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Abstract— This work is intended as an attempt to develop a
simple real-time guidance scheme for mobile sensors used to
enhance estimation of a spatially distributed process described
by a partial differential equation. Using Lyapunov stability
arguments, a stable control law is provided for each of the
mobile agents while taking account of the dynamics of sensor
movements, collision avoidance conditions and various modes
of inter-agent connectivity. Numerical simulations for a 1D
diffusion equation with three sensor agents are included to
demonstrate the effectiveness of such a mobile sensor network
in improving the system performance.

Index Terms— Spatial processes; PDEs; state estimation;
mobile sensors; collision avoidance; limited communication.

I. INTRODUCTION

A fundamental problem underlying state estimation of

spatially distributed process described by partial differential

equations (i.e., distributed parameter systems, or DPSs) is

the selection of sensor locations [1]. It seems clear that

measurements at certain points in the spatial domain of

the system may yield more information about the system

than those at other points and, therefore, the accuracy of

the state estimate depends on the number and locations of

the sensors. In modern measurement systems, sensors can

be located on various platforms and these platforms can be

highly dynamic in motion. This results from recent advances

in hardware, sensor and networking technologies which are

enabling large-scale deployment of superior data acquisition

systems with adjustable resolutions, called sensor networks

[2], [3].

Endowing nodes in a sensor network with mobility dras-

tically expands the spectrum of the network’s capabilities.

Naturally, mobility implies an additional layer of complexity

[3]. For example, if communication connectivity is to be

maintained, we must ensure that each node remains within

the range of at least some other nodes. We must also take

into account that mobility consumes a considerable amount

of energy, which amplifies the need for various forms of

power control. However, the complexity of the resulting

sensor management problem is compensated by a number of

benefits. Specifically, sensors are not assigned to fixed spatial

positions, but are capable of tracking points which provide

at a given time moment best information about the observed
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spatiotemporal process. In order to take advantage of these

possibilities, sensors must be deployed and then guided so

as to maximize the information extracted from the mission

space while maintaining acceptable levels of communication

and energy consumption.

The importance of mobile sensor trajectory design has

already been recognized in numerous related application

domains (for reviews, see papers [4], [5] and comprehensive

monographs [6], [7]). They were widely investigated for the

akin problem of parameter estimation, where various scalar

measures of performance based on the Fisher information

matrix (FIM) associated with the parameters to be identified

were maximized. In the seminal article [8], the D-optimality

criterion is considered and an optimal time-dependent mea-

sure is sought, rather than the trajectories themselves. On the

other hand, Uciński [6], [9], [10], apart from generalizations,

develops some computational algorithms based on the FIM.

He reduces the problem to a state-constrained optimal-

control one for which solutions are obtained via the method

of successive linearizations, which is capable of handling

various constraints imposed on sensor motions. In turn, the

work [11] was intended as an attempt to properly formulate

and solve the time-optimal problem for moving sensors

which observe the state of a DPS so as to estimate some of

its parameters. In [12], a similar technique was presented so

as to make the Hessian of the parameter estimation cost well

conditioned subject an additional constraint imposed on the

achievable D-efficiency of the solutions. In [13] this approach

was extended to trajectory design for state estimation.

As for state estimation of stochastic spatiotemporal sys-

tems from noisy observations, a common and powerful tool

is the Kalman-Bucy filter [1], [14]. In this setting, the sensor

location problem was most often formulated as minimization

of the trace of the estimate error covariance matrix (its mean

and/or terminal values) subject to a constraint in the form of

the corresponding Riccati equation. In consequence, optimal

control techniques could be employed to produce optimal

sensor locations. Thus, using Athans’ matrix minimum prin-

ciple, Nakano and Sagara derived necessary conditions in the

form of a TPBVP for the optimal sensor velocities [15], [16].

To avoid attendant computational difficulties, they developed

a suboptimal solution based on an upper bound to the

estmation error covariance matrix. In turn, Carotenuto et al.

considered a general spatiotemporal process described by its

mean and covariance kernel [17]. They minimized the energy

of the sensor movements and the mean square estimation

error at the terminal time with respect to the control input to

the sensors and their initial positions, as well as to the kernel
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of a linear operator which was supposed to estimate the

process. Numerical solutions were then sought using a quasi-

Newton algorithm. Finally, a slightly different approach was

proposed by Khapalov [18] whose attention was focused on

minimax filtering for a general linear parabolic equation.

