
  

 

Abstract—In this paper Model Based Networked Control 
Systems (MB-NCS) are considered and on-line identification of 
system parameters in state space representation is used to 
upgrade the model and the controller of the system. The 
updated model is used to control the real system when feedback 
information is unavailable. The Extended Kalman Filter (EKF) 
is analyzed in the context of parameter identification and 
implemented in the MB-NCS framework. Emphasis is placed on 
global asymptotic estimators for the case when sensors provide 
noiseless measurements of the state of a linear system; it can be 
shown that the identification of parameters in this case is a 
linear problem, in contrast to the nonlinear combined state-
parameter estimation problem. We propose new estimation 
models that offer better convergence properties than the EKF 
in this case. This estimation strategy is also applied to the MB-
NCS framework resulting in a better usage of the network by 
allowing longer intervals without need for a measurement 
update.  

I. INTRODUCTION 
N Networked Control Systems (NCS), dynamical systems 
are controlled by using feedback over a shared 

communication network. NCS offer a large number of 
advantages compared to traditional configurations where 
control systems are interconnected using dedicated wires; 
NCS reduce wiring, increase reliability, and reduce time and 
cost of maintenance [1]. At the same time, undesirable 
situations may be encountered due to bandwidth limitations 
of the communication channel, which induces network 
delays and packet dropouts especially when many nodes 
attempt to broadcast information very frequently [2], [3]. A 
type of NCS called Model Based Networked Control 
Systems (MB-NCS) aims to reduce communication over the 
network by incorporating an explicit model of the system to 
be controlled. It has been shown that the MB-NCS 
framework reduces the bandwidth needed to safely operate a 
control system, consequently, it reduces the size of network 
induced delays and probability of packet dropouts and 
releases the network so it can be used for other tasks [4]. 

Montestruque and Antsaklis provided stability conditions 
of MB-NCS using periodic updates [4] and when the update 
intervals are time-varying and follow different probability 
distributions [5]. The reduction in network communication 
that we are able to achieve, i.e. the longest we can wait for a 
new update without compromising stability is directly related 
to the accuracy of the model.  
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Even when an accurate model is initially available, in 
many applications the parameters of a system may change 
over time due to the use and working conditions of the plant 
or of its components.  

Estrada and Antsaklis introduced the notion of intermittent 
MB-NCS [6], [7]. In this case the measurement updates are 
not only given for a time instant but they last for a period of 
time making the system to operate in closed loop mode for a 
finite interval τ<h, where h is the update period and τ is the 
time the system is working in closed loop. 

In the present paper we focus on applying identification 
algorithms in the MB-NCS context. Better knowledge of the 
plant dynamics will provide an improvement in the control 
action over the network, i.e. we can operate over longer open 
loop time intervals without need for feedback. We use 
Kalman filters to estimate the unknown parameters of the 
system, since they provide global convergence properties for 
deterministic systems. We estimate parameters in state space 
non-canonical form and we do not require a persistently 
exciting input signal. The last two represent important 
advantages compared to traditional closed loop system 
identification algorithms. With respect to MB-NCS, we 
overcome the usual assumption that the controller is 
designed to stabilize the real system; this may be unrealistic 
since our knowledge of the plant dynamics is limited. As we 
will see, the identification process allows us to update not 
only the model but the controller itself so it can better 
respond to the dynamics of the real plant being controlled. In 
contrast to common adaptive techniques we do not redefine 
the controller at each time instant but only when the 
estimated parameters are received in the controller node. 
When the controller node receives updated model 
parameters, an LQR controller is calculated solving a 
discrete-time algebraic Riccati equation using the same 
weights and the new parameters that were just obtained. The 
rest of the paper is organized as follows: section II states the 
problem. Stability and identification of parameters of 
deterministic MB-NCS are discussed in sections III and IV, 
respectively. Section V presents similar results for stochastic 
MB-NCS. Section VI contains illustrative examples and 
section VII provides relevant conclusions. 

