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Abstract - This paper presents a novel methodology for
approximation of the unknown time-varying rotation rate
using sliding mode observer as well as a robust control scheme
for improving the performance of the MEMS gyroscope
despite the coupling between vibratory gyroscope modes and
inherent model uncertainties. Terminal sliding mode control
(TSMC) is invoked to develop tracking control of the drive and
sense modes based on the uncertain model of vibratory
gyroscope and subsequently the swiftness of TSMC scheme in
comparison with conventional sliding mode control (SMC) is
demonstrated. The robust terms of proposed sliding mode
observer are designed such that the unknown functions
including Coriolis acceleration and quadrature error terms are
tracked and then the unknown rotation rate and stiffness
coupling are constructed. The asymptotic stability and
robustness of the proposed control and observer are proved
using second method of Lyapunov. Finally, effectiveness of the
proposed observer based control for approximation of the
unknown time-varying rotation rate is demonstrated through
simulations.

Keywords—Robustness, Terminal Sliding Mode Control,
Sliding Mode Observer, MEMS Gyroscope

I. INTRODUCTION

Gyroscopes are the inertial sensors which measure the
rotational rate of an object. Microelectromechanical
technologies have provided possibility of modeling and
fabricating of gyroscopes with small size, low cost and low
power consumption [1], [2]. These advantages offer wide
application spectrum of MEMS gyroscopes in the aerospace
industry, military, automotive such as high performance
navigation and guidance systems, ride stabilization, roll-
over detection and prevention, and next generation airbag
and brake systems and electronics markets such as image
stabilization in digital cameras and camcorders, virtual
reality products, inertial pointing devices, and computer
gaming industry [3], [4].

A vibratory Z-axis MEMS gyroscope which is sensitive
to the angular rate about the Z-axis perpendicular to the
plane of silicon substrate, developed by Berkeley Sensor
and Actuator Center [5]. The fundamental architecture of a
vibratory MEMS gyroscope is comprised of a drive-mode
oscillator that generates and maintains a constant linear or
angular momentum. Drive-mode oscillator is coupled to a
sense-mode Coriolis accelerometer that measures the
sinusoidal Coriolis force induced due to the combination of
the drive vibration and an unknown angular rate input. In
other words, when the gyroscope is exposed to an unknown
rotational rate, the Coriolis acceleration causes that the
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energy transfers from drive-mode to sense-mode providing
the information of the unknown rotation rate.

Since majority of the micro-machines gyroscopes
utilize vibrating mechanical elements to sense angular rate,
inherent fabrication imperfections along with environmental
variations make frequency mismatch between two vibration
modes, unknown disturbances, and parameter variations
which significantly limit the performance, stability, and
robustness of the vibratory MEMS gyroscope [6]. As a
consequence, to overcome these difficulties, introducing a
robust control system is necessary for the MEMS gyroscope
ensuring its desired performance.

The most challenging control issue includes
minimization of coupling between the actuation and sensing
modes along with the unknown time-varying angular rate
measurement. In  the literature, several control
methodologies have been proposed to enhance performance
and robustness of MEMS gyroscope. Most of these designs
are based on constraining the oscillation degree-of-freedom
of the proof mass to lie only in the drive direction. In these
designs, a part of Coriolis force induced in the proof mass is
transferred from driving mode to sensing mode while proof
mass is not allowed to oscillate in the sense direction [7]-
[13]. Park and Horowitz et al [7], [8] proposed two
different adaptive controllers for a MEMS gyroscope
controlling the entire operation of the device while the
angular rate was assumed constant. Dong et al. [9] designed
an adaptive controller with time-varying rotational rate
according what happens in reality, but the parameters of the
controller make it difficult to implement. Batur et al. [10],
[11] introduced sliding mode control to MEMS gyroscopes
meeting constant angular rate. These approaches utilize
respectively demodulation and adaption technique for
angular rate estimation.

This paper proposes a novel methodology for
approximation of the unknown time-varying rotation rate by
using a sliding mode observer along with a robust control
system based on terminal sliding mode control (TSMC) for
minimizing the coupling between two operational modes of
MEMS gyroscopes while time-varying rotation rate and the
stiffness coupling between gyroscope modes arising from
mechanical imperfections are unknown.