However, although he provided necessary conditions for

optimal control of the sensors, no reference was passed to

computational procedures. It should be emphasized that all

the above solutions are primarily off-line.

The interest in mobile observations for state estimation in

DPSs seems to disappear in the mid 1990s. A renewed in-

terest in this problem has been motivated by recent advances

in hardware, sensor and networking technologies which

enable large-scale deployment of superior sensor networks

with adjustable resolutions. Consequently, the works [19]–

[24] focused on on-line optimal guidance of sensor network

nodes, which demonstrate that inclusion of a DPS model into

the optimization setting can substantially improve the quality

of the information collected by the network. Similar work

in [25] examined the problem of incorporating the sensor

trajectory dynamics into the state estimation problem and

posed the requisite problem as an optimal control problem.

In spite of many efforts, the existing solutions still suf-

fer from high complexity and only occasionally attempt

to take account of the dynamics of sensor movements,

collision avoidance conditions and various modes of inter-

agent connectivity. This was our motivation to develop here

a simple real-time guidance scheme for mobile sensors used

to enhance estimation of a linear DPS. Using Lyapunov

stability arguments, a stable control law is provided for each

of the mobile agents while taking account of all the afore-

mentioned factors. To demonstrate the effectiveness of such

a mobile sensor network in improving the system perfor-

mance, numerical simulations for a 1D diffusion equation

are included.

II. PROBLEM FORMULATION

Consider a linear infinite-dimensional dynamical system

defined on a simply-connected spatial domain Ω ⊂ R
m

(m ≤ 3), which can be modeled by the following abstract

differential equation with the output equation parameterized

by the sensor positions [26]–[28]:{
ẋ(t) = Ax(t) + Bu(t), x(0) = x0 ∈ X ,

y(t; θ) = C(θ)x(t), (1)

where x(t) is in a state space X , u(t) is in an input signal

space U , and y(t) is in an output space Y (X , U and Y are

Hilbert spaces). Here t is time, A : X → X is a possibly

unbounded state operator, B : U → X is an input opetator,

and C : X → Y = R
n is an output operator.

We assume that the state x(t) is observed by n mobile

sensors whose configurations are θi(t), i = 1, . . . , n. In other

words, setting θ(t) = (θ1(t), . . . , θn(t)), in (1) we have

C(θ(t))x(t) =



C1(θ1(t))x(t)

...

Cn(θn(t))x(t)


 . (2)

The θi’s are understood here simply as, e.g., the centers of

gravity of the mobile robots carrying the measurement equip-

ment, but this description can be easily extended to cover,

e.g., the robot heading angles. The operator C describes how

the sensing devices operate on and interact with the spatial

process. We consider two main types of sensing [29]:

Case 1. Internal zone sensors: At each instant t, observa-

tions represent a spatial average of x(t) over some sensing

region:

Ci(θi(t))x(t) =
∫

Ω

ci(ξ, θi(t))x(t, ξ) dξ, (3)

where ci( · , θi(t)) ∈ L2(Ω) with support Si(t) in Ω, i =
1, . . . , n. We assume that Si(t)∩Sj(t) = ∅ whenever i 6= j.

Case 2. Internal pointwise sensors: The supports Si(t)
reduce to points:

Ci(θi(t))x(t) =
∫

Ω

δ(ξ − θi(t))x(t, ξ) dξ, (4)

where δ( · ) is the Dirac mass concentrated at the origin.

Representative systems that can be modeled by the above

evolution equation are the advection-diffusion PDEs in one

and two spatial dimensions. For the 1D diffusion equation

on the interval Ω = [0, ℓ] with n mobile pointwise sensors

at locations θi(t) = ξsi(t) ∈ Ω ⊂ R
1

xt(t, ξ) = axξξ(t, ξ) + b(ξ)w(t),

x(t, 0) = 0 = x(t, ℓ), x(0, ξ) = x0(ξ),
(5)

a being a diffusion coefficient and b ∈ L2(Ω), the ith output

operator takes the specific form of a spatial delta function

Ci(θi(t))x(t) = x(t, θi(t)) =

∫ ℓ

0

δ(ξ−θi(t))x(t, ξ) dξ, (6)

for i = 1, . . . , n. The choice of a delta function as the

sensor model is commonly made and in the problem under

consideration it provides an analytical expression for the

sensor guidance. It should be noted that since the sensing

devices are to be moving throughout the spatial domain, the

vector of sensor locations θ is time varying.