II. PROBLEM STATEMENT  
MB-NCS make use of an explicit and in most times 

inexact model of the plant which is added to the controller 
node to compute the control input based on the state of the 
model rather than on the plant state for the intervals of time 
when feedback is unavailable. Sensor measurements are used 
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by the controller to update the state of the model resetting 
any possible mismatch between the state of the model and 
the state of the controlled system. The sensor and the 
controller are connected using a communication network 
whereas the controller is connected directly to the plant as 
shown in fig. 1.a. where p is a vector containing the 
estimated parameters. The plant and model dynamics are 
given, respectively, by: 

 ( 1) ( ) ( )x k Ax k Bu k+ = +                       (1) 

  ˆ ˆˆ ˆ( 1) ( ) ( )x k Ax k Bu k+ = +                       (2) 

where ˆ, nx x R∈  are the states of the plant and the model, 
respectively, and ˆu Kx= . 

It is convenient in many applications to drop the usual 
periodic update implementation in favor of one based on 
events [20], [21], for example, the event that the plant-model 
state error is equal to or greater than some predetermined 
threshold. A sensor node within the network broadcasts its 
local state only when it is necessary, i.e. when a measure of 
the local subsystem state error is above some predetermined 
threshold, the error, in this case, is defined as the difference 
between the state of the model and the state of the plant:                         

  ˆ( ) ( ) ( )e k x k x k= −                             (3) 
This form of updating the model has the implicit 

advantage of extending the interval in which the plant works 
in open loop, when the model is improved, and provides 
better estimates of the plant states; a copy of the model is 
needed in the sensor node to generate the model state and 
compute (3).  

 
Fig. 1. MB-NCS with filter implemented in a) the sensor node, and b) the 

controller node. 
 
In view of the fact that we need to be able to identify a 

system in general state space representation, not necessarily 
in canonical form as discussed in the literature [8]-[10], we 
will use the Kalman filter for identification of systems of the 
form (1) and the extended Kalman filter (EKF) for the case 
we receive noisy measurements of the state. 

III. STABILITY OF MB-NCS 
We are particularly interested in updating the state of the 

model in one of two ways: either in a periodic fashion, or 
using an event based strategy. The event based strategy has 
the advantage that we can immediately obtain longer update 
intervals after we have upgraded the model.  

The next theorem provides stability bounds of the MB-
NCS when we update the model based on error events. In the 
sensor node we measure the state of the plant and compare 
the magnitude of the error (3) to a fixed threshold α < ∞ ; the 
plant state is used to update the model if the error is greater 
than the threshold, i.e. when ( )e k α> . 

Theorem 1. For 1 1(0) , 0x β β≤ < < ∞ , the networked 
system described by (1) with state feedback updates 
triggered when ( )e k α> , has a bounded state if the 
eigenvalues of A+BK lie strictly inside the unit circle. 

Proof: System (1) can be described by: 
( 1) ( ) ( ) ( )x k A BK x k BKe k+ = + +                  (4) 

after (3) and the control input ˆu Kx=  have been used. 
The response of the plant with initial time 0 0k =  and 

stable matrix A+BK at any given time 0k ≥  is given by: 

 
1

( 1)

0
( ) ( ) (0) ( ) ( )

k
k k j

j
x k A BK x A BK BKe j

−
− +

=

= + + +∑      (5)   

where e(k) is bounded by: ( )e k α≤ . We can show that the 
state of the plant is bounded by evaluating its norm which is 
done next: 
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−
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=
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In view of the assumption on the initial condition of the 
plant and the triggering condition, and using the bound  

2 2( ) , (0,1), 0k kA BK β λ λ β+ ≤ ∈ > , [17], we can write:    
1

( 1)
1 2 2

0
( )

k
k k j

j
x k BKβ β λ αβ λ

−
− +

=

≤ + ∑
   

 
 

1
2

1 2

(1 )
1

k
k BKαβ λ

β β λ
λ

−−
≤ +

−             
 (6)

 
Note that: 2lim ( )

1k

BK
x k

αβ
λ→∞

=
−

. 

The fact that the eigenvalues of A+BK lie strictly inside 
the unit circle ensures that the first term in the right hand side 
of (6) decreases exponentially with time and the second term 
is bounded for all time k>0. ■ 

Remark 1. The condition for the state of the plant to be 
bounded is obtained in terms of the real parameters, but this 
is not restrictive in an adaptive scheme since we can obtain 
accurate estimates of those parameters and feedback laws 
based on the upgraded model that stabilize the plant as well. 

Theorem 2. For 1 1(0) , 0x β β≤ < < ∞ , the networked 
system (1) with intermittent state feedback updates triggered 
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when ( )e k α> has a bounded state if the eigenvalues of 
A+BK lie strictly inside the unit circle. 

