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Abstract— Friction is a performance limiting factor in many
industrial motion systems. Correct compensation or control of
friction and other nonlinearities is generally difficult. Apart
from the complex nature of friction, compensation of even the
most basic type of friction, Coulomb friction, is non trivial. Most
available tuning methods rely on time domain data and are
often unable to distinguish between nonlinear effects of friction
and that of for example linear viscous damping. Furthermore,
the sensitivity of time domain data to the influence of friction
is too low for correct tuning in many of the high precision
motion applications currently used in industry. In this paper

a frequency domain method is introduced that allows fast and
high accuracy tuning of controller parameters when the closed
loop system is subject to nonlinear influences. This methodology
is applied to optimally compensate friction in a high precision
motion stage of a transmission electron microscope. Theoretical
and experimental results are presented and related to time
domain performance to illustrate the advantage of frequency
domain tuning over time domain tuning.

I. INTRODUCTION

Many high end industrial motion systems suffer from

performance limitations due to the effects of friction. As the

presence of friction is sometimes unavoidable, or even nec-

essary, the application of friction compensating techniques

is required. A common way to deal with friction is the

application of (Coulomb) friction feed forward which is often

tuned based on the tracking error when the closed loop

system is subject to a symmetric setpoint, i.e. moving back

and forth. This method has three distinct disadvantages that

this paper aims to solve:

1) the effects of Coulomb friction and viscous damping

are not independent in the time domain,

2) tuning Coulomb friction feed forward to optimally ap-

proximate the more complex, true nonlinear dynamics,

is nontrivial in the time domain,

3) the detection sensitivity of time domain analysis to the

effects of friction is limited.
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To cope with these disadvantages, a frequency domain based

tuning method is introduced in this paper. This method

possesses improved sensitivity compared to time domain

analysis and allows to distinguish between different types

of (non)linear effects. The methodology introduced in this

paper allows for tuning of both feedback and feed forward

controllers and is not restricted to a specific type of nonlin-

earity. However, the discussion is limited to tuning Coulomb

friction feed forward to illustrate the ability of the algorithms

to the compensation of strong nonlinearities in a setting that

is applicable in industry.

This paper applies frequency domain analysis of nonlinear

systems to optimally tune controller systems that possess

nonlinear behavior. Various approaches to the frequency

domain analysis of nonlinear systems exist [1], [5], [6],

[11], [12]. The results presented in the sequel rely on the

quantification of nonlinear effects by measuring energy in

the output spectrum at harmonics of the input frequency,

when the system is subject to a sinusoidal input signal.

This representation of nonlinear effects in the frequency

domain is captured by the higher order sinusoidal input

describing functions [2], [3], [4], [8], [10], which describe

the systems response (gain and phase) at harmonics of the

base frequency of a sinusoidal input signal. In [7], [9] recent

results concerning frequency domain tuning of Coulomb

friction feed forward are presented. This paper extends these

results and shows their application in industry. Recent results

and related software downloads are available at the website

of the author1.

The paper is structured as follows. Section II introduces

the required preliminaries. In Section III the theoretical

framework required to tune Coulomb friction feed forward

in the frequency domain is presented and adapted for appli-

cation in practice. Section IV presents the application of this

methodology to an industrial high precision motion stage of

a transmission electron microscope and relates performance

in the time domain to the frequency domain performance

measure. Finally, Section V presents conclusions and future

research.

II. NOMENCLATURE AND PRELIMINARIES

This section briefly discusses the type of nonlinear systems

for which the results presented in this paper are valid.

Moreover, the Higher Order Sinusoidal Input Describing

Functions (HOSIDF) are introduced, which are used in the

sequel to quantify nonlinear effects in the frequency domain.
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The analysis in this paper is valid for uniformly con-

vergent, time invariant nonlinear systems [5]. Convergent

systems have a unique limit solution corresponding to a

certain continuous input. If this input is periodic with period

time T0, the output is periodic with the same period time.

Note that when considering dynamical systems in closed

loop in the sequel, the closed loop system is required to

be convergent rather than the plant itself.

