
Iterative Source–Channel Coding Approach to Witsenhausen’s

Counterexample

Johannes Karlsson, Ather Gattami, Tobias J. Oechtering, Mikael Skoglund

Abstract— In 1968, Witsenhausen introduced his famous
counterexample where he showed that even in the simple linear
quadratic static team decision problem, complex nonlinear
decisions could outperform any given linear decision. This
problem has served as a benchmark problem for decades where
researchers try to achieve the optimal solution. This paper intro-
duces a systematic iterative source–channel coding approach to
solve problems of the Witsenhausen Counterexample-character.
The advantage of the presented approach is its simplicity.
Also, no assumptions are made about the shape of the space
of policies. The minimal cost obtained using the introduced

method is 0.16692462, which is the lowest known thus far.

I. INTRODUCTION

The most fundamental problem in control theory, namely

the static output feedback problem has been open since the

birth of control theory. The question is whether there is

an efficient algorithm that can decide existence and find

stabilizing controllers, linear or nonlinear, based on imperfect

measurements and given memory. The static output feedback

problem is just an instance of the problem of control with

information structures imposed on the controllers, which has

been very challenging for decision theory researchers. In

1968, Witsenhausen [21] introduced his famous counterex-

ample:

inf
γ1(·),γ2(·)

E [k2γ2
1(X0) + X2

2] (1)

where

X1 = γ1(X0) + X0, (2)

X2 = X1 − γ2(Y2), (3)

Y1 = X0, (4)

Y2 = X1 + W, (5)

X0 ∼ N(0, σ2), and W ∼ N(0, 1). Here we have two

decision makers, one corresponding to γ1 and the other to γ2.

The problem is a two-stage linear quadratic Gaussian control

problem, where the cost at the first time-step is E[k2γ2
1(X0)]

and EX2
2 at the second one. At the first time-step, the

controller has full state measurement, Y1 = X0. At the

second time-step, it has imperfect state measurement, Y2 =
X1 + W . What is different to the classical output feedback

problem, is that the controller at the second stage does not

have information from the past since it has no information

about the output Y1. Thus, the controller is restricted to be

The authors are with the School of Electrical Engineering, Royal Institute
of Technology (KTH), Stockholm, Sweden. E-mail: {johk, gattami,

tobias.oechtering, mikael.skoglund}@ee.kth.se.

X0

W

X1 Y2
γ1 γ2

Fig. 1. Schematic view of the system.

a static output feedback controller. Witsenhausen showed

that even in the simple linear quadratic Gaussian control

problem above, complex nonlinear decisions could outper-

form any given linear decision. This problem has served as

a benchmark problem for decades where researchers try to

achieve the optimal solution. It has been pointed out that

the problem is complicated due to a so called “signaling-

incentive”, where decisions are not only chosen to minimize

a given cost, but also to encode information in the decisions

in order to signal information to other decision makers in

the team. In the example above, decision maker 2 measures

Y2 = X0 + γ1(X0) + W , so its measurement is affected

by decision maker 1 through γ1. Hence, decision maker 1

not only tries to optimize the quadratic cost in (1), but also

signal information about X0 to decision maker 2 through its

decision, γ1(X0).
The problem also has a nice communication theoretic

analogue. First, write Witsenhausen’s counterexample as

minimizing the cost

E
[
k2γ2

1(X0) + (X0 + γ1(X0) − γ2(X0 + γ1(X0) + W))2
]

with respect to γ1(·) and γ2(·). Now consider the slightly

modified problem

minimize E (X0 − γ2(γ1(X0) + W))2

subject to E γ2
1 ≤ p

The modification made is that we removed X0 term from

the measurement of γ2, and removed γ1 from the objective

function, and instead added a constraint E γ2
1 ≤ p to make

sure that it has a limited variance (of course we could set

an arbitrary power limitation on the variance). The modified

problem is exactly the Gaussian channel coding/decoding

problem!

Previous work has been pursued on understanding the

Witsenhausen Counterexample. Suboptimal solutions where

found in [13] studied variations of the problem when the

signaling incentive was eliminated. In [14], [12], connections

to information theory where studied. An extensive study

of the information theoretic connection was made in [3],

where it was shown that coupling between decision makers

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 5348

in the cost function introduced the nonlinear behavior of the

optimal strategies. An ordinal optimization approach was

introduced in [5] and a hierarchical search approach was

introduced in [16], where both rely on a given structure

of the decisions. The first method that showed that optimal

strategies may have “slopes” to the quantizations was given

in [2]. Solutions with bounds are studied in [11]. A potential

games approach in the paper by [17] found the best known

value to the date of its publication, namely 0.1670790.