Proof: The proof is similar to the one in theorem 1 by 
noting that ˆ( ) ( ) ( ) 0, [ , )k ke k x k x k k t t τ= − = ∀ ∈ +  i.e. in the 
closed loop interval, then ( ) ,e k kα≤ ∀ .■ 

The next two theorems describe the stability properties of 
MB-NCS with periodic updates h; for the case of intermittent 
feedback we assume the closed loop time τ is constant.   

Theorem 3. The networked system (1) with periodic state 
feedback is asymptotically stable if only if the eigenvalues of 

  
1

1

0

ˆ ˆ( )
h

h h j j

j
A A BK A BK

−
− −

=

+ +∑                      (7) 

lie strictly inside the unit circle. 
Theorem 4. The networked system (1) with periodic 

intermittent feedback is asymptotically stable if only if the 
eigenvalues of: 

  1
1

0

ˆ ˆ( ( ) )( )
h

h h j j

j
A A BK A BK A BK

τ
τ τ τ

− −
− − − −

=

+ + +∑          (8) 

lie strictly inside the unit circle. 
Proof: For the proofs of theorems 3 and 4 refer to [11]. 
With respect to the above results, we can see that the 

event-triggered approach only offers a bounded output 
compared to the asymptotic properties when using periodic 
updates. This drawback can be addressed by applying a time-
varying threshold as shown in [21]. 

IV. PARAMETER ESTIMATION OF DETERMINISTIC MB-NCS 
In this section we focus on deterministic linear systems of 

the form (1) with no particular form of the matrices A and B. 
This identification problem can be solved using a linear 
Kalman filter; this implementation provides much better 
convergence properties than the EKF (see section VI.A). 

In the special case when the sensors provide noiseless 
measurements of the state, it is possible to modify the model 
that will be used for the Kalman filter equations in order to 
estimate the parameters A and B assuming the order of the 
system is known but the structure of the system is not, i.e. no 
canonical form is assumed. In order to show this simple idea 
let us focus on second order autonomous systems, (the idea 
can be easily extended to higher order systems with 
deterministic inputs) with unknown time-invariant 
parameters,  

1 111 12

21 222 2

( 1) ( )
( 1) ( )

x k x ka a
a ax k x k

+    
=     +     

                      (9) 

We do not know the values of the parameters and we only 
receive measurements of the states (0)... ( )x x k . At any given 
step due to the iterative nature of the Kalman filter we only 
need x(k) and x(k-1). Now we rewrite (9) as: 

11

1 121 2

1 22 21

22

ˆ ( )
ˆ ˆ( ) ( )( 1) ( 1) 0 0 ˆ ˆ( ) ( )
ˆ ˆ0 0 ( 1) ( 1)( ) ( )

ˆ ( )

a k
x k a kx k x k

C k a k
x k x kx k a k

a k

 
 − −     = =    − −    
  

    

(10)

    

Equation (10) becomes the output equation of our filter, 
and the state equation is described by: 

 
11 11

12 12

21 21

22 22

ˆ ˆ( 1) ( )1 0 0 0
ˆ ˆ( 1) ( )0 1 0 0

ˆ( )
ˆ ˆ( 1) 0 0 1 0 ( )
ˆ ˆ0 0 0 1( 1) ( )

f

a k a k
a k a k

A a k
a k a k
a k a k

+    
     +     = =
     +
     

+       

       (11) 

   Equations (10)-(11) represent a linear model; therefore we 
can use a linear filter to obtain estimates of the parameters 

ija  of the state matrix of the original system. Note that we do 
not need any external input, only nonzero initial conditions 
on the state. For systems of the form (1) we can estimate the 
elements of both matrices A and B if we receive 
measurements of the state and the deterministic input u(k). 
Any common inputs such as steps and sinusoidal inputs can 
be used for identification purposes. Sinusoidal inputs do not 
need to have in any particular frequency i.e. there is no 
requirement of a persistently exciting input which makes this 
approach a suitable tool for adaptive stabilization. In this 
case we need to include estimates of the parameters of B in 
the state vector of the filter model and the input values in 
ˆ ( )C k ; this model can be easily applied to higher order 

systems by following the structures of (10)-(11). A limitation 
is that the order of the filter is 2n  where n is the dimension 
of the state of the original system.  
    Song and Grizzle [18] have shown that the linear time-
varying Kalman filter (LTV-KF) is a global asymptotic 
observer for the underlying deterministic system. Consider 
the deterministic system described by (10)-(11), and the 
associated noisy system: 

ˆ ˆ( 1) ( ) ( )
ˆˆ ˆ( ) ( ) ( ) ( )

fa k A a k Nw k

y k C k a k Mv k

+ = +

= +
                       (12) 

where the design parameters M,N are chosen as positive 
definite matrices and the artificial noise processes w,v are 
white, zero-mean, uncorrelated, and have known covariance 
matrices Q and R respectively. The next theorem states the 
convergence of the estimation error. 