Section 2 describes the model of a Z-axis MEMS
gyroscope utilized in the paper. Section 3 outlines a terminal
sliding mode control law for the MEMS gyroscope based on
uncertain model. A sliding mode observer based control
scheme for the unknown time-varying rotation rate
approximation is developed in Section 4. Simulation results



and comparative discussions are presented in Section 5
and some conclusions are made in Section 6.

II. DYNAMIC MODEL OF Z-AXIS MEMS GYROSCOPE

A typical vibratory MEMS gyroscope is comprised of a
proof mass, a suspension system, and electrostatic
actuations and sensing mechanisms for forcing an
oscillatory motion and sensing the position and velocity of
the proof mass as well as a rigid frame which is rotated
about the rotation axis [14]. Dynamics of the MEMS
gyroscope is derived with respect to two coordinate
systems: the inertial frame fixed in an inertial space, and the
gyroscope frame fixed to the rotation platform.

With the definition of 1, vg, and ag as the position,
velocity, and acceleration vectors with respect to the
rotating gyroscope frame, A as the linear acceleration of the
gyroscope frame, and Q as the angular velocity vector of the
gyroscope frame; the expression for the equation of the
motion of the proof mass reduces to
Forr=m[A+ag+Qx1y )

+ QX (QX15)+2Q X vg]
where ﬁext is a total applied force to the proof mass, which
includes spring, damping and control forces.

In a Z-axis gyroscope, by supposing the stiffness of
spring in z direction much larger than that in x, y directions,
motion of proof mass is constrained to only along the xy
plane as shown in Fig.1 [7].

Fig.1. A simplified model of a z-axis MEMS Gyroscope

Decomposing the motion into the two principle
oscillation directions and assuming that the linear
accelerations are negligible, the two equations of motion
along the drive and sense axes can be expressed as
mi + cyX + (kx - m(Q)z, + Qﬁ)) x + m(Qny - Qz)y =u, +2mQ,y
my + ¢,y + (ky —-m(QZ + Qﬁ)) ¥ +m(QQ, + Q,)x = u, — 2mQ,%

)
where x and y are the coordinates of the proof mass with
respect to the gyroscope frame, m is the proof mass, cy, ¢,
are damping coefficients, ky, k,, are spring coefficients, €;
while i = x, y, z are the angular velocity components along
each axis of the gyroscope frame and u,,u, are control
forces. The two last terms in equation (2), 2m€,y, 2mQ,x
are the Coriolis forces and are the terms which are used to
construct the unknown time-varying angular rate Q,. Under
typical assumptions Q2 ~ Qf, ~ Q2 ~ Q,Q, =~ 0, only the
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component of the angular rate Q, causes a dynamic
coupling between the x and y axes [7].

Taking into account fabrication imperfections occurring
always and causing dynamic coupling between two modes

o k; o
and substituting w; = ;‘ , ¢ =2mé&w; whilei = x,y, the

dynamic equation (2) are modified as follows
¥+ 28w % + WZX + wyyy = byuy + 2Q,y ;
J+ 28,0,y + wiy + wyyx = byuy, — 2Q,% ®
where w,, w, are natural frequencies of drive and sense
modes, ¢y, &, are damping coefficients, w,,X,wy,y are
constant unknown quadrature error terms caused by stiffness
couplings between two axes due to fabrication
imperfections, and by, b,, are the constants that account for
sensor, actuator, and amplifier gains [12].

Moreover, by defining gq=[* ¥]" and U=
[Ux Uy]T, the dynamics of Z-axis MEMS gyroscope is
rewritten in vector form as

§+ (D +2Q)q + (K, + K,)q = BU 4)
28wy 0 0 -9, _[w? o

whereD = |5 nywy]"’ = [QZ 0] Ka= [ 0 (uy]’

K, = 0 @xy d B= b 0 In thi th

b = [wxy o |- anm = [0 by] . In this paper, the

bounded structural uncertainties of the system are assumed
to be in the following form
wlower < Wyy < upper Qlower < Q‘z < (Qupper

III. TERMINAL SLIDING MODE CONTROL

This section proposes a robust sliding mode controller
for the MEMS gyroscope described by (4). The objective of
control problem is to force drive and sense modes to
oscillate at specified amplitudes and high frequencies (much
more than time-varying rotation rate frequency) despite the
fact that the motions in the x and y directions are coupled
and the Coriolis acceleration and quadrature error terms are
unknown. It is important to note that contrary to
conventional drive-mode control approaches that maintain
the proof mass to oscillate only in the x direction for
measuring unknown rotation rate in sense direction [7]-[13],
here there is no constraint on motion of proof mass.

