
Calculation of Lyapunov Exponents Using Radial Basis Function
Networks for Stability Analysis of Nonlinear Control Systems

Yuming Sun, Xingzheng Wang, Qiong Wu and Nariman Sepheri

Abstract— The concept of Lyapunov exponents is a powerful
tool for analyzing the stability of nonlinear dynamic systems,
especially when the mathematical models of the systems are
available. However, for real world systems, such models are
often unknown. Estimating Lyapunov exponents using a time
series has the advantage in that no mathematical model is
required. The downside lies in that the method is believed to
be reliable only for estimating positive exponents, and to suffer
from generating spurious exponents. In contrary, the model-
based method is constructive and reliable for calculating both
positive and non-positive exponents. The use of the system
Jacobians is the key to the advantages of the model-based
method. In this paper, a novel approach is proposed, where the
system Jacobians are derived based on system approximation
using the Radial Basis Function (RBF) network. The proposed
method inherits the advantages of the model-based method,
yet no mathematical model is required. Two case studies are
presented to demonstrate the efficacy of the proposed method.
We believe that the work can contribute to stability analysis of
nonlinear systems of which the dynamics are either difficult to
model due to complexities or unknown.

I. INTRODUCTION

Lyapunov exponents measure the average divergence or
convergence rate of nearby orbits of an attractor in the state
space. This concept has been the subject of intensive research
for diagnosing chaotic systems and revealing stability of
complex nonlinear systems [1], [2], [3], [4]. Wolf and his
collaborators [2] described the procedure for calculating the
spectrum of Lyapunov exponents from systems of which
the mathematical models are well developed. The method
essentially takes advantage of information brought by the
system Jacobian matrix. The Jacobian matrix can describe
the amount of distortion of the flow, which is induced
by a transformation in the neighborhood of a given point.
Müller [5] extended Wolf’s method to non-smooth dynamical
systems, i.e., systems modeled by the ordinary differential
equations that contain non-differentiable terms. Overall, both
of these model-based algorithms are constructive and reliable
for calculating all positive, zero and negative exponents,
provided that Jacobian matrices are available.

Explicit mathematical models are however not always
available in practice. And even they are at hand, the deriva-
tion of system Jacobian matrices can sometimes be un-
feasible because of difficulties in modelling systems. This
limitation bolstered many efforts for estimating Lyapunov
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exponents based on a time series [2], [6]. The most attractive
advantage of using a time series is that the data can often
be measured experimentally. On the other hand, it is stated
that the time-series-based methods for calculating Lyapunov
exponents arose primarily for chaotic systems, and they
are not reliable for calculating negative and zero exponents
due to the inaccuracy induced by the local linear mapping
[7]. Additionally, identifying those true exponents from the
spurious ones generated when a time series is used remains
challenging [8].

Motivated by the above facts, a new method is developed
in this work. The proposed method takes the benefit of the
time-series-based method in that no mathematical models
are required. On the other hand, it inherits the advantages
of the model-based algorithm, in that it is constructive and
valid for estimating both positive and non-positive Lyapunov
exponents. In the proposed method, the time series of each
state of the dynamical system are assumed to be available,
which can be obtained either from a mathematical model
or measured from experiments. A Radial Basis Function
(RBF) network is constructed to approximate the nonlinear
system. Once the network trained properly, the sequence of
neural model Jacobian matrices can be obtained by utilizing
the structure information of the RBF network. And with
these neural model Jacobians, the spectrum of Lyapunov
exponents can be estimated by following Wolf’s model-based
algorithm.