Theorem 5. Consider the deterministic system (10)-(11), 
and the Kalman filter associated with (12). Suppose that the 
deterministic system is uniformly observable and ( )fA k  is 

invertible for all k, and that : sup{ ( ) : 0}f fA A k k= ≥  and 

ˆ ˆ: sup{ ( ) : 0}C C k k= ≥  are bounded. Then the Kalman 

filter for the noisy system (12) is a global, uniform 
asymptotic observer for the deterministic system (10)-(11). 

For the proof of this theorem refer to [18]. We will now 
focus on the details pertaining to our specific model. From 
(11) we can see that fA I=  is constant, bounded, and 
invertible for all k. The output matrix is built by using the 
measurements of the deterministic system, for unstable 
systems it is required that the initial conditions of the system 
are finite. The matrices M,N are simply chosen to be identity 
matrices of appropriate dimensions. The problem with our 
model is that the pair ˆ( , ( ))fA C k  is not observable; a simple 
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solution is to increase the number of measurements used in 
the output equation (10), although this is not a necessary 
condition. A single previous measurement is used in all 
examples in section VI.   

V. ADAPTIVE STABILIZATION OF STOCHASTIC MB-NCS  
In this section we will study the case in which stochastic 

systems of the form: 
 ( 1) ( ) ( ) ( )x k Ax k Bu k w k+ = + +               (13) 

( ) ( ) ( )y k x k v k= +  
are implemented using the configurations of Fig.1. The noise 
processes w and v are white, Gaussian, uncorrelated, zero-
mean, and have known covariance matrices Q and R 
respectively. The model of the system is still given by (2) 
and, since we only measure y(k), the error is now given by: 

   ˆ( ) ( ) ( )e k x k y k= −                          (14) 
Theorem 6. Assume x(0) is a random variable with 

Gaussian distribution 0 0( , )µ Σ ; then the state of the stochastic 
model-based networked system (13) with feedback based on 
error events has finite mean and covariance for all k if the 
eigenvalues of A+BK lie strictly inside the unit circle. 

Proof: The state of equation (13) can be expressed using 
the linear system: 

( 1) ( ) ( ) ( ) ( ) ( )x k A BK x k BKe k BKv k w k+ = + + + +  
then the state x(k) is a Gaussian random variable for all k 
with mean and covariance given by: 

  
1

( 1)
0

0
( ) ( ) ( )

k
k k j

k
j

A BK A BK BKe jµ µ
−

− +

=

= + + +∑       (15.a) 

1 0( ) ( ) ( ( ) ) ( ) (( ) )T T k k T
k kA BK A BK BKR BK Q A BK A BK−Σ = + Σ + + + = + Σ +  

1

0
( ) ( ( ) )(( ) )

k
j T j T

j
A BK BKR BK Q A BK

−

=

+ + + +∑            (15.b) 

In theorem 1 we showed that (15.a) is bounded if the 
eigenvalues of A+BK lie strictly inside the unit circle. In 
order for the covariance kΣ  to converge we need the series 
(15.b) to be summable as k → ∞  and this is obtained by 
making ( ) jA BK+  to converge to 0, i.e. if A+BK is stable 
then the covariance converges to a finite value. ■ 

The combined estimation of states and parameters 
problem has been studied by different researchers, see for 
example [14], [18]. The use of the Extended Kalman Filter 
(EKF) to deal with this problem was first proposed by Kopp 
and Orford [13]; a detailed derivation of the EKF as a 
parameter estimator may be found in [12]. 