In conventional sliding mode control, variable control
systems are designed to drive and then constrain the system
stable to lie within a neighborhood of the switching
function. The sliding mode control design approach consists
of two components. The first involves the design of a
switching function so that the sliding motion satisfies design
specifications. The second is concerned with the selection of
a control law which will make the switching function
attractive to the system state [15]-[17]. The basic idea in
terminal sliding mode scheme is making the convergence
rate of control law exponentially fast when the state is near
equilibrium.

The dynamics of a Z-axis MEMS gyroscope with
bounded uncertainties concentrating in term h(q,q) and
estimating as h, is rewritten in the following form
§=-Dg—K,q+h(q,q) +BU (%)



where the estimation error on h(q,q) which includes
unknown Coriolis acceleration and quadrature error terms is
assumed to be bounded by some known function H(q, q) as
|h—h|<H (©)

In order to maintain the proof mass to track a smooth
desired trajectory Q4 =[qa qa Gq]T which q4 =
[¥a Ya]" includes desired proof mass oscillations in the
actuation and sensing directions at given frequencies and
amplitudes, the terminal sliding manifold is defined as [18],
[19]

a
S(q,t) = § + AG + CGP ™
where S =[Sx Sy]T,§=q—qqis defined as tracking
error, and A, C are positive definite constant matrixes to be
respectively selected ie. A= dig{/lx,/ly} and C =
dig{cx, Cy} and a, B are the positive odd integers to be
chosen such that f§ > a . It should be noted that the finite
time convergence dynamic in terminal sliding mode control
depending on design parameters C,a, S, in contrast with
conventional sliding mode control, implies a swifter
tracking capability in the Z-axis MEMS gyroscope control
problem. To ensure that the state of the system approaches
the terminal sliding surface, first derivative of the sliding

surface should be converged to zero as follow
- . a. *bB
S=G+Aj+C=qGg #
h (®)
=0

a—p

. a . b
=BU —Dq —Koq +h(q,9) = Ga + Af7+CE¢7f7

The best approximation of continuous equivalent
control law that would achieve S = 0 is
-
Tﬁ ©)

In order to satisfy sliding condition [15] despite
uncertainty on the dynamics of the MEMS gyroscope, a
discontinuous term across the terminal sliding surface is
added to U. Consequently terminal sliding mode control law
is proposed as
U =U - B7'E sign(S) (10)
where sign(S) = [sign(sy) sign(sy)]T and E is a
positive definite constant matrix ie. E = dig{nx,ny}
depending on the upper bounds of unknown Coriolis
acceleration and quadrature error terms in both direction x, y
and reaching times and its diagonal elements are selected
under conditions as follow
Nx = Hyx + px = Fe + Gy + px an
Ny =Hy+py,=F+G, +p,

It is essential to recall that F;, G; while i = x,yare
respectively upper known bounds of estimation error on
Coriolis acceleration and quadrature error terms in drive and
sense directions according to (6) which are calculated
simply by knowing upper and lower bounds of unknown
quantities {,,w,, and p,, p, are two strictly positive
constants [15].

24 . N . A aL~
U=B‘1[Dq+Kaq—h+qd—Aq—Cqu

Proposition 1: Consider the Z-axis MEMS gyroscope
(4) while time-varying rotation rate Q, and stiffness
coupling w,, are unknown. The robust sliding mode control
law given by (10) under conditions (11) ensures that
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terminal sliding manifold S converges to zero in finite time
and consequently forces both coupled drive and sense mode
to track desired trajectories qg4, ¢4 oscillating at specified
amplitudes and frequencies.

