G. Hence, in the case of a perfect

model, GĜ−1W = W and perfect asymptotic tracking of

all wl generated by ΣW(q) is achieved. Section III below

discusses the effect of a model/plant mismatch, i.e. Ĝ 6= G.

D. Norm-optimal Design of K̃(q)

As noted above, K̃(q) in Figure 3 is free as long as it

guarantees internal closed-loop stability. In this paper we

design K̃(q) in accordance with the full-order norm-optimal

ILC design [3], [9]. To accomplish this, K̃(q) is set equal to

a trial-invariant filter with no direct feed-through term, i.e.

no current-iteration contribution:

K̃(q) =

[
L

0

]

,

whereby the overall ILC K(q) amounts to

K(q) :

{
xl+1 = xl + Lel

ul = Ĝ−1Wxl

, (7)

and the overall closed-loop sensitivity S(q) is given by

S(q) = IN − GĜ−1W
(

qIn − In + LGĜ−1W
)−1

L .

(8)

By substituting W = Ĝ, the controller K(q) given by (7)

reverts to the full-order ILC (5).

The matrix L is computed such that xl+1 minimizes the

objective Jl+1 for given xl and el:

Jl+1(xl+1) = eT

l+1Γel+1 +(ul+1−ul)
T Λ(ul+1−ul) , (9)

where the relations ul = Ĝ−1Wxl, ul+1 = Ĝ−1Wxl+1

and el+1 = w − Wxl+1 should be substituted. As in full-

order ILC, a quadratic term in ul+1 can be added to Jl+1, but

it is chosen here not to do so, since this would no longer yield

perfect asymptotic tracking [3]. The xl+1 that minimizes (9)

equals xl+1 = xl + Lel with

L = (WT ΓW + WT Ĝ−T ΛĜ−1W)−1WT Γ . (10)

Again, substituting W = Ĝ yields the more commonly

known full-order ILC design [3], [9]. As shown in [9], by

selecting Γ as a scaled identity matrix, the optimal solution

(10) guarantees ‖el+1‖ ≤ ‖el‖ for all l = 0, 1, . . .

III. REDUCED-ORDER VERSUS FULL-ORDER ILC

This section discusses the advantages and disadvantages of

reduced-order ILC, n < N , compared to full-order ILC n =
N . This discussion applies to norm-optimal ILCs, designed

according to section II-D with the same objective (9).

A. Zeros and Poles

As reflected in the terminology, the key difference between

reduced-order ILCs and full-order ILCs is their order and,

consequently, the order of the closed-loop system. With full-

order ILC, S(q) is of order N with N zeros at q = 1.

The design (10) guarantees that the N closed-loop poles are

stable provided that G = Ĝ. That is, (10) guarantees that

the eigenvalues of (I −LW) are contained in the open unit

disc. However, the closed-loop poles are generally scattered

throughout this disc, which translates into complex and non-

intuitive closed-loop dynamics. Reduced-order ILC results in

a n’th order closed loop with S(q) featuring n zeros at q =
1 with input zero directions spanning the range of W. On

account of the reduced system order, more intuitive closed-

loop dynamics generally result compared to full-order ILC.

In addition to the lower closed-loop order, Eq. (8) reveals

that with a reduced-order ILC the dynamic part of S(q) only

manifests for inputs in the range of LT , leaving inputs in the

orthogonal subspace of R
N unaffected. By selecting Γ as a

scaled identity matrix, the range of LT corresponds to the

range of W, as is clear from Eq. (10).
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B. Performance Under Model/Plant Mismatch

In the case of a model/plant mismatch, i.e. Ĝ 6= G, the

input directions of the sensitivity’s n zeros at q = 1 are

given by GĜ−1W. For reduced-order ILC, these directions

generally don’t span the range of W and as a result,

the perfect asymptotic tracking of inputs wl generated by

ΣW(q) is compromised. For full-order ILC, on the other

hand, the subspaces spanned by the columns of GĜ−1W

and W do coincide as they both equal R
N . Hence, even in

the presence of a model/plant mismatch, the full-order ILC

still yields perfect asymptotic tracking of all trial-invariant

inputs; a property sometimes referred to as robustly stable

output regulation [5].