In this paper, we will introduce a generic method of

iterative optimization based on ideas from source–channel

coding [9], [8], [20], [15], that could be used to solve

problems of the Witsenhausen Counterexample character.

The numerical solution we obtain for the benchmark problem

is of high accuracy and renders the lowest value known thus

far, 0.16692462.

II. NOTATION

p(·) and p(·|·) denote probability density functions (pdfs)

and conditional pdfs, respectively.

III. ITERATIVE OPTIMIZATION

We will now present an iterative design algorithm, based

on person-by-person optimality, for solving the minimization

in equation (1). The method we propose is related to the

Lloyd–Max algorithm [18], [19], [10] that is successfully

used when designing quantizers. A quantizer can be de-

scribed by its partition cells and their corresponding repro-

duction value. The partition cells define to which codeword

analog values are encoded and the reproduction values define

how the analog value is reproduced from the codeword.

In general, there is no explicit, closed-form solution to the

problem of finding the optimal quantizer [10]. The idea of the

Lloyd–Max algorithm is to assume that either the partition

cells or the reproduction values are fixed; with one part

fixed, it is straightforward to derive an optimal expression

for its counterpart. By optimizing one part at a time in

an iterative fashion, the quantizer will converge to a local

optimum. The Lloyd–Max algorithm has been generalized

and used in various joint source–channel coding applications,

for example, [6], [22], [7], [8], [20], [15]. The generalization

of the Lloyd–Max algorithm that will be used in this paper

involves four key elements:

1) Formulation of necessary conditions on γ1 and γ2 such

that they are individually optimal given that γ2 and γ1,

respectively, are fixed.

2) Discretization of the “channel” space between γ1 and

γ2 such that X1 and the input to γ2 are restricted to

belong to a finite set SL.

3) Iterative optimization of γ1 and γ2 to make sure that

they, one at a time, fulfill their corresponding necessary

conditions.

4) Use of a technique called noisy “channel” relaxation

that makes the solution less sensitive to the initializa-

tion.

A. Necessary Conditions on γ1

Let us first define the function γ̃1 as

γ̃1(x0) , γ1(x0) + x0 = x1. (6)

Without loss of generality, we will optimize with respect to

γ̃1. The cost we want to minimize is given by

J , E[k2γ2
1(X0) + (X1 − γ2(Y2))

2]. (7)

Using Bayes’ rule, the expected cost function can now be

expressed as

J =

∫

p(x0, y2|γ̃1) F (x0, γ̃1(x0), γ2(y2)) dx0dy2

=

∫

p(x0)p(y2|x0, γ̃1) F (x0, γ̃1(x0), γ2(y2)) dx0dy2

=

∫

p(x0)p(y2|γ̃1(x0)) F (x0, γ̃1(x0), γ2(y2)) dx0dy2,

(8)

where

F (x0, x1, γ2(y2)) =
(

k2(x1 − x0)
2 + (x1 − γ2(y2))

2
)

.

(9)

Since the integrand in (8) is positive for all values of x0, it

is clear that the optimization of γ̃1 (assuming γ2 is fixed)

can be done individually for each x0. A necessary condition

for γ̃1 to be optimal is given by

γ̃1(x0) = arg min
x1∈R

(∫

p(y2|x1) F (x0, x1, γ2(y2)) dy2

)

(10)

for all x0 ∈ R.

B. Necessary Conditions on γ2

If we now assume that γ1 is fixed, we see that the the first

term in (7) is a constant. The minimization of J with respect

to γ2 is therefore equivalent to

min
γ2(·)

E[(X1 − γ2(Y2))
2], (11)

which is the mean-squared error (MSE). It is well known that

the MSE is minimized by the conditional expected value;

hence,

γ2(y2) = E[X1|y2] (12)

for all y2 ∈ R, is a necessary condition for γ2(y2) to be

optimal.

C. Discretization

Although (10) and (12) would be possible to numerically

evaluate for a particular x0 and y2, respectively, they are

impractical since the full representation of the functions is

infinite-dimensional. To get around this problem we intro-

duce the set

SL =
{

− ∆
L − 1

2
,−∆

L − 3

2
, . . . , ∆

L − 3

2
, ∆

L − 1

2

}

,

(13)

5349

where L ∈ N and ∆ ∈ R+ are two parameters that determine

the number of points and the spacing between the points,

respectively. Next, we impose the constraint x1 ∈ SL, that

is, the output of γ̃1 can only take one out of a finite number

of values. In a similar way, the input to γ2 is discretized such

that,

γ2(y2) = γ̃2(ỹ2), ỹ2 = QSL
(y2) ∈ SL, (14)

where QSL
(y2) maps y2 to the closest point in the set

SL. γ2 can now be stored in the form of a lookup table

where each point in SL is associated with an output value.