Similarly, for the 2D diffusion PDE on the rectangle Ω =
[0, Lξ] × [0, Lζ ] with n mobile sensors at locations θi(t) =
(ξsi(t), ζsi(t)) ∈ Ω ⊂ R

2

xt(t, ξ, ζ) = a (xξξ(t, ξ, ζ) + xζζ(t, ξ, ζ)) + b(ξ, ζ)u(t),

x(t, ξ, 0) = x(t, ξ, Lζ) = 0, x(t, 0, ζ) = x(t, Lξ, ζ) = 0,

x(0, ξ, ζ) = x0(ξ, ζ),

(7)

the ith output operator is represented by the 2D delta function

and it takes the form

Ci(θ(t))x(t) = x(t, ξsi(t), ζsi(t))

=

∫ Lξ

0

∫ Lζ

0

δ(ξ − ξsi(t))δ(ζ − ζsi)x(t, ξ, ζ) dζ dξ
(8)

for i = 1, . . . , n.

It is assumed that all sensing devices have the same

sensing characteristics, which then leads to a homogeneous

sensor network. This means that, by abuse of notation, for
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the vector of sensor locations θ we have Ci(θ) = C(θi) and

y(t; θ) =



C(θ1)x(t)

...

C(θn)x(t)


 .

The above can be interpreted as having one single output

operator that represents the sensor model and it is evaluated

at different spatial locations within the spatial domain Ω.

Problem statement: The problem under consideration is to

propose an integrated state estimation and mobile sensor

guidance scheme in order to estimate the distributed process

state faster than with the use of an estimator with a static

sensor network.

Associated with the above estimation problem are the

following questions:

1) How to choose the estimator structure (Kalman or

Luenberger observer)?

2) How to navigate the sensors within the spatial domain

Ω via the sensor spatial relocation, that would help the

estimation problem while ensuring that agent collision

and agent clustering is avoided?

3) How to incorporate the agent dynamics directly into

the estimation problem without having to propose a

lower level control scheme for tracking of the agents

with the reference trajectory derived by the estimation

scheme?

III. STATE ESTIMATOR WITH MOBILE SENSING AGENTS

The above three questions are answered using Lyapunov

stability arguments for the associated state estimation error

system. For simplicity and without restriction of generality,

in what follows we assume that our spatiotemporal system

is one-dimensional, i.e., m = 1.

A. Simplified spatially distributed filter architecture with

mobile agents

To directly answer the first question is to use a Luenberger

observer in which the filter gain attains a specific form of a

“collocated” sensor, in the sense of L(θ) = −C∗(θ)Γ, where

Γ is an n×n positive definite matrix and the asterisk denotes

the adjoint operator.

The proposed state estimator takes the form

˙̂x(t) = (A+ L(θ)C(θ)) x̂(t)− L(θ)y(t; θ),
x̂(0) = x̂0 6= x(0).

(9)

To examine the stability and extract the guidance laws

based on Lyapunov stability arguments, one considers the

associated error dynamics e(t) = x(t) − x̂(t), governed by

the following evolution equation in X
ė(t) = Acl(θ)e(t), e(0) 6= 0, (10)

where Acl(θ) = A− C∗(θ)ΓC(θ).
The output estimation error is then given by

ε(t) =



ε1(t)

...

εn(t)


 =



C(θ1)e(t)

...

C(θn)e(t)


 . (11)

B. Dynamics of mobile agents

It is assumed that each sensing device is affixed on a

mobile agent (a terrain vehicle or a mobile robot) with

dynamics governed by

miθ̈i(t) + diθ̇i(t) + kiθi(t) = fi(t), i = 1, . . . , n, (12)

where fi(t) are agent controls and mi, di and ki are given

parameters. With the above expression for the vehicle dy-

namics, we can now answer the last two questions associated

with the proposed estimation problem.