To demonstrate the efficacy of the proposed method, two
dynamic systems are studied in this work. The first case
study relates to a standing biped balance system, which is
represented by a two-link inverted pendulum with one addi-
tional rigid foot-link. The biped is assumed to move in the
sagittal plane. The foot-link is required to be stationary but
not fixed on the ground, which imposes several constraints
on the system. A linear feedback control law is designed
to hold the biped upright, minimize the control torques,
meanwhile satisfy all the constraints. For stability analysis,
an RBF network is constructed to approximate the enforced
system. Lyapunov exponents are calculated both from actual
system Jacobians and neural model Jacobians, which are
found very close to each other. Comparison between the
numerical values of Lyapunov exponents based on actual
and neural Jacobians is also made for a servovalve-controlled
hydraulic actuator. In this case, the displacement of the valve
spool is provided as a control signal to drive the actuator to
reach a pre-desired position.
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II. METHODOLOGY

A. Mathematic preliminary

Here we first review the concept of Lyapunov exponents,
followed by a brief description of procedures of calculating
Lyapunov exponents based on mathematical models.

1) The concept of Lyapunov exponents: Consider a
smooth dynamical system in an n-dimensional state space
expressed in the following form:

ẋ = f(x, t), (1)

where x ∈ Rn is the state vector, x(0) = x0, and f(x, t) is
a continuously differentiable vector function. Monitoring the
long-term evolution of an infinitesimal n-sphere of initial
conditions, the sphere becomes an n-ellipsoid due to the
local deforming nature of the flow. The ith dimensional
Lyapunov exponent is then defined in terms of the length
of the ellipsoidal principal axis ‖δxi(t)‖:

λi = lim
t→∞

1
t

ln
‖δxi(t)‖
‖δxi(t0)‖

, i = 1, . . . , n, (2)

where ‖δxi(t0)‖ and ‖δxi(t)‖ represent the lengths of the
ith principal axis of the infinitesimal n-dimensional hyper-
ellipsoid at initial and current time instances, t0 and t respec-
tively. This definition indicates that Lyapunov exponents are
related to the expanding or contracting nature of different
directions in the state space. Besides, Lyapunov exponents
are independent of initial conditions within the same stability
regions.

In practical application, the finite-time Lyapunov expo-
nents are frequently used in the form:

λi =
1
t

ln
‖δxi(t)‖
‖δxi(t0)‖

, i = 1, . . . , n. (3)

In the limit as t → ∞, the finite-time Lyapunov exponents
converge to the true Lyapunov exponents [9].

The signs of Lyapunov exponents indicate the asymptotic
property of the dynamical system. Generally in a dissipative
system, an attractor is defined to be chaotic if the spectrum of
Lyapunov exponents contains at least one positive exponent.
For non-chaotic attractors such as periodic or quasi-periodic
ones, there are only zero and negative exponents, while those
exponentially stable equilibrium points are characterized by
all Lyapunov exponents being negative [3].

2) Calculation of model-based Lyapunov exponents:
Wolf et al. [2] developed the algorithm for calculating the
spectrum of Lyapunov exponents from explicit mathematical
models of systems. In their work a ”fiducial” trajectory (the
center of the sphere) is defined by the action of the nonlinear
motion equations on some initial condition. The principal
axes are determined by the evolution via the linearized
equations of an initially orthonormal vector frame anchored
to the fiducial trajectory. This leads to the following set of
equations [2]:

ẋ(t) = f
(
x(t)

)
, (4a)

Ψ̇t = J
(
x(t)

)
Ψt, (4b)

where Ψt is the state transition matrix of the linearized
system δx(t) = Ψtδx(0). The Jacobian matrix J

(
x(t)

)
is

defined as
J
(
x(t)

)
=
∂f(x)
∂xT

∣∣∣∣
x=x(t)

, (5)

and the initial conditions for numerical integrations are{
x(t0)
Ψt(t0)

}
=
{
x0

I

}
, where I is the identity matrix of proper

dimension.
To avoid misalignment of all the vectors δxi along

the direction of maximal expansion, they are reorthonor-
malized at each integration step by involving the Gram-
Schmidt Reorthonormalization (GSR) scheme, which gen-
erates an orthonormal set {u1, . . . , un} of n vectors with
the property that {u1, . . . , un} spans the same subspace as
{δx1, . . . , δxn}. This orientation-preserving property of GSR
suggests that the initial labeling of the vectors may be done
arbitrarily. Once the orthonormal vector frame {u1, . . . , un}
is produced by GSR, for a large enough integer K, one can
obtain Lyapunov exponents as follows with time-step size h
properly chosen:

λi ≈
1
Kh

K∑
j=1

ln ‖u(j)
i ‖, i = 1, 2, . . . , n, (6)

where j is the number of integration steps.