The response of a uniformly convergent, time invariant

nonlinear system to a sinusoidal input is described using

the higher order sinusoidal input describing functions. It is

composed of harmonics of the input frequency and given by:

y(t)=

K
∑

k=0

|Hk(ω0, γ)|γ
kcos

(

k(ω0t+ ϕ0) + ∠Hk(ω0, γ)
)

(1)

where Hk(ω0, γ) ∈ C is the kth order HOSIDF which

describes the response (gain and phase) at the kth harmonic

of the base frequency ω0 of a sinusoidal input signal. This

definition of the HOSIDF is slightly different from the one

used in [3] and is formalized below.

Definition 1 (Hk(ω, γ): HOSIDF):

Consider a uniformly convergent, time invariant nonlinear

system and let the input be a one-tone input signal u(t) =
γ cos(ω0t+ ϕ0). Define the systems output y(t) and corre-

sponding Fourier transforms of the input and output U (ω),
Y (ω) ∈ C. Then, the kth higher order sinusoidal input

describing function Hk(ω0, γ) ∈ C, k = 0, 1, 2, . . . is

defined as:

Hk(ω0, γ) =
Y (kω0)

U k(ω0)
. (2)

Next, the theoretical framework required to tune Coulomb

friction feed forward in the frequency domain is presented

and extended for application to noisy measurement data in

practice.

III. FREQUENCY DOMAIN BASED FRICTION

COMPENSATION

Consider an exponentially, uniformly convergent, time

invariant closed loop system as depicted in Figure 1. The

plant is a dynamical system subject to Coulomb friction

in closed loop with a stabilizing controller C. The input

and output of the system are u(t) and y(t) and the system

is subject to a feed forward that aims to compensate the

Coulomb friction in the plant. In this section a frequency

domain based methodology is introduced to optimally tune

this feed forward.

A. I/O Linearization in the Frequency Domain

In order to motivate the methodology introduced in this

paper, first consider a linear time invariant system. A key

property of LTI systems is that when such system is subject

to an input signal with spectral content at frequency lines

fk ∈ Fin, the output spectrum will contain the same spectral

lines, i.e. Fout = Fin. However, for nonlinear systems

this property fails. To quantify this difference, consider an

+

- +

+

d
dt

sgn Kfc

C plant
u(t) y(t)

Fig. 1. Exponentially, uniformly convergent, time invariant, closed loop
system subject to Coulomb friction feed forward.

exponentially, uniformly convergent, time invariant system,

subject to the following sinusoidal input signal:

u(t) = γ cos(ω0t+ ϕ0) (3)

with input frequency ω0 ∈ R>0 and amplitude and phase

γ, ϕ0 ∈ R.

The corresponding steady state output signal is described

using the higher order sinusoidal input describing functions

by (1). Hence, the steady state output spectrum Y (ω) of an

exponentially, uniformly convergent, time invariant system

will only contain harmonics of the input frequency ω0 and

a possible DC value.

As opposed to nonlinear systems, LTI systems do not

change the spectral content (lines) of their input and no

harmonics of the input frequency are present in the output

spectrum when an LTI system is subject to (3). Hence, tuning

Kfc in Figure 1 to optimally compensate for Coulomb

friction, is equivalent to linearizing the input-output (i/o)

behavior of the closed loop system or more formally stated:

Definition 2 (Optimal i/o linearization): The system de-

picted in Figure 1 is called optimally linearized from input

to output if it is subject to (3) and Kfc is selected such that:

K⋆
fc = argmin

Kfc∈R≥0

1

K − 1

K
∑

k=2

|Y (kω0)|

|Y (ω0)|
(4)

where the sum of absolute values is used rather than the sum

of squares as the cost function represents an average measure

of nonlinear effects and no additional sensitivity to the size of

the magnitudes is required. The cost function is normalized

with respect to the number of harmonic lines K − 1.

B. Application in Practice

When applying Definition 2 in practice, the optimality

condition (4) suffers from the presence of stochastic dis-

turbances. This requires Definition 2 to be adapted for

application to noisy experimental data.