C. Lyapunov-based guidance scheme

The choice of the Lyapunov function will help with the

derivation of the guidance scheme. However, additional mod-

ifications to the nominal function consisting of the estimation

error norm and the vehicle energy (kinetic and potential)

should be incorporated in order to account for collision

avoidance and clusterization [6]. The Lyapunov function thus

consists of three expressions

V (t) = Verror(t) + Vcollision(t) + Vvehicle(t). (13)

The first Lyapunov function is given by

Verror(t) = −1

2
〈Acl(θ)e(t), e(t)〉 (14)

and describes the “energy” of the error system (10). This

function is the same as the one used in [20] and essen-

tially represents the negative of the derivative of the state

estimation error norm along the trajectories of (10). The

negative sign ensures the positive definiteness of Verror(t).
Such a choice, even in the absence of vehicle kinematics,

ensures that the “control” variable θ(t) will appear in the

time derivative of Verror(t). The second Lyapunov function is

given by

Vcollision(t) = wP (t), (15)

where P (t) = 1
2

∑n
i=1

∑n
j=1
j 6=i

Pij(θi, θj), the individual

penalty terms are

Pij(θi, θj) =

{
max

(
0,

1

(θi − θj)2 − r2

)}2

(16)

and r denotes the minimum safe distance between the agents.

The parameter w > 0 is a user-defined weight. It provides a

penalty term for collision and clusterization avoidance. It is

a simplified version of the one used in [30].

The third component Lyapunov function describes the

vehicle energy which is simply taken as the sum of kinetic

and potential energies of the vehicles

Vvehicle(t) =
1

2

n∑

i=1

(
miθ̇

2
i (t) + kiθ

2
i (t)

)
. (17)

The time derivative of the Lyapunov function is found via

the time derivatives of the three component Lyapunov func-

tions. The following technical lemmas provide the details of

the derivatives of these Lyapunov functions and allow for the

stability analysis and guidance of the integrated estimation

system and guidance policies. Details of their proofs can be

found in Appendices A, B and C, respectively.
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Lemma 1: The time derivative of Verror(t) along the tra-

jectory of the error system (10) is

V̇error(t) = −‖Acl(θ)e(t)‖2 + εT (t)Γ
∂ε(t)

∂θ
θ̇(t). (18)

It should be noted that this choice of the Lyapunov function

yields an explicit expression of the gradient of the output

estimation error with respect to the sensor location and of

the sensor velocities.

Lemma 2: The time derivative of Vcollision(t) is

V̇collision(t) = w

n∑

i=1

n∑

j=1
j 6=i

∂Pij

∂θi
θ̇i(t). (19)

Lemma 3: The time derivative of Vvehicle(t) along the

vehicle trajectories (12) is

V̇vehicle(t) =
n∑

i=1

(
θ̇i(t)fi(t)− diθ̇

2
i (t)

)
(20)

Since the sensing devices are assumed identical, one must

make the explicit assumption of homogeneous network.

Assumption 1 (Homogeneous network): All sensing de-

vices have the same characteristics, in the sense that for the

vector of sensor locations θ ∈ Ωn we have Ci(θ) = C(θi)
for i = 1, . . . , n.

Equipped with the above results, one may be able to

provide for a guidance policy based on Lyapunov stability

arguments. This leads to the following result which provides

the vehicle guidance with collision-free conditions. The next

result extends to the case of communication constraints.

Theorem 1: Consider the infinite dimensional system (1)

where the sensors satisfy the homogeneous network condi-

tion in Assumption 1. The guidance policy

fi(t) = −∂εi(t)

∂θi

n∑

j=1

γijεj(t)− liθ̇i(t)

− w

n∑

j=1
j 6=i

∂Pij

∂θi
, i = 1, . . . , n,

(21)

for the mobile sensors with dynamics given by (12), with

γij > 0 user-defined communication gains, with w > 0 user-

defined collision avoidance gain, and with li user-defined

velocity feedback gains such that di + li > 0, results in a

stable system.

Proof: Consider the Lyapunov function (13). Using

Lemmas 1, 2 and 3 we have

V̇ (t) = −‖Acl(θ)e(t)‖2 + εT (t)Γ
∂ε(t)

∂θ
θ̇(t)

+ w

n∑

i=1

n∑

j=1
j 6=i

∂Pij

∂θi
θ̇i(t)

+

n∑

i=1

(
θ̇i(t)fi(t)− diθ̇

2
i (t)

)
.