B. Calculation of neural Jacobian-based Lyapunov expo-
nents

Jacobian matrices are crucial in calculating Lyapunov
exponents. In order to carry out stability analysis of systems
with difficulties to obtain or model, system approximation
based on time series is adopted in this work for determination
of neural model Jacobians. It has been proven that any Borel
measurable function can be approximated to any desired
degree of accuracy by carefully choosing parameters of the
network, provided the network structure is sufficiently large
[10], [11].

The classical architecture of the RBF network is a three-
layer feedforward network which contains the input layer,
the hidden layer and the output layer. Fig. 1 shows a typical
RBF network configuration with l hidden nodes. Such a

Fig. 1: A typical schematic of the RBF network.
1979



network implements a mapping f : Rn → Rm according
to the overall outputs:

ŷi = wi0 × bias+
l∑

j=1

wijφj(‖x− cj‖), i = 1, 2, . . . ,m,

(7)
where x ∈ Rn is the input vector. wij are the output weights,
and the first index of the weight indicates the destination unit
of the weight, and the second one indicates the input source
for that weight. The bias neuron always emits 1, and its
connection weight wi0 has an effect of increasing or lowering
the net input of the summation junction in the next layer,
which facilitates training. φj(·) is a given function with its
center vector defined as cj = [cj1, cj2, . . . , cjn]T, where 1 ≤
j ≤ l. In our study, we select the Gaussian function for φj ,
which has the following expression:

φj = exp(−‖x− cj‖
2

2σ2
j

), (8)

where σj is the width of the jth Gaussian function.
To appropriately choose the parameters of the network,

the centers of the RBF network cj can be determined using
the K-means clustering method, while the width σj can
be fixed by employing the K-nearest neighbours heuristic
typically [12] . For the output layer, the linear weights wij
can be found by following the steps of gradient descent with
momentum algorithm.

Once the RBF network is developed for an unknown
multiple-input multiple-output (MIMO) system, the system
Jacobian matrices can be obtained from the structure infor-
mation of the network. Specifically, at step k, one entry of
the Jacobian matrix, located at the mth row and the nth

column can be written in the following form:

Jmn(k) =
∂ym(k)
∂xn(k)

≈ ∂ŷm(k)
∂xn(k)

=
l∑

j=1

wmjφj
cji − xi(k)

σ2
j

.

(9)
Given the series of neural model Jacobians at different time
instances, computing Lyapunov exponents based on time se-
ries, reduces to the problem of calculating exponents from an
explicit mathematic expression, which is a substitute for the
system under study. Since the RBF network can approximate
the actual dynamical system within an arbitrary accuracy, its
Jacobian matrices should be capable of reflecting the actual
system Jabians precisely.

III. CASE STUDIES

A. Case study I: bipedal balance system

Fig. 2(A) shows a standing biped robot, which is simplified
as a two-link inverted pendulum system representing the leg
and the torso respectively with one rigid foot-link. The joints
1 and 2 can be considered as the ankle and hip joints, and
the foot-link provides a base of support on the ground. The
free body diagram of the two-link inverted pendulum and the
free body diagram of the foot-link are shown in Figs. 2(B)
and 2(C) respectively. The biped is assumed to move in the

Fig. 2: (A) the simplified biped model, (B) the free body diagram
of the two-link inverted pendulum, and (C) the free body diagram
of the foot-link.

sagittal plane and the foot-link is required to be stationary,
which leads constraints between the foot link and the ground.
The control torques are applied at both joints to maintain
the biped at the upright posture and to satisfy the constraints
during standing. The model parameters are listed in Table I.