The approximation of the real space with SL can be made

more and more accurate by decreasing ∆ and increasing L.1

Finally, since X0 is still infinite-dimensional, we use Monte-

Carlo samples of X0 to represent the input to γ̃1. γ̃1 is now

specified by evaluating

γ̃1(x0) = arg min
x1∈SL

∑

ỹ2∈SL

p(ỹ2|x1) F (x0, x1, γ̃2(ỹ2))

(15)

for each of the Monte-Carlo samples that represent X0. In a

similar way, γ̃2 can be expressed as

γ̃2(ỹ2) = E[X1|ỹ2], (16)

for all ỹ2 ∈ SL, where the expectation with respect to X0 is

evaluated by using the Monte-Carlo samples.

D. Design Algorithm

Given the above expressions for γ̃1 and γ̃2 it will be possi-

ble to optimize the system iteratively. We do this by keeping

one part of the system fixed while we optimize the other part.

One common problem with iterative techniques like the one

suggested here is that the final solution will depend on the

initialization of the algorithm. If the initialization is bad we

are likely to end up in a poor local minimum.

In joint source–channel coding, one method that has

proven to be helpful in counteracting this is noisy channel

relaxation (NCR) [9], [8], [20], [15]. The idea of NCR is

to change some parameter and first design a system for a

completely different scenario with a simpler solution. The

solution that is obtained is then used as initialization when

designing for a scenario that is a bit closer to the true

scenario. In joint source–channel coding, this is done by first

designing a system for a channel with a lower signal-to-noise

ratio (SNR) than the target SNR, which explains the name

of the method. In the Witsenhausen setup, we have found

that the ideas from NCR can be used as follows. Design a

system for a high value of k first and then gradually decrease

k until the desired value of k is reached. The reason to start

with a high value of k is that the design algorithm will find

a solution where γ̃1(x0) ≈ x0 in this case (i.e., γ1(x0) ≈ 0)

independently of γ2. The design procedure including the

NCR part is given in Algorithm 1.

Each update on line 7 and 8 in Algorithm 1 will decrease

the cost. Since the cost is lower bounded, it is clear that the

1While decreasing ∆, one has to increase L to make sure that max(x ∈
SL) = ∆(L − 1)/2 does not decrease.

Algorithm 1 Design Algorithm

Require: Initial mapping of γ̃2, the value k for which the

system should be optimized and the threshold δ that

determines when to stop the iterations.

Ensure: Locally optimized γ̃1 and γ̃2 .

1: Let k′ > k.

2: while k′ > k do

3: Decrease k′ according to some scheme (e.g., linearly).

4: Set the iteration index i = 0 and J (0) = ∞.

5: repeat

6: Set i = i + 1
7: Find the optimal γ̃1 by using (15).

8: Find the optimal γ̃2 by using (16).

9: Evaluate the cost function J (i) according to (7).

10: until (J (i−1) − J (i))/J (i−1) < δ
11: end while

algorithm will converge. It may happen that the algorithm

converges to a local optimum, however, as will be seen in

the following section the local optima we obtain are still

better than any previously reported results.

IV. RESULTS

A. Implementation Aspects

For the evaluation of the design algorithm we have initially

used L = 201 levels and chosen ∆(L) = 10σ/(L − 1).
We have used 400000 Monte-Carlo samples in the final

optimizations to represent X0. Since it is known that the

optimal γ1 is symmetric about origin [21], we have restricted

γ̃1 to have this symmetry by generating only positive Monte-

Carlo samples and thereafter reflecting the resulting γ̃1-

function for negative values of x0.

To be able to compare our results to previously reported

results, we have set σ = 5 and k = 0.2. However, since

we are using the NCR idea, we have initially used the

value k′ = 3 and decreased it according to the series

{3, 2, 1.5, 1, 0.6, 0.4, 0.3, 0.2}. Before running the design al-

gorithm, we require γ̃2 to be initialized. However, due to the

NCR this has little impact on the final solution and we have

used the initialization γ̃2 ≡ 0.