Proof: The stability and robustness analysis of the
proposed terminal sliding mode control law in presence of
unknown time-varying angular rate and stiffness coupling as
the uncertainties is accomplished by choosing a Lyapunov
function as

V(S) =%5T5 (12)
Differentiating V" with respect to time yields
V(S) =STS = ST(h — h — E sign(S)) (13)
Expanding (13) yields
V= Sx[hx - flx ~Mx Sign(sx)]

+s, [hy - fzy -1, sign(sy)] (14)

= (hx - flx)sx - nxlsxl + (hy - fly)sy - 7]y|5y|
Decomposition unknown function h(q,q) to unknown
quadrature error terms f(q) and Coriolis acceleration terms
g(q) yields
V= (fx - fx)sx + (gx - gx)sx - nxlsxl

N . (15)
+(fy —f)sy +(gy — gy)sy - 773/|5y|
It is obvious by rewriting (6) as follow
(fl_fl)SFL i=x,y (16)
gi—3g) =G i=xYy

and substituting 17, 7,, according to (11) into (15) makes

V= (fx - .i;c)sx + (gx — gx)sx - (Fx + G + py)lsxl
+(fy = H)sy + (gy = Gy)sy = (B, + Gy +py)|sy| <0

In other words, V is strictly negative outside the
terminal sliding surface and consequently sliding condition
is verified and stability and robustness of control law is
ensured. As a result, all system trajectories in directions x
and y are respectively constrained to the terminal sliding
surfaces s, and s,,.

(17)

Remark 1: There is a possible singularity in terminal
sliding mode control when § — 0. Thus, the selection of
a, B is critical in the design of an appropriate TSMC. To
avoid singularity, @, f have been proposed to be chosen
such that 2a > £ [20].

Remark 2: The control law (10) only remains
continuous prior to entering into the terminal sliding
manifold S = 0. It makes implementation so hard and
impractical due to discontinuity of sign function at zero.
Moreover, this discontinuity causes unwanted chattering
phenomena which may excite the high frequency
unmodeled dynamics. Thus, for continuous approximation
of switching control law and alleviating chattering on
terminal sliding surface, a saturation function is applied
rather than sign function as follow

.—1 if <e¢
sat(;)= 5 = (18)
1 if >¢



where ¢ is called boundary layer thickness and is a positive
constant.

This section is terminated with the fact that the control
law (10) utilizes full state for feedback which requires both
position and velocity sensor in micron dimensions. Let note
that the sliding mode observer proposed in subsequent
section for rotation rate estimation enable to provide an
acceptable estimation of velocity which can be used for
feedback rather than its actual value [24].

IV. SLIDING MODE OBSERVER BASED ROTATION RATE
ESTIMATION

In this section a sliding mode observer is proposed for
the Z-axis MEMS gyroscope. In contrast with the most
approaches which estimate unknown angular velocity using
demodulation of sense control input u,, while sense mode is
enforced to zero [7]-[11], the main objective of the robust
observation in this paper is to approximate the unknown
vector function h(q, ) including Coriolis acceleration and
quadrature error terms in addition to providing an
acceptable estimation of the state system unavailable in
output. As a result, the unknown time-varying rotation rate
and the stiffness coupling between gyroscope modes are
explicitly able to be reconstructed by demodulating of
proposed sliding mode observer outputs.

A. Sliding mode observer design

Sliding mode observers are very useful means which
have been developed for many reasons like working with
reduced observation error dynamics, possibility of obtaining
a step by step design, a finite time convergence for all the
observable states and robustness under bounded
uncertainties of the systems [21]-[23]. It is important to
recall that the proposed robust control law in previous
section ensures that the unknown terms of vibratory
gyroscope would be bounded all the time.

The dynamics of a Z-axis MEMS gyroscope (5) is
rewritten in the following state space form
=4z (19)
42 = —Dq; — Koqy + h(q1,q2) + BU
where g, =q=[X¥ Y]"=[*x1 ¥1]7 denotes  just
measurable state variables in system output versus
unavailable state variables g, = ¢ = [¥ Y]T = [*2  Y2],
h(q1,q2) = [he(1,¥2)  hy(x1,x2)]"  includes unknown
Coriolis acceleration and quadrature error terms in both
gyroscope directions, and U is the proposed terminal sliding
mode control law which guarantees unknown vector
function h(q4, q,) to be bounded in all operational time of
device.