Consider an exponentially, uniformly convergent, time

invariant system subject to the following experiment: the

system is excited for N periods of the periodic signal (3)

after transient effects have vanished. This yields N output

spectra Yn(ω), with frequency resolution ω0. Next, consider

only spectral lines that correspond to harmonics of the input

frequency Yn(kω0), k = 0, 1, . . . ,K . For this series of
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Description Symbol Definition

Expected value Ȳ (kω0)
1
N

N
∑

n=1
Yn(kω0)

Variance on the
average

σ2
Ȳ

(kω0)
1

N2−N

N
∑

n=1

(

Yn(kω0)− Ȳ (kω0)
)2

Average of the
variance

σ̄2
Ȳ

1
K−1

K
∑

k=1
σ2

Ȳ
(kω0)

Variance on the
variance

ς2σ
1

K−1

K
∑

k=1

(σ
Ȳ

(kω0)− σ̄
Ȳ

)2

TABLE I

STATISTICAL PROPERTIES OF THE EXPERIMENTAL RESULTS.

experiments, the statistical properties summarized in Table I

are computed. These properties yield information about the

level of harmonics and distortions in the output spectrum,

which is required to select the relevant harmonic lines for

the optimization procedure.

Next, consider the following extension of Definition

2, which is adapted for practical application to noisy

measurement data.

Definition 3 (Practical optimal i/o linearization): The

system depicted in Figure 1 is called practically, optimally

linearized from input to output if it is subject to (3) and

Kfc is selected such that:

K⋆
fc = argmin

Kfc∈R≥0

1

NK

∑

k∈K

∣

∣E

{

Y (kω0)
}∣

∣

∣

∣E

{

Y (ω0)
}
∣

∣

K =
{

k ∈ N≥2

∣

∣

∣

∣E

{

Y (kω0)
}∣

∣ > εk
}

(5)

where the expected value E{·} is computed according to

Table I. The cost function is normalized with respect to the

number of relevant harmonic lines NK and εk ∈ R≥0 is

selected such that the harmonic lines included in the sum

are sufficiently far above the noise level.

To obtain the bound εk in (5), the variance at each

individual harmonic line is evaluated and combined with the

overall variance on the noise level. This allows to evaluate

the validity of the measured harmonic components, using the

following frequency dependent bound in Definition 3:

εk = σȲ (kω0) + 2ςσ (6)

Next, the framework introduced in this section will be used

to optimally apply friction compensation in an industrial

high precision motion stage of a transmission electron mi-

croscope.

IV. FRICTION COMPENSATION IN INDUSTRIAL

TEM MOTION STAGES

The results presented in this section demonstrate the

application of the preceding theory to an industrial high

precision motion stage. The high precision motion stage of

a Transmission Electron Microscope (TEM) is used as it

Fig. 2. High precision transmission electron microscope motion stage.

provides a realistic industrial systems which performance is

limited by friction. The TEM motion stage is introduced in

more detail in the first part of this section. Next, the main

problem is stated and finally, the frequency domain tuning

method introduced in Section III-B is applied and the results

are related to the time domain performance of the system.

A. Set-Up

The methodology presented in this paper is applied to the

motion stage of a Transmission Electron Microscope (Figure

2). Performance requirements on such motion stages are

high as they position the sample in the electron microscope.

The accuracy and speed of the TEM motion stage therefore

determine how accurate and fast the area of interest can

be moved into view. Apart from speed and accuracy many

applications require smooth motion as well. Combining these

requirements with a system that operates in high vacuum and

that requires the system to be at complete standstill during

long term image acquisition, yields a control loop requiring

optimal friction compensation to achieve the required per-

formance.

Figure 2 depicts a TEM motion stage in a laboratory

setting. The stage is used as a SISO system driven by a

Maxon DC motor, with the motor voltage as input and the

position of the stage as an output. It is controlled by a Bosch

Rexroth NYCe4000 controller which enables automation of

the experiments and is used for data acquisition as well.

B. Problem Statement

In the TEM motion stage, friction becomes a dominant

performance limiting factor during high accuracy point to

point motion and slow movement of the stage. Many in-

dustrial applications use a high gain (proportional) feedback

to cope with the performance limiting effects of friction.

The main downside of this approach is that the high gain

feedback is only really required where friction is dominant

and might not be required when the system is in slip mode.