Once we have obtained the solution for k′ = 0.2, we have

increased the precision by expanding the number of points

in the discrete set from L to L′ and updated γ̃2 according to

γ̃
(L′)
2 (ỹ2) = γ̃

(L)
2 (QSL

(ỹ2)) (17)

for all ỹ2 ∈ SL′ . Thereafter the inner part of the design

algorithm, that is, lines 4–10, have been run again to obtain

a system optimized for the increased number of points L′.

By repeating this refinement, the precision increases and the

cost decreases as will be shown later. This method of refining

the precision is similar to the one-way multigrid algorithm

that is analyzed in [4]. The evaluations of (15) and (16)

have been done using an exhaustive search, therefore, the run

time is exponential in the number of levels L. An example

5350

TABLE I

FINAL COST FOR DIFFERENT SOLUTIONS (L = 12801)

Steps Stage-1 Cost Stage-2 Cost Total Cost

Witsenhausen [21]a 0.40423088 0.00002232 0.40425320
Bansal and Bansar [3]a 0.36338023 0.00163460 0.36501483

Deng and Ho [5]a 0.13948840 0.05307290 0.19256130
Baglietto et al. [2] 0.1701

Lee et al. [16] 0.13188408 0.03542912 0.16731321
Li et al. [17] 0.1670790

This paper, 3-step 0.13493778 0.03201113 0.16694891
This paper, 3.5-step 0.13462186 0.03230369 0.16692555

This paper, 4-step 0.13484828 0.03207634 0.16692462

a Costs obtained from [16].

TABLE II

COSTS FOR DIFFERENT PRECISIONS FOR THE 4-STEP SOLUTION

L M Stage-1 Cost Stage-2 Cost Total Cost

201 16 0.12104248 0.05764052 0.17868301
401 22 0.13015033 0.03883388 0.16898421
801 30 0.13530785 0.03200857 0.16731642

1601 56 0.13496610 0.03206243 0.16702853
3201 110 0.13486814 0.03208140 0.16694954
6401 210 0.13485895 0.03207070 0.16692966

12801 396 0.13484828 0.03207634 0.16692462

of the number of iterations that are required and the total

computation time can be found in Appendix II.

B. Numerical Results

During the first steps of the NCR k′ is high. This means

that the output of γ̃1 should follow the input closely to

avoid large costs in the first stage. If continuous outputs

were allowed, the output would be identical to the input.

However, since we are working with a discretized system,

only outputs from the set SL are possible. As k′ reaches

0.4–0.6 the step behavior of the output appears. Depending

on the realization of the Monte-Carlo samples we get either a

3.5-step mapping as shown in Figure 2 or a 4-step mapping

as shown in Figure 3 (occasionally, a 3-step solution has

occurred). The total costs for these solutions are stated in

Table I. For ease of comparison, we have also included

the costs of previously reported results. As can be seen,

all our mappings have similar performance and all of them

give lower costs than the previously reported lowest cost —

0.1670790 [17].

In Table II we show how the cost decreases as the number

of points L is increased. The method we use to calculate the

total cost as well as some notes on the accuracy can be found

in Appendix I. The lowest cost we have achieved with our

algorithm is 0.16692462. The mapping that achieves this cost

is the 4-step mapping shown in Figure 3 with L = 12801
points. Although the mapping contains four clear output

levels it should be emphasized that each level is slightly

sloped; this can be seen in Figure 4, where the first step

has been zoomed in. It is reasonable to assume that as the

precision (i.e., L) increases further, each step of the mapping

will converge to a straight line that is slightly sloped.

0 5 10 15 20 25
0

5

10

15

20

25

x0

γ̃
1

Fig. 2. 3.5-step solution (L = 12801)

0 5 10 15 20 25
0

5

10

15

20

25

x0

γ̃
1

Fig. 3. 4-step solution (L = 12801)

V. COMPARISON TO PREVIOUS RESULTS

In this section, we will compare the presented method with

the previous methods. Besides the fact that the new method

improves the optimized cost, there are further advantages

compared to previous work:

• No structure is assumed for the decision functions.

In [5] and [16], monotonicity of the decisions was

assumed. The space of decisions is assumed to be a

normed linear space in [2].

• A significant analytic/modeling work was performed

before posing the optimization problem to be solved

5351

0 1 2 3 4 5 6 7

3.15

3.2

3.25

3.3

3.35

3.4

x0

γ̃
1

Fig. 4. Detailed view of the first step in the 4-step solution.

in [5], [16], and [2]. The first two require manual

adjustments for the proper choice of interval values and

signal levels, and the third requires some prior analysis

to determine a constant “c”. In [17], modeling work is

needed in converting the problem into a potential game.