C. Stability Under Model/Plant Mismatch

A model/plant mismatch endangers closed-loop stability

more in the case of a full-order ILC compared to a reduced-

order ILC. The closed-loop poles correspond to the eigen-

values of

In − LGĜ−1W = In − LW + L (Ĝ − G)Ĝ−1

︸ ︷︷ ︸

δĜ

W ,

and hence, with full-order ILC, they are affected by all

the singular values of the relative plant difference δĜ.

In the reduced-order case, they are only affected by the

singular values of δĜ in the input range W and output

range L. Robust closed-loop stability requires only these

singular values to be small, which is less stringent a condition

than requiring δĜ to be small. The less stringent stability

condition can also be understood from the controller’s state-

space model (7). A reduced-order ILC only responds to

tracking errors el in the range of LT and can only generate

control signals ul in the range of Ĝ−1W. This explains

respectively the output and input range in which an accurate

plant model is required.

D. Time-domain Implementation

This section elaborates on the time-domain formulation of

the ILC (7), by reformulating the state-space model (7) as a

trial-domain difference equation, similar to (4). The output

equation of (7) allows reconstructing xl from ul:

xl = W†Ĝul , (11)

where W† ∈ R
n×N is a pseudo-inverse of W, i.e. an

arbitrary matrix that satisfies W†W = In. With the help

of (11), the state-space model (7) is reformulated as

ul+1 = Ĝ−1WW†Ĝul + Ĝ−1WLel . (12)

Since the matrices Ĝ−1WW†Ĝ and Ĝ−1WL are not

Toeplitz and not lower-triangular, the time-domain descrip-

tion of (12) involves noncausal, linear time-varying filters.

An additional difference with the full-order ILC (4), is that

the matrices Ĝ−1WW†Ĝ and Ĝ−1WL ∈ R
N×N are of

rank n instead of N . This rank-deficiency allows reducing

the computational complexity of (12).

frequency [Hz]
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10−2 10−1

Fig. 4. FRFs of the time-domain plant G(q) and its model Ĝ(q).

IV. SIMULATION RESULTS

This section illustrates the differences between reduced-

order and full-order ILC by comparing their norm-optimal

solutions for the numerical example presented in Section IV-

A. This comparison is first performed under the assumption

that the actual plant G equals the plant model Ĝ (Section IV-

B), while this assumption is dropped in Section IV-C to

reveal the different robustness properties of the controllers.

A. Numerical Example

ILC is applied to improve the tracking of a given trial-

invariant reference r, which comprises N = 40 time samples

and corresponds to the black line shown in Figure 6 below.

The time-domain plant G(q) and its model Ĝ(q) are given

by:

G(q) =
0.436q

q2 − 1.412q + 0.867
, (13a)

Ĝ(q) =
0.292q

q2 − 1.592q + 0.892
, (13b)

and Figure 4 shows their frequency response functions

(FRFs). Below, two norm-optimal ILCs are compared, where

Γ = IN and Λ = 1.5IN are used in (9). The first ILC,

indicated by Kfo(q), is the full-order solution for n = N and

Wfo = Ĝ. The corresponding matrix L = Lfo is computed

according to (10):

Lfo = (ĜT Ĝ + 1.5IN )−1ĜT .

The second ILC, indicated by Kro(q), is the reduced-order

solution for n = 1 and Wro = r/‖r‖. According to (10),

the corresponding matrix L = Lro equals:

Lro =
(

1 + 1.5WT

roĜ
−T Ĝ−1Wro

)−1

WT

ro = ρWT

ro .
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Fig. 5. Poles and zeros of the closed-loop sensitivity for the plant model Ĝ
and (a) the full-order ILC Kfo(q); and (b) the reduced-order ILC Kro(q).

B. Evaluation for Ĝ

This section compares Kfo(q) and Kro(q) for the plant

model Ĝ, or equivalently, temporary assumes that the actual

plant G equals the model Ĝ. The closed-loop sensitivities

corresponding to Kfo(q) and Kro(q) are respectively indi-

cated by Sfo(q) and Sro(q), and for G = Ĝ they equal

Sfo(q) = IN − Ĝ(qIN − IN + LfoĜ)−1Lfo ,

Sro(q) = IN − Wro(q − 1 + ρ)−1ρWT

ro .