In Fig. 2, θ = [θ1, θ2]T are the two joint angles (clockwise
as ”+”), τ = [τ1, τ2]T are control torques applied at both
joints (clockwise as ”+”). Defining q = [q1, q2, q3, q4]T =
[θ1, θ2, θ̇1, θ̇2]T. According to the Euler-Lagrangian formu-
lation, the state-space model of the biped balance system can
be written in the following form:

q̇1 = q3,
q̇2 = q4,

q̇3 =
(
δτ1 − (δ + β

2 cos q2)τ2 + β
2 sin q2

(
δq4(q3 + q4)

−β2 q3q4 cos q2
)

+
(
δ(m1lc1 +m2l1) sin q1 − β

2

×m2lc2 cos q2 sin(q1 + q2)
)
g

)
/D,

q̇4 =
(
− (δ + β

2 cos q2)τ1 + (α+ β cos q2)τ2 + β
2 sin q2

×q4
(
q3(α− 2δ)− q4(δ + β

2 cos q2)
)

+
(
(α− δ

+β
2 cos q2)m2lc2 sin(q1 + q2)− (δ + β

2 cos q2)

×(m1lc1 +m2l1) sin q1
)
g

)
/D.

(10)
where α = m1l

2
c1 + m2l

2
1 + m2l

2
c2 + I1 + I2, β =

2m2l1lc2, δ = m2l
2
c2+I2. D is the determinant of the matrix[

α+ β cos θ2 δ + β
2 cos θ2

δ + β
2 cos θ2 δ

]
. Moreover, the horizontal and

vertical ground reaction forces can be derived as:

Fgx = m1ax1 +m2ax2 , (11a)
Fgy = m1ay1 +m2ay2 + (m1 +m2 +mf )g, (11b)

where
ax1 = −lc1 sin θ1θ̇21 + lc1 cos θ1θ̈1,
ax2 = −l1 sin θ1θ̇21 + l1 cos θ1θ̈1− lc2 sin(θ1 + θ2)(θ̇1 + θ̇2)2

+ lc2 cos(θ1 + θ2)(θ̈1 + θ̈2),
ay1 = −lc1 cos θ1θ̇21 − lc1 sin θ1θ̈1,
ay2 = −l1 cos θ1θ̇21 − l1 sin θ1θ̈1− lc2 cos(θ1 + θ2)(θ̇1 + θ̇2)2

− lc2 sin(θ1 + θ2)(θ̈1 + θ̈2).
Since the foot link is assumed to be still, but not fixed

on the ground, there is a set of constraints imposed on
the system. The gravity constraint Fgy > 0 guarantees
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TABLE I: Biped model parameters.

Symbols Parameters Nominal Value
m1 mass of the link 1 48.720 [kg]
m2 mass of the link 2 28.960 [kg]
mf mass of the foot link 2.320 [kg]
l1 length of the link 1 0.998 [m]
l2 length of the link 2 0.712 [m]

lc1
location of mass
center of the link 1 0.499 [m]

lc2
location of mass
center of the link 2 0.356 [m]

I1 inertia of the link 1 4.044 [kg·m2]
I2 inertia of the link 2 1.223 [kg·m2]
Lf length of the foot link 0.270 [m]

La
horizontal distance between
the ankle and the heel 0.050 [m]

Lb ankle height 0.070 [m]

Lc
horizontal distance between
the mass center of
the foot and the ankle

0.085 [m]

g gravity acceleration 9.8 [m/s2]
µ friction constant 0.5

xcop
location of the center
of pressure (COP)

the biped’s foot will not lift from the ground; the friction
constraint |Fgx| ≤ µFgy ensures the biped’s foot will not
slide on the ground; and the COP constraint 0 ≤ xcop ≤ Lf
along with xcop = La− LbFgx+τ1−Lcmfg

Fgy
promises the COP

will always reside within the boundary of support, i.e., there
is no rolling of the foot-link about either the toe or the
heel. These constraints determine the bounds on the control
torques, which change with the states of the system [13].
However, owing to the high nonlinearity of this two-link
biped model, the analytical expression of the control bounds
cannot be obtained in terms of θ, θ̇ and θ̈. Thus here we
only monitor the evolutions of Fgx, Fgy and the location of
pressure center xcop. The control torques and the simulation
will be terminated if any of these three constraints is violated.
This is different from most previous papers [14], [15], where
the constraints between the bipedal feet and the ground are
assumed to be satisfied automatically.