The method presented in this paper is fully automated and

its advantages rely on the following:

• Discretization of the decision space.

• Iterative optimization between the different decision

functions.

• A noisy channel relaxation technique that makes the

solution insensitive to the initialization.

VI. CONCLUSIONS

In this paper, we introduced a generic method of iterative

optimization based on ideas from Source–Channel coding,

that could be used to solve problems of the Witsenhausen

Counterexample character. The numerical solution we obtain

for the benchmark problem is of high accuracy and renders

the lowest value known thus far, 0.16692462.

Also, the design algorithm does not make any assumption

on the structure of the policies — the solutions are allowed

to have arbitrary shapes (within the restrictions imposed by

the discretization). The results can therefore be seen as a

confirmation that the step-shaped behavior is beneficial.

VII. ACKNOWLEDGEMENT

The authors would like to thank the reviewers for their

valuable and constructive feedback.

This work was supported in part by the Swedish Research

Council and the European Commission through the FP7

project FeedNetBack.

APPENDIX I

CALCULATION OF THE TOTAL COST

In the design algorithm, γ̃1 is specified implicitly by,

for each Monte-Carlo sample, storing the output symbol to

which it is mapped. This representation is used when evalu-

ating the cost during the iterations in the design algorithm.

However, to evaluate the final total cost we need higher

numerical accuracy. Therefore, the first step in calculating

the total cost is to use the sample-based representation to

find an explicit specification of γ̃1 given by

γ̃1(x0) = αi ∈ SL if Ai ≤ x0 < Ai+1, (18)

for i ∈ {0, . . . , M − 1}, with A0 = −∞ and AM = ∞.

That is, we transform the sample-based representation of γ̃1,

which is explicitly defined only for the Monte-Carlo samples,

to a function which is defined for all real numbers. This

representation makes it possible to numerically evaluate the

integrals that are needed to find the total cost

J = E[k2γ2
1(X0) + (X1 − γ2(Y2))

2]

= E[k2(γ̃1(X0) − X0)
2]

︸ ︷︷ ︸

=J1

+E[(γ̃1(X0) − γ̃2(Ỹ2))
2]

︸ ︷︷ ︸

=J2

,

(19)

where

J1 =

∫

x0

p(x0)k
2(γ̃1(x0) − x0)

2dx0

= k2
M−1∑

i=0

∫ Ai+1

Ai

p(x0)(αi − x0)
2dx0, (20)

J2 =

∫

x0

∑

ỹ2∈SL

p(x0, ỹ2)(γ̃1(x0) − γ̃2(ỹ2))
2dx0

=

∫

x0

∑

ỹ2∈SL

p(x0)P (ỹ2|x0)(γ̃1(x0) − γ̃2(ỹ2))
2dx0

=
M−1∑

i=0

∫ Ai+1

Ai

p(x0)
∑

ỹ2∈SL

P (ỹ2|αi)(αi − γ̃2(ỹ2))
2dx0

=

M−1∑

i=0

{ ∑

ỹ2∈SL

P (ỹ2|αi)(αi − γ̃2(ỹ2))
2
}∫ Ai+1

Ai

p(x0)dx0,

(21)

and

P (ỹ2|αi) =







∫ ỹ2+∆/2

−∞

p(w = y2 − αi)dy2 if ỹ2 = −∆L−1
2

∫ ∞

ỹ2−∆/2

p(w = y2 − αi)dy2 if ỹ2 = ∆L−1
2

∫ ỹ2+∆/2

ỹ2−∆/2

p(w = y2 − αi)dy2 otherwise

(22)

All integrals have been calculated numerically using the

Matlab function quadl with the tolerance specified to be

t = 10−18, which means that the absolute error of the result

from quadl is not greater than t. All integrands are continuous

and have a smooth behavior that should cause no problem for

5352

quadl. To upper bound the total cost, we have upper bounded

each integral by adding t to each individual result from quadl

and reevaluated the total cost. In this way we have estimated

the absolute error to be in the order of (or less than) 10−11.

Matlab code for our calculations of the total cost, including

our decision functions can be found in [1].

APPENDIX II

COMPUTATION TIME

Table III and IV show the computation times for the

design algorithm and the refinement process, respectively.

The algorithms were implemented in C++ on a computer

with an Intel Core2 Quad CPU running at 2.66 GHz.