The extended Kalman filter whether is used as estimator 
of states of nonlinear systems or combined estimation of 
states and parameters is prone to divergence as it lacks the 
robustness and the convergence properties of the linear 
Kalman filter. Many of the causes for the estimates to be 
biased or divergent have been illustrated and somewhat 
successful remedies have been proposed in many papers and 
books, see for instance [8], [15], [18], and [19]. The most 
common causes of divergence in the EKF are related to the 
fact that the EKF is based on linearization about the current 

estimate, and so if the a priori state estimates are poor, or if 
later estimates should take the filter out of the linear region, 
the estimates often diverge. A more rigorous analysis of the 
local convergence properties of the EKF used as a parameter 
estimator for linear systems is offered in [14]. 

VI. IMPLEMENTATION CASES AND EXAMPLES 

A. Comparison of EKF and LTV-KF for parameter 
identification of deterministic systems. 
The EKF can also be used as parameter estimator of 

deterministic systems of the form (1); this is a special case of 
the approach in the last section. However, for the special 
case when noiseless measurements of the state are available 
there is a significant improvement in the quality of the 
estimated parameters given by the LTV-KF described in 
section IV compared with those obtained using the EKF 
particularly for higher order systems. 

As explained before, the EKF will diverge or provide 
biased estimates due to many factors, especially if the initial 
estimates are not sufficiently close to the real parameters we 
try to estimate. We present a simulation-based comparison 
between the LTV-KF model using only one previous 
measurement that we proposed in section IV and the EKF, 
both working under similar assumptions.  

Example 1. A fourth order deterministic system with 
random initial conditions is given by. 

( 1) ( )x k Ax k+ =  
with 

1.7209 1.1484 2.8700 1.8609
0.9510 2.9805 2.3617 0.3365
2.6334 2.4172 0.1133 2.6316
2.8223 0.5102 2.1791 2.7730

A

  − − − 
       − = 
 − −    
 

    − − 

 

First, for both filters we assume we receive noiseless 
measurements of the state and that the elements of matrix A 
are unknown but lie somewhere in the range [-3,3]. The main 
difference given by the simulations of the two filters with the 
same deterministic system is that both converge to some 
constant value but the EKF tends to provide biased 
estimates, that is, the error defined as the difference between 
the real parameters and their estimates is of greater order in 
the EKF than in the LTV-KF. In the case we have some 
knowledge of the a priori estimates of the parameters then 
the results of the EKF show some improvement, emphasizing 
the dependence of the EKF to initial estimates a(0). Results 
of simulations are shown in Table 1.  

 
Filter  Random initial 

conditions for filters 
Error order in 200 
simulations 

LTV-KF Uniform: [-3,3] 7 410 10− −−  
(0)ija α±  8 410 10− −−  

EKF Uniform: [-3,3] 110  
(0)ija α±  1 110 10− −  

Table 1. Error order results for the LTV-KF and the EKF. (α is a random 
variable with uniform distribution in [0, 0.1]). 
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Whether a linear Kalman filter or the EKF is used we can 
implement the filter in the MB-NCS framework using one of 
two approaches. 

B. Filter collocated with sensor. 
In the configuration shown in Fig. 1.a the filter is 

implemented in the sensor node. We assume that a copy of 
the model and controller are contained in the sensor to 
generate the state that is compared to the measured state, and 
the input that is needed by the filter. The sensor estimates the 
parameters (and compares the state error, in the event-
triggered case) constantly. It will transmit the measured state 
and the new value of the estimated parameters, or it can send 
a smaller packet containing only the state of the model if no 
significant variation has been detected in the parameter 
values; intermittent feedback is not necessary in this case.  

C. Filter collocated with controller. 
Due to several factors, especially computational 

limitations in the sensor node, it may be necessary to 
implement the identification algorithm in the controller node. 
In this configuration (shown in Fig. 1.b) the filter in the 
controller receives a set of measurements (intermittent 
feedback is needed) that uses for estimation of the 
parameters of interest. When the estimated variables pass a 
converge test, the model is updated with the new value of the 
parameters and the state of the model is updated using the 
last measurement available. That is, we use intermittent 
feedback for parameter identification and instantaneous 
feedback for control. No model of the plant is needed in the 
sensor node and the filter updates directly the model in the 
controller immediately after its estimates have converged 
since no network exists between filter and model. For the 
case when we send the measurements based on checking the 
state error, we need a copy of the model in the sensor node in 
order to generate the model state. For this scenario we 
require the controller node to send back to the sensor node 
the new estimated parameters and the new calculated 
controller to update the model in the sensor as it does with 
the model in the controller.  