A classical state feedback control law via linear-
quadratic regulator (LQR) algorithm is adopted in
this case for stabilizing the standing biped and
meanwhile minimizing a predefined quadratic cost index
J = 1

2

∫∞
0

(xTQx + uTRu)dt. The weight matrix

Q = diag(Q1,Q2) with Q1 = Q2 =
[

1000 −500
−500 1000

]
,

R = diag(1000, 10000). The system (10) is linearized
first about the equilibrium point (q = [0, 0, 0, 0]T).
And the state feedback gain F is found to be[

1061.5 63.5 345.3 53.9
273.3 206.3 106.5 43.8

]
.

The system initial condition is given by q =
[−0.05rad, 0.03rad, 0.05rad/s,−0.03rad/s]T. Figs. 3 to 4
show the simulation results of the controlled biped. The
evolution of the states and control torques displayed in Fig.
3 indicates that the biped can be driven successfully to the

upright posture within 2.5 seconds. Figs. 4(A) and 4(B)
demonstrate time history versus Fgy and Fgx respectively.
The positive vertical ground reaction force Fgy implies the
support foot is always in contact with the ground. And
the horizontal ground reaction force Fgx can be observed
residing in the bounds of the static friction ([−µFgy, µFgy]),
indicating the foot-link does not slip. The location of the
center of pressure (xcop) staying within the contact surface
is shown in Fig. 4(C).

The proposed control strategy for system (10) is designed
through the linearized system, there is no guarantee that it
works well when implemented on the nonlinear system. Due
to complexity of the original nonlinear system, Lyapunov
exponents are employed to analyze the stability of the
controlled biped balance system. For system approximation,
an RBF network is constructed. We define a sampling time
sequence {tk}fk=0, and use [q(t0), · · · , q(tf )] as the input of
the neural model, [q̇(t0), · · · , q̇(tf )] as the desired output.
Table II summarizes the RBF network for the biped balance
system.

Since the system is 4-dimensinal, totally there are 16
entries in the Jacobian matrix. Our numerical results show
that all the absolute errors between the elements of the actual
system Jacobians and the neural model Jacobians become
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TABLE II: Structure of the RBF network for the biped balance
system.

Number of hidden nodes 10
Number of inputs, outputs 4, 4
Number of clustering samples 3000
Mean-squared error after training 1.870e-12

constant after the biped is stabilized at the upright posture,
the errors stay within the range (−0.03, 0.02), implying
that our RBF model is accurate enough to approximate the
controlled biped system. Additionally, all four Lyapunov
exponents in 100 seconds are displayed in Fig. 5, where
the solid lines represent the evolution of Lyapunov expo-
nents based on the actual system Jacobians, being compared
with the dashed lines representing those from the neural
model Jacobians. And all Lyapunov exponents converge to
negative constants which are listed in Table III, indicating
that the bipedal balance system is exponentially stable about
the equilibrium point. The low relative errors demonstrate
that the proposed method of deriving Jacobians from the
RBF network is effective for the calculation of Lyapunov
exponents.

B. Case study II: hydraulic actuator system

In practice the rates of the system states are often unavail-
able or difficult to measure. Thus, it is desirable to monitor
the system states rather than rates of the states under such
conditions. A servovalve-controlled hydraulic actuator sys-
tem of which schematic shown in Fig. 6 is studied here. The
system is composed of a double-ended horizontal hydraulic
actuator heading towards the desired position, xd = 0.01m.
All the system parameters are taken from [16]. And the basic
state equations describing the servovalve-actuator dynamics
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Fig. 5: Evolution of the Lyapunov exponents.

TABLE III: Lyapunov exponents (LEs) and their relative errors
(REs) after 100 seconds.