(22)

The Jacobian matrix
∂ε(t)
∂θ

is given by

∂ε(t)

∂θ
=




∂ε1
∂θ1

∂ε1
∂θ2

. . .
∂ε1
∂θn

∂ε2
∂θ1

∂ε2
∂θ2

. . .
∂ε2
∂θn

. . . . . . . . . . . . . . . . . . . . . .

∂εn
∂θ1

∂εn
∂θ2

. . .
∂εn
∂θn




.

However, since each agent uses its own sensor to estimate

its own output estimation error, the above Jacobian matrix is

diagonal:

∂ε(t)

∂θ
= Diag

[
∂ε1
∂θ1

, . . . ,
∂εn
∂θn

]
.

and therefore the second term in (22) simplifies to

εT (t)Γ(θ)
∂ε(t)

∂θ
θ̇(t) = εTΓ




θ̇1
∂ε1
∂θ1
...

θ̇n
∂εn
∂θn



.

The last term in (22) can be compactly written as
n∑

i=1

(
θ̇i(t)fi(t)− diθ̇

2
i (t)

)
= fT (t)θ̇(t)− θ̇T (t)Dθ̇(t),

where

f(t) =



f1(t)

...

fn(t)


 , θ̇(t) =



θ̇1(t)

...

θ̇n(t)


 ,

D = Diag [d1, . . . , dn] .

The third term in (22) is written as

w
n∑

i=1

n∑

j=1
j 6=i

∂Pij

∂θi
θ̇i = w1T

(
∂P

∂θ

)
θ̇,

where 1 is the n-dimensional vector of 1’s. The above allow

one to rewrite (22) as

V̇ (t) = −‖Acl(θ)e(t)‖2 + εT (t)Γ
∂ε(t)

∂θ
θ̇

+ w1T

(
∂P

∂θ

)
θ̇ + fT (t)θ̇(t)− θ̇T (t)Dθ̇(t)

= −‖Acl(θ)e(t)‖2 +
(
εT (t)Γ

∂ε(t)

∂θ
+ w1T

(
∂P

∂θ

)

+ fT (t)− θ̇T (t)D
)
θ̇(t)

The choice εT (t)Γ∂ε(t)
∂θ

+ w1T
(
∂P
∂θ

)
+ fT (t) = −θ̇T (t)L,

where L is a diagonal n × n matrix such that D + L is

positive definite, yields

f(t) = −
(
∂ε(t)

∂θ

)T

Γε(t)− w

(
∂P

∂θ

)T

1− Lθ̇(t). (23)

In terms of the individual agents, the guidance policy is

fi(t) = −∂εi(t)

∂θi




n∑

j=1

γijεj(t)


− liθ̇i(t)− w

n∑

j=1
j 6=i

∂Pij

∂θi
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for i = 1, . . . , n. The Lyapunov function then has the

derivative given by

V̇ (t) = −‖Acl(θ)e(t)‖2 − θ̇T (t)(L+D)θ̇(t) ≤ 0.

Remark 1 (decoupled guidance): When the collision-

avoidance modification is not implemented, i.e., when

w = 0, we have

fi(t) = −∂εi(t)

∂θi

n∑

j=1

γijεj(t)− liθ̇i(t), i = 1, . . . , n.

One may choose Γ to be a diagonal matrix and in this case

the guidance

fi(t) = −γii
∂εi(t)

∂θi
εi(t)− liθ̇i(t), i = 1, . . . , n

becomes decoupled, with each agent being aware of only its

own output estimation error, i.e., we are faced with severe

inter-agent disconnectivity.

Remark 2 (inter-agent communication): A limited inter-

agent communication can be represented by the dependence

of the gain matrix Γ on the vehicle positions θ. Some of

its elements may be zero designating loss of communication

between two agents. Note, however, that Γ(θ) must then be

positive definite, which restricts possible parameterizations.

Logically, the gain γij must depend on the distance

between Agent i and Agent j. For a longer distance, this

gain may be close to zero (or just be zero). This may warrant

a study on its own, but for now, we propose the gain matrix

of the form

Γ(θ) =
[
γij(θi, θj)

]
, (24)

where γij(θi, θj) = α exp(−β|θi − θj |). Here α and β are

fixed coefficients. What is more, β steers the strength of the

coupling between the two agents. (The larger β, the looser

the coupling; for large β the gains γij will be practically

zero even for agents which are close to each other.)