Let us consider classical sliding mode observer for the
Z-axis MEMS gyroscope as follow [21]

‘?1 =q, + Lysign(q, — 41)

42 = —D(§, + Lisign(q, — 1)) — Kaq1 + BU (20)
+ Lysign(Lysign(q, — §1))

where 4y, g, respectively represent the estimated value of

actual state variables qq,q, and L;, L, are two positive
definite constant matrixes representing observer gains to be
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respectively  selected  ie. L; =dig{A;,1,} and
L, = dig{1s, 1,4} and ultimately  sign(q, — 1) =
[sign(x; — %) sign(y; —y0]".

By taking e; =¢q; —§; while i =1,2, the error
observation dynamics are obtained from (19) and (20) as
é; = e, — Lysign(e,)
é; = —D(e, — Lysign(ey)) + h(qy1, q2) (21)

— Lysign(Lisign(e;))

By choosing observer gains such that satisfy the

following inequalities

/12 > |y2 - yzlmax (22)
Ay > |hy (21, 33)|

/11 > |x2 - lemax
3'3 > |hx(y1:y2)|max

Observation error trajectories (21) reach the sliding
mode and then asymptotically converge to zero in finite
time or in other words estimated state §; while i = 1,2
converges to its actual value g;. In sliding mode, the
unknown term h(qq,q,) including Coriolis accelerations
and quadrature errors can be simply derived for
reconstruction of the unknown time-varying rotation rate.

max

Proposition 2: Consider the state space representation
of Z-axis MEMS gyroscope (19) while time-varying
rotation rate (1, and stiffness coupling w,, are unknown.

1- The proposed sliding mode observer (20) under
condition (22) converges to dynamics of uncertain Z-axis
MEMS gyroscope (19) in finite time by just utilizing the
measureable state variable g, in output.

2- Once the error observation trajectories reach the
sliding mode, the unknown vector function h(qy, g,) can be
estimated as follow
h= Lysign(Lysign(q: — G1)) (23)

Proof: The convergence and robustness of the proposed
observer (20) is also proved using second method of
Lyapunov. The analysis criterion for the convergence of
observation error on gq,is based on the following Lyapunov
function

1
Vl = E e{el (24)
Differentiating V/; with respect to time yields
Vi = efé, = ef (e; — Lysign(ey)) (25)

Obviously, choosing diagonal elements of L; according to
(22) makes V; < 0. It means by decreasing Lyapunov
function with respect to time, ; = x; and y; — y; in finite
times ty,t, and remain equal to x; and y; for t > t; and
t > t, respectively. Moreover, for t > t, = max (t;,t,),
é1~0, meaning

e, = Lysign(e,) (26)

Consequently for t > t;, the observation error dynamics is
now equal to

é1=0

. . 27
é; = h(qy, q2) — Lysign(e;) @7)



Subsequently, the second Lyapunov function is defined for
the convergence analysis of observation error on g, as
follow

1
v, = E(e{el +eje;) (28)

Similarly, differentiating V, with respect to time yields

V, =elé, +elé, = el{h(q1,qz) — Lysign(e,)} (29)

and choosing diagonal elements of L, according to (22)
make V, < 0. Thus, £, = x, and §, =y, in finite times
t;, t, by decreasing Lyapunov function with respect to time
and remain equal to x, and y, for t > t; >t; and t >
t, > t, respectively. Similar to what stated earlier, for
t > t3, = max (t3,t,), €;.0, meaning at t, trajectories of
observation error reach the sliding mode. Explicitly, an
approximation of the unknown vector function h(qq,q;)
including Coriolis acceleration and quadrature error terms
can be derived in sliding mode by just utilizing the
measureable state variable g, as in (23).