TABLE III

COMPUTATION TIME — ALGORITHM 1 (L = 201)

k′ # Iterations Time

3 4 32 s
2 2 13 s

1.5 2 14 s
1 2 13 s

0.6 2 13 s
0.4 100 11 min
0.3 36 4 min
0.2 30 3 min

Total 178 20 min

TABLE IV

COMPUTATION TIME — REFINEMENT

L # Iterations Time

401 44 15 min
801 83 98 min
1601 12 52 min
3201 3 49 min
6401 2 126 min
12801 2 501 min

Total 14 h

REFERENCES

[1] http://www.ee.kth.se/˜johk/witsenhausen/.
[2] M. Baglietto, T. Parisini, and R. Zoppoli. Numerical solutions to

the Witsenhausen counterexample by approximating networks. IEEE

Trans. Automatic Control, 46(9):1471–1477, September 2001.

[3] R. Bansal and T. Basar. Stochastic teams with nonclassical information
revisited: When is an affine law optimal? IEEE Trans. Automatic

Control, 32(6):554–559, June 1987.
[4] C.S. Chow and J. N. Tsitsiklis. An optimal one-way multigrid

algorithm for discrete-time stochastic control. Automatic Control,
IEEE Transactions on, 36(8):898–914, 1991.

[5] M. Deng and Y.C. Ho. An ordinal optimization approach to optimal
control problems. Automatica, 35:331–338, 1999.

[6] N. Farvardin and V. Vaishampayan. Optimal quantizer design for noisy
channels: An approach to combined source–channel coding. IEEE

Trans. on Information Theory, 33(6):827–838, November 1987.
[7] N. Farvardin and V. Vaishampayan. On the performance and complex-

ity of channel-optimized vectorquantizers. IEEE Trans. on Information

Theory, 37(1):155–160, January 1991.
[8] A. Fuldseth and T. A. Ramstad. Bandwidth compression for continu-

ous amplitude channels based on vector approximation to a continuous
subset of the source signal space. In International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 3093–3096,
Munich, Germany, April 1997.

[9] S. Gadkari and K. Rose. Noisy channel relaxation for VQ design. In
International Conference on Acoustics, Speech and Signal Processing

(ICASSP), pages 2048–2051, May 1996.
[10] A. Gersho and R. M. Gray. Vector Quantization and Signal Com-

pression. Kluwer academic publishers, Dordrecht, The Netherlands,
1992.

[11] P. Grover, S. Y. Park, and A. Sahai. The finite-dimensional Witsen-
hausen counterexample. In ConCom, Seoul, Korea, March 2009.

[12] Y.C. Ho and T. S. Chang. Another look at the nonclassical information
structure problem. IEEE Trans. on Automatic Control, 25(3), 1980.

[13] Y.C. Ho and K.C. Chu. Team decision theory and information
structures in optimal control problems—part I. IEEE Trans. on

Automatic Control, 17(1), 1972.
[14] Y.C. Ho, M. P. Kastner, and E. Wong. Teams, signaling, and

information theory. IEEE Trans. on Automatic Control, 23(2), 1978.
[15] J. Karlsson and M. Skoglund. Optimized low-delay source–channel–

relay mappings. IEEE Trans. on Communications, 58(5):1397–1404,
May 2010.

[16] J. T. Lee, E. Lau, and Y.C. Ho. The Witsenhausen counterexample:
A hierachical search approach for nonconvex optimization problems.
IEEE Trans. Automatic Control, 46(3):382–297, March 2001.

[17] N. Li, R. Marden, and J. S. Shamma. Learning approaches to the
Witsenhausen counterexample from a view of potential games. In
IEEE Conference on Decision and Control, pages 157–162, December
2009.

[18] S. P. Lloyd. Least Squares Quantization in PCM. IEEE Trans. on

Information Theory, 28(2):129–137, March 1982.
[19] J. Max. Quantizing for minimum distortion. IRE Trans. on Information

Theory, 6:7–12, March 1960.
[20] N. Wernersson, J. Karlsson, and M. Skoglund. Distributed quantization

over noisy channels. IEEE Trans. on Communications, 57(6):1693–
1700, June 2009.

[21] H. S. Witsenhausen. A counterexample in stochastic optimum control.
SIAM Journal on Control, 6(1):138–147, 1968.

[22] K. A. Zeger and A. Gersho. Vector quantizer design for memoryless
noisy channels. In IEEE Internationell Conference on Communica-

tions, pages 1593–1597, Philadelphia, USA, June 1988.

5353