The above form (drawn from geostatistics [31], where it

corresponds to a typical covariance kernel of a random field)

guarantees that Γ(θ) will be positive definite whenever all

agents have different locations.

Introduction of (24) implies the appearance of an addi-

tional term when determining V̇error(t):

1

2

d

dt
〈e(t), Acl(θ)e(t)〉 = ‖Acl(θ)e(t)‖2 − 〈∂ε(t)

∂θ
θ̇,Γε(t)〉

− 〈ε(t), dΓ(θ)
dt

ε(t)〉
︸ ︷︷ ︸

new term

.

But we have

〈ε(t), dΓ(θ)
dt

ε(t)〉 =
n∑

i=1

〈ε(t), ∂Γ(θ)
∂θi

ε(t)〉 θ̇i

= ηT (t, θ)θ̇(t),

where

η(t, θ) =




εT (t)
∂Γ(θ)

∂θ1
ε(t)

...

εT (t)
∂Γ(θ)

∂θn
ε(t)




and

ηi(t, θ) = εT (t)
∂Γ(θ)

∂θi
ε(t)

= 2αβεi(t)

n∑

j=1
j 6=i

sgn(θj − θi) exp(−β|θi − θj |)εj(t).

Accordingly, the agent guidance law (23) has to be mod-

ified as follows:

fi(t) = −∂εi(t)

∂θi

n∑

j=1

γij(θi, θj)εj(t)

− liθ̇i(t)− ηi(t, θ)− w

n∑

j=1
j 6=i

∂Pij

∂θi
.

(25)

IV. EXAMPLE

We consider the 1D PDE in (5), modified to include a

“moving” disturbance

xt(t, ξ) = axξξ(t, ξ) + d(t, ξ)v(t),

x(t, 0) = 0 = x(t, ℓ), x(0, ξ) = x0(ξ),

where v(t) is the “intensity” and d(t, ξ) is the spatial

distribution of the moving disturbance or source. Using the

sensor model (6) we have that

∂εi(t)

∂θi
=

∂

∂θi

∫ ℓ

0

δ(ξ − θi)e(t, ξ) dξ

=
∂

∂θi
e(t, θi) = eξ(t, θi).

This essentially requires the spatial gradient of the output

estimation error at the current sensor location θi(t). This

explicit form of the spatial gradient, owing to the sensor

model assumed in (6), permits one to realize the proposed

guidance policy (21). For this case, the guidance policy is

fi(t) = −eξ(t, θi)
n∑

j=1

γije(t, θj))− liθ̇i(t)− w
n∑

j=1
j 6=i

∂Pij

∂θi

for i = 1, . . . , n, where the last term is given by (B.1).

As for a specific implementation, the spatial gradient

was approximated using a finite divided central difference

formula, which amounts to replacing a pointwise sensor by

a two-pronged probe [22]. (In other words, each sensing

vehicle has two pointwise sensors attached to it.)

The 1D PDE was simulated with 80 linear elements and

the proposed filter was implemented with n = 3 mobile

sensors. The spatial domain was Ω = (0, 1), i.e., ℓ = 1,

and the diffusivity constant was set to a = 5 × 10−3.

The initial sensor locations were taken as θ1(0) = 0.25ℓ,
θ2(0) = 0.75ℓ and θ3(0) = 0.50ℓ and the initial velocities

were set to zero. The plant initial condition was set to

x(0, ξ) = sin(πξ/ℓ)e−7ξ2 and for the estimator was set to
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Fig. 1. Estimation of 1D diffusion: evolution of spatial L2 norm of
estimation error.
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x̂(0, ξ) = 0. For simplicity, the gain matrix Γ was taken as

constant, thereby implementing an all-to-all connectivity

Γ = 10−4



3 1 1
1 3 1
1 1 3


 .

The weight on the collision penalty was chosen as w =
10−4 and the collision-free radius as r = 0.01. The vehicle

parameters were chosen as mi = 1, di =
√
2 and ki = 1.