B. Rotation rate estimation

The proposed sliding mode observer provides an
appropriate estimate of the unknown part of gyroscope
dynamics including modeling errors and structural
uncertainties. According to (4), the unknown vector function
h(q1,q,) has the following structure
1(41,42) = Kpq + 294 (30)

Considering (30) shows that in both drive and sense
modes, both Coriolis acceleration and quadrature error
terms can be amplitude modulated signals centered at the
resonant frequencies of the drive and sense axes by using
proposed robust control law. Since q,§ signals in both
directions have a relative phase shift of 90°, the undesired
quadrature errors from the useful Coriolis accelerations can
be separated through the demodulation technique in both
directions without any restrictions. Subsequently, the
unknown time-varying rotation rate is estimated by filtering
the induced demodulated signals.

Applying the sliding mode observer (20) and the
terminal sliding mode control law (10) to the Z-axis MEMS
gyroscope, the outputs of the drive and sense axis are forced
to track the desired trajectories with ideal amplitudes and
resonant frequencies much more than time-varying rotation
rate frequency and subsequently the unmeasurable state
variables and unknown dynamics of vibratory gyroscope are
precisely estimated.

The desired trajectory of the drive axis is x4 =
Asin(wt). Since the proposed robust controller forces the
tracking errors to zero, the position and velocity of the proof
mass in x-direction would be x = Asin(wt), and x =
Awcos (wt) . Substitution of x,x into (30) in sense
direction, the structural uncertainties due to unknown time-
varying rotation rate and the unknown quadrature error
terms in sense direction takes the form

hy, = —Aw,ysin (wt) — 2Aw,cos (wt) 31
where @ > wyq¢e in the Z-axis MEMS gyroscope. It should
be noted that the unknown time-varying rotation rate is
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considered as a sinusoidal signal [7], and Q, = Q, +

Q5in (Wyqret) where Qg, Qq, W,qre are respectively bias,

amplitude, and frequency of the rotation rate. Multiplying

(31) by cos (wt) yields

hycos(wt) = —%way sin(2wt) (32)
—AwQ, coswt) — Aw,

Since @ > w,q¢e, the high frequency signals will be filtered

out through a low-pass filter (LPF) and thus the time-
varying rotation rate (), can be reconstructed as

Q, = Frpp {_ hyLS(wt)} (33)

Aw
where F;pp{. } represent the function of the low-pass filter.
The unknown signal h, is estimated by proposed sliding
mode observer according to (23) and as a result, the rotation
rate can be estimated by

~ Agsign(A,sign(y — 9))cos(wt)
Q, = Frpr {_ . 2 Aw (34)

V. SIMULATION RESULTS

In this section, the proposed control and unknown
rotation rate estimation scheme based on sliding mode
observer is simulated on a model of Berkeley vibratory Z-
axis MEMS gyroscope [2] with key parameters given in
Table.1. Moreover, the actual time-varying rotation rate and
coupling stiffness which are unknown, verified Q,,;, <
Q; < Qmax and Wiy < Wyy < Wpgx. The nominal values
of these quantities are given as

Q, = 0.1 + 0.04 sin(w,qret) while wyqre = 100 74/
and w,, = 6000 rad?/s? assumed to be varied by 50% of
the nominal values in simulations.

Table-1: The Z-axis MEMS Gyroscope parameters used in simulations

Parameter Value Unit
m 2x10° kg
W, 81681.4 rad/s
w, 80864.6 rad/s
&, 4.5455%10° N/A
& 3.125%x10™ N/A
b, 4.169x10° kg’
b, 4.169x10° kg

The key design parameters of the proposed observer
based scheme for control and rotation rate estimation of the
studied gyroscope are given in Table.2. It is important to
note that in all simulation results, the boundary layer

thicknesses in sat (E) is selected equal to 0.5.

Table-2: Observer based controller parameters used in simulations

Controller Observer
. 2x10* c. 5x10° s 1x10°
A 2x10* C. 5x10? 1> 1x10°
0. 1x10* a 5 A2 1x10°
0. 1x10* B 9 A 1x10°




At first, we will illustrate the efficiency of the proposed
robust control scheme for considered vibratory gyroscope.
The desired position for the drive mode is assumed to be
x4 = Asin(wt), where A = 107° and w = 268007 rad/s
and the desired position for sense mode in the easiest case
can be y; = 0. The initial value of the proof mass in both
directions are assumed to be x(0) =-—1um, y(0) =
0.5um and x(0) = y(0) = 0. A rapid tracking control in
both directions can be achieved by using the proposed
terminal sliding mode control.