The accuracy required in the TEM stage would, however,

need a loop gain that cannot result in a stable loop, using P

or PD control only.
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Fig. 3. OPTIMIZATION Average amplitude at the first four harmonic lines
Ȳ (kω0) in the output spectrum, relative to the amplitude at the excitation
frequency and cost function fd(Kfc) as in Definition 3 (low gain feedback

Kp = 5 · 106).

Primarily, the issue discussed above is related to the fact

that this type of linear feedback control is not properly

equipped to cope with (strong) nonlinearities. Although the

application of more advanced (nonlinear) feedback con-

trollers is possible, the application of feed forward is to be

preferred for two reasons. First, as opposed to feedback, feed

forward does not compromise the stability of the closed loop

system. Second, many industrial controllers have Coulomb

friction feed forward available, whereas advanced nonlinear

feedback control is often not available.

Next, the theory presented in Section III is applied to

optimally tune the Coulomb friction feed forward in a TEM

motion stage.

C. Experiment and Feed Forward Tuning

Consider the TEM motion stage in a closed loop setting

with a stabilizing proportional controller C = Kp and subject

to a feed forward as depicted in Figure 1. To investigate the

influence of the feed forward parameter Kfc the method

introduced in Section III-B is applied by incrementally

increasing Kfc from 0 to Kmax
fc in M steps. The following

experimental scheme is applied:

1) m = 1: the experiment series starts with no feed

forward, i.e. K
[1]
fc = 0,

2) the system is excited for N periods of the periodic

signal (3) after transient effects have vanished, yielding

N output spectra Y
[m]
n (ω),

3) m = m+ 1: if the maximum feed forward parameter

is not reached, increase the feed forward gain:

K
[m+1]
fc = K

[m]
fc + ∆Kfc

, with ∆Kfc
=

Kmax
fc

M
and

return to step 2.

This procedure yields M · N output spectra Y
[m]
n (ω),

which are analyzed according to Definition 3.

To relate the frequency domain results to time domain

performance, a measure of performance in the time domain

k [−]

|Ȳ
(k
ω
0
)|
[d
B
]

1 3 5 7 9
−200

−180

−160

−140

−120

Fig. 4. OUTPUT SPECTRUM Average amplitude at harmonic lines in the
output spectrum (low gain feedback Kp = 5 · 106).
No feed forward: � mean, ∗ standard deviation.
Optimal i/o linearization (Kfc = K⋆

fc
): △ mean, × standard deviation.

is required. Since the overall performance is of interest, the

maximum rms value of the error is taken over the different

periods of excitation for each value of K
[m]
fc :

ǫ[m] = max
n∈N≥1

√

√

√

√

1

L

L
∑

L=1

(

u
[m]
n (tℓ)− y

[m]
n (tℓ)

)2

(7)

with tℓ, = {1, 2, . . . , L} the sample instances within the

nth period of the mth experiment series. The experiment

is performed by evaluating Kfc in the interval [0 0.3] at

M = 80 equally spaced values, i.e. ∆Kfc
= 0.00375.

Furthermore, the influence of the feedback controller is

investigated by performing two series of experiments: one

with a low feedback gain (Kp = 5 · 106) and one with a

high feedback gain (Kp = 2 · 107). In all experiments the

reference signal u(t) is a sinusoidal input signal (3) with

amplitude γ = 6 [µm] and frequency f0 = 0.5 [Hz].

D. Results

Figure 3 - 8 show the experimental results for both high

and low feedback gain. In Figure 3 the cost function fc(Kfc)
from Definition 3 is depicted as well as the energy at

harmonics, relative to the energy at the excitation frequency.

Since friction is an odd nonlinearity the dominant behavior of

the odd harmonics is to be expected. As the feed forward gain

is increased, a decrease in the energy observed at the relevant

harmonics, relative to the energy at the excitation frequency,

appears until a minimum is reached. The minimum of the

cost function combines the behavior of all harmonic lines

and is a measure for the overall linearity of the i/o behavior.