The system was simulated for 20 seconds. The moving

source was taken as d(t, ξ) = δ(ξ− ξc(t)), with the centroid

of the source given by ξc(t) = ℓ(0.35 cos(πt/20) + 0.5).
Figure 1 depicts the evolution of the state error norm for

both fixed and mobile sensors, where it is observed that

mobile sensors can lead to a faster convergence of e(t, ξ)
to zero. The same is observed in Figure 2 when the state

error e(t, ξ) is plotted versus the spatial variables for four

arbitrarily selected time instances. Once again, when sensors

are allowed to move, the convergence of e(t, ξ) is faster.

Finally, the trajectory of the three mobile sensors is depicted
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Fig. 3. Estimation of 1D diffusion: sensor trajectories.

in Figure 3. Observe that the mobile agents do not collide

with one another.

V. CONCLUSIONS

The aim of this work was to propose a relatively sim-

ple guidance scheme for a network of (possibly) partially

connected sensor-equipped vehicles to estimate a spatially

distributed process described by a linear PDE. The novelty

here is that the state observer structure was decided a pri-

ori for implementation simplicity and real-time realization,

while taking into account dynamic models of sensing agent

movements and collision avoidance conditions. Numerical

results confirm the effectiveness of the proposed scheme.

Numerous important topics exceed the scope of this paper.

They include the well-posedness of the observer equations, a

thorough study of the influence of inter-agent communication

or the numerical approximation to the spatial gradient, as

well as extensions to more spatial dimensions or the case

of measurement and process noise. This will appear in a

forthcoming publication.

APPENDIX A

Proof of Lemma 1. The sought time derivative is

1

2

d

dt
〈e(t),Acl(θ)e(t)〉

=
1

2

d

dt
〈e(t),

(
A− C∗(θ)ΓC(θ)

)
e(t)〉

=
1

2

d

dt

{
〈e(t),Ae(t)〉 − 〈C(θ)e(t)︸ ︷︷ ︸

ε(t)

,Γ C(θ)e(t)︸ ︷︷ ︸
ε(t)

〉
}

= 〈ė(t),Ae(t)〉 − 〈ε̇(t),Γε(t)〉

= 〈ė(t),Ae(t)〉 − 〈C(θ)ė(t) + ∂ε(t)

∂θ
θ̇,Γε(t)〉

= 〈ė(t),Acl(θ)e(t)〉 − 〈∂ε(t)
∂θ

θ̇,Γε(t)〉

= ‖Acl(θ)e(t)‖2 − εT (t)Γ
∂ε(t)

∂θ
θ̇.

(A.1)
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Therefore, one has

V̇error(t) = −‖Acl(θ)e(t)‖2 + εT (t)Γ
∂ε(t)

∂θ
θ̇.

For the 1D diffusion equation, the second term simplifies to

∂εi
∂θi

=
∂

∂θi

∫ ℓ

0

δ(ξ − θi)e(t, ξ) dξ

=
∂

∂θi
e(t, θi) =

∂

∂ξ
e(t, ξ)

∣∣∣
ξ=θi

= eξ(t, θi).

APPENDIX B

Proof of Lemma 2. The time derivative is

∂Pij

∂θi
=





−4(θi − θj)(
(θi − θj)2 − r2

)3 if |θi − θj | > r,

undefined if θi = θj ,

0 if |θi − θj | < r.

(B.1)

Observing that

Pij = Pji,
∂Pij

∂θi
= −∂Pji

∂θi
, (B.2)

then we have

V̇collision(t) =
1

2
w

n∑

i=1

n∑

j=1
j 6=i

(
∂Pij

∂θi
θ̇i +

∂Pij

∂θj
θ̇j

)

=
1

2
w

n∑

i=1

n∑

j=1
j 6=i

(
∂Pij

∂θi
θ̇i +

∂Pji

∂θj
θ̇j

)

= w

n∑

i=1

n∑

j=1
j 6=i

∂Pij

∂θi
θ̇i.

(B.3)

APPENDIX C

Proof of Lemma 3. The time derivative is

V̇vehicle(t) =

n∑

i=1

miθ̈i(t)θ̇i(t) + kθ̇i(t)θi(t)

=

n∑

i=1

(
θ̇i(t)fi(t)− diθ̇

2
i (t)

)
.
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[27] M. Tucsnak and G. Weiss, Observation and Control for Operator

Semigroups. Basel: Birkhäuser, 2009.
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