x 10°

QOutput X (m)

output
........... setpoint

Output Y (m)
N

0

Il Il Il Il Il Il Il Il Il

0 01 02 03 04 05 06 07 08 09 1

Time (s) x 10°

Fig.2. The gyroscope outputs in both drive and sense axis under
terminal sliding mode control

x 10°

Drive mode control (N)
L

x 10
x 10°
3
B ]
5
g af .
o)
8 2t N
£
g of
c
(% _2 L L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Time (s) x 102

Fig.3. Terminal sliding mode control inputs in both drive and sense axis

The gyroscope outputs and terminal sliding mode
control inputs in both drive and sense axis for desired
trajectories tracking are respectively depicted in Fig.2 and
Fig.3. The corresponding steady state accuracies on the
drive and sense axes under terminal sliding mode control
being |x — x4] < 1.5x 107 mand |y — y,| <1 x 10712,
Furthermore, Fig.6 shows the phase trajectories of tracking
errors in both drive and sense modes under terminal sliding
mode control.

Subsequently, a comparable investigation is
accomplished between the proposed terminal sliding mode
and conventional sliding mode control laws applied to
uncertain vibratory gyroscope (4) and the results are shown
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in Fig.4 where the tracking errors corresponding to terminal
sliding mode control more severely decreases in contrast
with the conventional sliding mode control due to the
proposed finite time convergence algorithm.

x 10 x 107

X-X; (m)

~o 05 1 ) 05 1

Vy-Vyd (m/s)

© & A N o N

0.5 1
time (s) x10°

o
o
o
-

Fig.4. Tracking error comparison between TSMC and SMC

In the next step, the performance of the proposed
sliding mode observer based rotation rate estimation scheme
for vibratory MEMS gyroscope is demonstrated through
simulations. The initial conditions for designed observer are
selected all zero.

x 107 x 107

X Observation Error
n o

Y Observation Error
X o N

-10 2
2 4 6 0 2 4 6
x 10° x 10°
0.2 0.05
2 2
i} i}
§ ot S 0
® T
5 5
2 0 2 -0.05
(o] o
> >>
-0.1 -0.1
0 2 4 6 0 2 4 6
Time(s) X 10-5 Time(s) X 10»5

Fig.5. Observation errors of vibratory gyroscope in both drive and sense
axis

Fig.5 explicitly shows that the estimated state variables
of gyroscope reach their actual values in finite times while
the rotation rate and stiffness coupling are unknown.
Finally, the time-varying rotation rate estimations at three
different frequency values frq4re = 50H, frqre = 100 Hz,
and frgre = 200 HZ  (Wygte = 2T frqte) are illustrated in
Fig.6 without any changes in key parameters of the
proposed observer based control scheme.
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Fig.6. The rotation rate estimations at three different f,4;,

It is important to note that the transfer function of the

low- pass filter is chosen as G, pr = where the time

1
(1+75)2
constant 7 is 6.7 x 10-57ad/.

VI. CONCLUSIONS

A novel observer based control scheme using sliding
mode theory is applied for a Z-axis MEMS gyroscope while
the time-varying rotation rate and stiffness coupling
between both gyroscope modes are unknown. A terminal
sliding mode control (TSMC) is proposed to minimize the
coupling between two operational modes and to force both
drive and sense mode to oscillate at specified amplitudes
and frequencies despite unknown Coriolis acceleration and
quadrature error terms. Subsequently, a sliding mode
observer is proposed able to reconstruct the unknown time-
varying rotation rate when the error observation trajectories
reach the sliding mode. Moreover, the proposed robust
control law ensures that the unknown terms of vibratory
gyroscope will be bounded for all the time. The stability and
robustness of the proposed controller and observer as well
as their convergence in finite times are proved using second
method of Lyapunov. Simulation results demonstrate high
tracking performance and robustness of the control in both
drive and sense axis along with acceptable estimation of the
unknown time-varying rotation rate using sliding mode
observer. Furthermore, numerical simulations show
advantageous of desired trajectory tracking speed of the
TSMC in contrast with conventional SMC.
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