LEs Mathematical Model Neural Model REs
1st LE -2.8699 -2.8700 0.003%
2nd LE -2.9933 -2.9929 0.01%
3rd LE -7.1580 -7.2845 1.77%
4th LE -7.5334 -7.3829 2.00%

Fig. 6: Schematic of a typical valve-controlled hydraulic actuator.

can be formed as:
ẋp = vp,
v̇p = 1

m (APL − bvp − FL),

ṖL = 4β
V (Cvwxv

√
Ps−sgn(xv)PL

ρ −Avp).
(12)

Referring to system (12), the system states are actuator
position xp, actuator velocity vp, load pressure PL = P1 −
P2. FL denotes an external (environmental) force, which
is proportional to xp. The valve spool displacement, xv =
kp(xd−xp), serves as a control signal here and kp = 0.003.
The term ’sgn(xv)’ denotes the sign function of xv , which
is used to account for the directionality of the valve spool.

One can get the equilibrium point of system (12) as
[xd 0 kxd

A ]T. Define a new state vector x̃ = [x̃ ṽ P̃ ]T =
[xp−xd vp PL− kxd

A ]T, then system (12) can be transferred
into the following form with the new equilibrium point
located at the origin:

˙̃x = ṽ,
˙̃v = 1

m (AP̃ − bṽ − kx̃),
˙̃P = − 4β

V

(
Cvwkpx̃

√
Ps+kpsgn(x̃)(P̃+

kxd
A )

ρ +Aṽ
)
.

(13)
With setting the initial state x̃ = [−0.01m 0m/s −

1.18MPa]T, system (13) is first regulated for guiding the
states to the fixed point. The system trajectory and the
evolution of the control signal is shown in Fig. 7, from which
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it can be seen all the states are quickly driven to zero.
An RBF network is established as well to approximate the

dynamics of the discretized mathematical model. Different
from the previous case, here the desired output of the
network is setted to [x̃(t1), · · · , x̃(tf )], while the input is
[x̃(t0), · · · , x̃(tf − 1)]. Table IV provides the summary of
the trained RBF network.

Since the established RBF network is an approximator
of discretized continuous system (13) based on the Runge-
Kutta method, the numerical values of these neural model
Jacobians are incomparable with the Jacobians of the original
continuous system. However, Lyapunov exponents calculated
from the RBF network are very close to the actual expo-
nents derived from mathematical model. Fig. 8 illustrates
the evolution of all three exponents of system (13) in 100
seconds, where the solid lines stand for the exponents derived
from the actual system, while those dashed lines correspond
to the ones obtained from neural model. All the negative
constants to which the system exponents converge are shown
in Table V, indicating the system is exponentially stable. The
average relative error of all three exponents is 1.88%, which
demonstrates the effectiveness of the method proposed in this
work.

IV. CONCLUSIONS

A novel method for computing Lyapunov exponents has
been developed in this paper on the basis of the RBF

TABLE IV: Structure of the RBF network for the hydraulic actuator
system.

Number of hidden nodes 100
Number of inputs, outputs 3, 3
Number of clustering samples 2500
Mean-squared error after training 1.0310e-12
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Fig. 8: Evolution of the Lyapunov exponents.

TABLE V: Lyapunov exponents (LEs) and their relative errors
(REs) after 100 seconds.

LEs Mathematical Model Neural Model REs
1st LE -7.1693 -6.9701 2.78%
2nd LE -37.9826 -38.5416 1.47%
3rd LE -38.1660 -38.7008 1.40%

network. The method is advanced in that (1) no mathematical
models are required, (2) derivation of Jacobian matrices is
straightforward, and (3) all Lyapunov exponents, regardless
of the signs, can be estimated reliably. Two case studies have
been employed to demonstrate the efficacy of our developed
method. The accuracy of Lyapunov exponents calculated
based on the neural model Jacobians from both case studies
are extremely high.

One major limitation of this work is that we assume the
exact system dimensionality is known and all states histories
are available for system approximation. However in some
cases only information of parts of states are available. Hence,
a further study on the computation of Lyapunov exponents
based on time series of some of the states or even a scalar
time series through system identification using the RBF
network [17], is highly desirable.
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