Figure 5 shows the corresponding poles and zeros. Sensi-

tivity Sfo(q) has N = 40 zeros at q = 1, and N poles

corresponding to the eigenvalues of IN − LfoĜ, which are

scattered throughout the open unit disc. The reduced-order

result Sro(q), on the other hand, has only n = 1 zero at

q = 1 and n = 1 pole at q = 1− ρ. Moreover, the dynamic

part of Sro(q) only manifests for inputs in the range of Wro,

producing an output signal in the same subspace of R
N . The

input directions orthogonal to Wro are not affected by the

reduced-order ILC. That is: Sro(q)W⊥
ro = W⊥

ro, with the

columns of W⊥
ro ∈ R

N×(N−n) spanning the null-space of

Wro.

Figure 6 shows for both ILCs the evolution of the plant

output yl(k) for l = 0, 1, . . . , 9, while the black curve corre-

sponds to r(k). Since both ILCs achieve perfect asymptotic

tracking, liml→∞ yl(k) = r(k). The black curves in Figure 8

show the evolution of the norm of the corresponding tracking

error, i.e. ‖el‖, as a function of l. For the full-order ILC

Kfo(q) the transient tracking behavior is affected by all the

closed-loop poles, and since some of these poles lie closely

to the unit circle, Sfo(q) features very slow convergence of

some characteristics of r(k). As revealed by Figure 6(a), the

overall behavior of r(k) is accurately tracked within a few

iterations, while slow convergence is observed on the last

time samples where r(k) = 1. Figure 8(a) shows that this

results in a fast initial decrease of ‖el‖, which levels off as

l increases.

For the reduced-order ILC Kro(q) the transient tracking

behavior is determined by the n = 1 closed-loop poles

and zeros. Hence, ‖el‖ decays according to (1 − ρ)l, as is

k

k

y l
(k

)
y l

(k
)
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Fig. 6. Evolution of the plant output yl(k) as a function of l for the

plant model Ĝ and (a) the full-order ILC Kfo(q); and (b) the reduced-
order ILC Kro(q). The black line corresponds to r(k), and for both ILCs
liml→∞ yl(k) = r(k).

confirmed in Figure 8. Since in addition, the input and output

directions of the dynamic part of Sro(q) coincide, both the

tracking error el and the plant output yl are proportional to

r. This is clearly observed in Figure 6(b).

C. Evaluation for G

In this section, the assumption that G = Ĝ is dropped

and the ILCs are evaluated for G instead of Ĝ.

As argued in Section III, a model/plant mismatch endan-

gers closed-loop stability more in the case of a full-order ILC

compared to a reduced-order ILC. This section confirms this

statement, since evaluated for G the closed-loop system with

Kfo(q) is unstable, while it is stable for Kro(q). Figure 7

shows the corresponding pole-zero maps of the closed-loop

sensitivity. Comparison with Figure 5 reveals that for Kfo(q)
some closed-loop poles are significantly affected by the

model/plant mismatch, while for Kro(q) this effect is minor.

For Kro(q), the closed-loop sensitivity still has a zero at

q = 1, but due to G 6= Ĝ, the corresponding input direction

is no longer aligned to r. Consequently, r is no longer

perfectly tracked for l → ∞. This is confirmed by the grey

curve in Figure 8(b), which shows the corresponding ‖el‖
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Fig. 8. Evolution of ‖el‖ as a function of l for (a) the full-order ILC
Kfo(q); and (b) the reduced-order ILC Kro(q). The black lines relate to

the closed-loop system with the plant model Ĝ, while the grey lines relate
to the actual plant G.

as a function of l. The grey curve in Figure 8(a) confirms

the closed-loop instability when Kfo(q) is evaluated for G.

V. CONCLUSIONS

This paper presents a novel ILC design that allows exploit-

ing the direction of the input signals in addition to their trial-

invariance. To this end, a reduced-order trial-invariant signal

generator is included in the ILC, whereby the controller order

is less than the number of samples per trial. The ILCs are

therefore called reduced-order ILCs, while the current ILCs

are referred to as full-order. The reduced-order ILCs are here

designed in accordance with the common full-order norm-

optimal ILC design.

It is illustrated that reduced-order norm-optimal ILCs

result in simpler (more intuitive) learning dynamics and

a more desirable transient learning behavior compared to

full-order norm-optimal ILCs. In addition, a model/plant

mismatch affects both types of ILC in a different way: with

a reduced-order norm-optimal ILC the closed-loop stability

is more robust to plant model errors then with a full-order

norm-optimal ILC. On the other hand, if robust stability is

achieved, the robust performance is slightly better for full-

order norm-optimal ILCs. In future work, the robust reduced-

order ILC design for plant uncertainties will be considered.
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