This analysis indicates that K⋆
fc = 0.2013 yields an optimal

i/o linearization of the plant using low gain feedback.
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Fig. 5. HOSDIF First five higher order sinusoidal input describing
functions at f0 = 0.5 [Hz], γ0 = 1 [µm] for varying values of Kfc

(low gain feedback Kp = 5 · 106).

f
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ǫ
[×

1
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−
8
m
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fc
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Fig. 6. PERFORMANCE Performance in time and frequency domain.
Linearity is measured by the cost function fc(Kfc) in the frequency
domain and time domain performance as defined in (7) (low gain feedback
Kp = 5 · 106).

Harmonics

Figure 4 shows the average energy at harmonics of the

input frequency both with and without optimally i/o lin-

earizing feed forward. Using an optimal feed forward, for

example, decreases the energy at the third harmonic by a

factor of 10. The cost function in Figure 3 even drops

by a factor of 13, showing less than 7.5% of the energy

at harmonics in the situation where correct feed forward

is applied. Figure 5 shows the normalized Higher Order

Sinusoidal Input Describing Functions (HOSIDF) for varying

feed forward gain. Corresponding to the decreasing energy at

harmonic lines, the HOSIDFs show a minimum close to K⋆
fc.

Moreover, the HOSIDFs show a strong phase shift around the

optimum that can be used to efficiently detect the optimum.

|H
k
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0
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0
)|

|H
k
(0
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∠
H

k
(ω

0
,γ

0
)
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]
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Fig. 7. HOSIDF First five higher order sinusoidal input describing
functions at f0 = 0.5 [Hz], γ0 = 1 [µm] for varying values of Kfc

(high gain feedback Kp = 2 · 107).
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Fig. 8. PERFORMANCE Performance in time and frequency domain.
Linearity is measured by the cost function fc(Kfc) in the frequency
domain and time domain performance as defined in (7) (high gain feedback
Kp = 2 · 107).

Apples and Oranges

In Figure 6 performance measures in the time and fre-

quency domain are compared. The top figure shows the

frequency domain cost function fc(Kfc) indicating the op-

timally i/o linearizing value of the feed forward parameter.

The bottom plot, however, depicts a time domain measure

of performance as defined in (7). It becomes clear that

both measures indicate a different optimal value of the feed

forward parameter. This paradoxal behavior is caused by

the presence of viscous damping which is not compensated

for during the experiment. As the Coulomb friction feed

forward gain is the only tunable parameter, the minimal

time domain error occurs at a value of Kfc where this feed

forward compensates for part of the viscous damping as

well. At first glance, this appears to yield a better tracking
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performance. Note however, that for Kfc > K⋆
fc one is

compensating apples with oranges (or in this case damping

with friction); the apparent improvement in performance is

local and dependent on the excitation signal. It is therefore

not an overall performance increase and the true optimal

value of the feed forward gain is located at K⋆
fc after all.

To further improve tracking performance, additional feed

forward or feedback is required.

Low and High Gain Feedback

Figures 7 - 8 depict the HOSIDFs and performance

measures for the same experiment with high gain feedback.

As becomes clear, the initial amount of energy at harmonics

when using high gain feedback is less than in the low gain

experiment. Hence, increasing the feedback gain linearizes

the closed loop behavior. Furthermore, the optimal value

K⋆
fc in the high feedback gain experiments, differs from the

optimum observed in the low gain experiments.

Kp = 5 · 106 Kp = 2 · 107

K⋆
fc

0.2013 0.1899

argmin
Kfc∈[0 0.3]

ǫ 0.2506 0.2359

TABLE II

EXPERIMENTAL RESULTS

Table II summarizes the numerical results from both

experiments. It shows that the optimally i/o linearizing feed

forward gains K⋆
fc for the low and high gain experiment

differ by approximately 5%. Comparing Figure 6 and 8

shows that the decrease in energy at harmonic lines in the

low gain feedback (13×) is reduced when using high gain

feedback (4×). However, the relative difference between

the optimally i/o linearizing value of Kfc and the apparent

optimum observed from the time domain error is 24% in

both experiments.