D. Adaptive stabilization examples.  
In the two previous cases, B and C, when the controller 

node receives or obtains new estimates of the parameters, a 
discrete-time algebraic Riccati equation is solved using the 
same weights and the new parameters in order to obtain a 
stabilizing control law K that reflects the new acquired 
knowledge of the plant in the control action. 

Example 2. Consider the second order system described 
by (13) with time-invariant but partially unknown parameters 
and time index T=0.01 seconds. Assume that [1 1]TB = , 
the elements 12 210.3, 1.05a a= = −  are known, and 11 22,a a  
are unknown constants. We implement an EKF in the 
controller node using intermittent feedback triggered by the 
state error. Fig. 2 shows the simulation results. Fig. 2.a 

shows the measured states that are used to compute the state 
error (14) and to make the decision about whether sending or 
not new measurements to the controller node. Fig. 2.b shows 
the error on the estimated parameters by comparing them to 
the real values that were used for the unknown parameters, 
those values in this example are 11 220.985, 0.7a a= − = − . 
Fig. 2.c shows the time intervals that the sensor establishes 
communication with the controller to send its measurements. 

The initial model was inadequate and made the real plant 
go unstable in the beginning of the execution until we 
updated the model and recomputed the controller. Every 
time the controller receives a set of measurements, the filter 
estimates again the parameters, the rest of the time the 
system runs in open loop. 

0 1 2 3 4 5 6 7 8 9 10
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0

0.5

(a
)
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0

1
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0.5

1
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e1 e2

y1 y2

 
Fig. 2. Estimation of two parameters and stabilization of stochastic MB-
NCS with intermittent feedback based on events. (a) Measured states. (b) 

Error on the estimated parameters. (c) Network communication. 
 

Example 3. A second order system of the form (1) 
(T=0.01 seconds) is interconnected to a model-based 
controller as shown in Fig. 1.a. All of the elements of the 
matrices A and B are unknown, the Kalman filter 
implemented in the sensor provides estimates of all 
parameters; we design the filter by using only one previous 
measurement. When the state error is greater than a 
predefined threshold the sensor sends the most recent 
estimates, if there is a significant variation with respect to the 
previous update, and the latest measured state to the 
controller. For illustration purposes we construct the 
communication signal r(k) as: 

0 if no packet is sent 
( ) 1 if only the state is sent

2 if both, parameters and state are sent
r k


= 



 

The initial model contained random estimates of the 
parameters and the control input obtained from that model 
does not stabilize the real plant as it can be seen in the 
beginning of the simulation in Fig. 3.a. After a few iterations 
we are able to obtain estimates of the parameters, redesign 
the controller based on the upgraded model, and update the 
state of the model as well. Variations in the main diagonal 
components of matrix A of the plant at t=2 seconds were 
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introduced and successfully identified as shown in Fig. 4. 
The real values used in this example were: 

11 2 12

21 22 2

1 2

1.231 1.303 0.503
0.034 0.820 1.086

1.8 1.4

t

t

a a
a a
b b

=

=

= − → − =
= − = →

= = −

 

In the absence of measurement noise we are able to 
identify with great precision all parameters of the plant and if 
we use a linear filter there is no restriction on the initial 
estimates compared to for example the EKF. 
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Fig. 3. Stabilization of MB-NCS in example 3. (a) Measured states. (b) 

Network communication. 
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Fig. 4. Identification of parameters A and B in example 3. (a) Error on 

parameters a11 and a12. (b) Error on parameters a21 and a22. (c) Error on 
parameters b1 and b2. 

VII. CONCLUSION 
Adaptive stabilization of MB-NCS was studied in this 

paper. By using Kalman filters we are able to overcome two 
typical restrictions in the parameter estimation literature: 
estimating state-space parameters in general form, not 
necessarily in canonical form, and performing a successful 
estimation without persistent excitation requirement by the 
input signal. Both of these issues are of great importance in 
MB-NCS applications. The typical problem in MB-NCS is 
the stabilization of a system using a state-space model and 
using the network as little as possible. The adaptation of the 
control law based on upgraded versions of the model permits 
a faster stabilization rate and reduction of bandwidth utilized 
by the system to communicate to its controller by 
appropriately designing a broadcasting strategy. The 
particular case in which we can use noiseless measurements 

of the state for identification purposes allows for the 
implementation of a linear filter in order to obtain the correct 
parameters independently of the initial values of the 
parameters of the model. 
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