V. CONCLUSIONS AND FUTURE RESEARCH

A frequency domain based method for controller tuning in

the presence of nonlinearities is presented. This methodology

is generally applicable for linearization of the input-output

behavior of a system containing nonlinearities. However,

it is initially applied to feed forward tuning for Coulomb

friction compensation, to illustrate the practical applicability

and ability to cope with strong nonlinearities. The application

of the feed forward tuning procedure is successfully demon-

strated in practice on an industrial high precision stage of a

transmission electron microscope.

The experimental results emphasize the improved sensi-

tivity and accuracy when using frequency rather than time

domain data to tune controller parameters in the presence

of nonlinearities. Furthermore, comparison between time

domain and frequency domain performance shows that, as

opposed to time domain analysis, frequency domain analysis

allows to distinguish between performance degradation due

to friction and damping. Finally, frequency domain analysis

yields a clear optimum for the optimal approximation of the

true nonlinear dynamics by Coulomb friction feed forward.

Summarizing, the method introduced in this paper is

shown to be effective in optimally tuning friction compen-

sation in high end industrial motion systems and possess

significant advantages compared to traditional time domain

tuning. Future research will focus on automation of tuning

procedure and application of the methods to more advanced

nonlinear (feed forward) models.

ACKNOWLEDGEMENTS

The authors thank Alina Tarau, Wilco Pancras and Dham-

mika Widanage for their contribution to the results presented

in this paper.

REFERENCES

[1] S.A. Billings and K.M. Tsang. Spectral analysis for non-linear
systems, part i: Parametric non-linear spectral analysis. Mech Syst
Signal Process, 3(4):319–339, 1989.

[2] P. Nuij, M. Steinbuch, and O. Bosgra. Measuring the higher order
sinusoidal input describing functions of a non-linear plant operating
in feedback. Control Eng Practice, 16(1):101–113, 2008.

[3] P.W.J.M. Nuij, O.H. Bosgra, and M. Steinbuch. Higher-order sinu-
soidal input describing functions for the analysis of non-linear systems
with harmonic responses. Mech Syst Signal Process, 20(8):1883–1904,
2006.

[4] P.W.J.M. Nuij, M. Steinbuch, and O.H. Bosgra. Experimental char-
acterization of the stick/sliding transition in a precision mechanical
system using the third order sinusoidal input describing function.
Mechatronics, 18(2):100–110, 2008.

[5] A. Pavlov, N. van de Wouw, and H. Nijmeijer. Frequency response
functions for nonlinear convergent systems. IEEE Trans Autom
Control, 52(6):1159–1165, 2007.

[6] R. Pintelon and J. Schoukens. System identification: a frequency

domain approach. IEEE Press, NJ, 2001.
[7] D.J. Rijlaarsdam, P.W.J.M. Nuij, J. Schoukens, and M. Steinbuch.

Frequency domain based nonlinear feed forward control design for
friction compensation. Submitted to Mech Syst Signal Process (Nov.

2010), 2010. copy: david@davidrijlaarsdam.nl.
[8] D.J. Rijlaarsdam, P.W.J.M. Nuij, J. Schoukens, and M. Steinbuch.

Spectral analysis of block structured nonlinear systems and higher
order sinusoidal input describing functions. Submitted to Automatica

(Sept. 2010), 2010. copy: david@davidrijlaarsdam.nl.
[9] D.J. Rijlaarsdam, V. van Geffen, P.W.J.M. Nuij, J. Schoukens, and

M. Steinbuch. Frequency domain based feed forward tuning for
friction compensation. In Proc. ASPE spring TM, pages 129–134,
2010.

[10] D.J. Rijlaarsdam, S.J.L.M. van Loon, P.W.J.M. Nuij, , and M. Stein-
buch. Nonlinearities in industrial motion stages - detection and
classification. In Proc. ACC, pages 6644–6649, 2010.

[11] J. Schoukens, J. Lataire, R. Pintelon, G. Vandersteen, and T. Do-
browiecki. Robustness issues of the best linear approximation of a
nonlinear system. IEEE Trans Instr Measur, 58(5):1737–1745, 2009.

[12] R. Yue, S.A. Billings, and Z.-Q. Lang. An investigation into the
characteristics of non-linear frequency response functions. part 1:
Understanding the higher dimensional frequency spaces. Int J Control,
78(13):1031–1044, 2005.

4098


