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Abstract— Linear parameterizations is a central assumption
in adaptive estimation and control strategies and it in turn
becomes a bottleneck for prevalent applications of adaptive
control in many nonlinearly parameterized systems encountered
in practice. In literature, there have been some attempts to
breakthrough this bottleneck by investigating the characteristics
of nonlinearities in artistic arguments. However, it is still open
for an implementable strategy that is powerful for nonlinearly
parameterized systems as the certainty equivalence principle for
linearly parameterized systems. This paper aims to contribute a
novel attempt to this open problem by proposing an adaptation
algorithm which does not explicitly rely on the expression
of the nonlinearities and allows blind tuning for satisfactory
performance. The algorithm is supported by rigorous analysis
on asymptotic stability and parameter convergence as well as
numerical simulation.

Index Terms— Nonlinear systems; Nonlinear parametriza-
tion; Adaptive control

I. INTRODUCTION

Adaptive control has evolved to a level of considerable ma-

turity over the past 50 years. Many genuine industrial appli-

cations have been implemented and strong supporting theory

has been developed [1]. A standard adaptive methodology is

set for systems containing a number of constant unknown

parameters to estimate the parameters online and hence

achieve stability and performance. Specifically, a perfect

knowledge controller is designed assuming the parameters be

known and then an adaptation function is added by replacing

the parameters by their corresponding estimates. This proce-

dure is summarized as a certainty equivalence principle [2].

The success of an adaptive controller relies on an effective

adaptation law to achieve the stability and performance of the

closed-loop system, as well as the parameter convergence to

real values whenever possible.

The existence of a successful adaptation law relies heavily

on the linear parametrization assumption which requires

the unknown parameters appear linearly in their dynamics,

(see, e.g., the classical approach [3], the nonlinear design

[2], and most of the recent adaptive control strategies [4]–

[7]). However, this assumption has been a bottleneck for

prevalent applications of adaptive control in many nonlin-

early parameterized systems encountered in industries. The

popular nonlinearly parameterized examples studied in lit-

erature cover physical systems, chemical industry processes

and biotechnology, such as friction dynamics [8], magnetic

bearing dynamics [9], fermentation processes [10], bioreactor
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processes [11], etc. Therefore, it is inevitable for control

engineers to seek new methodologies for dealing with non-

linearly parameterized systems.

Since the mid-1990s, there have been some attempts to

breakthrough the bottleneck caused by the linear parame-

trization assumption. The efforts were mainly on investi-

gating the characteristics of nonlinearities through various

artistic arguments. Robust control approach is one of the

early attempts which is capable of handling bounded uncer-

tainties including unknown constant parameters. The under-

lying principle of robust control is to use sufficiently high

gain terms to dominate the uncertainties which can appear in

dynamics, linearly or nonlinearly. An adaptation law can be

further added to estimate the bound of uncertainties if it is

unknown. Such a robust adaptive combined framework for

nonlinearly parameterized systems has been widely used in

the recent development of nonlinear control. For example, a

global adaptive control of nonlinearly parameterized system

was achieved by output feedback in [12], a robust adaptive

control technique was incorporated in the backstepping con-

trol design with flat zones to tackle nonlinear parametrization

in [13], a non-smooth feedback framework was established

in [14], and an adaptive output regulation controller was

proposed for systems containing nonlinearly parameterized

uncertainties in [15]. Because of the uncertainty domination

nature of robust approach, the robust adaptive approach, on

one hand, exhibits its capability in dealing with complex

nonlinearities, on the other hand, has its inherent disadvan-

tages. One is that a system’s equilibrium point is assumed

not perturbed by uncertainties for an effective domination;

the other is that no parameter estimation is needed and

little can be said about the estimation convergence property.

Therefore, it motives a more technically hard problem of

handling nonlinearly parameterized systems using adaptive

control solely. Along this direction, the existing attempts

have led to several research lines as summarized below.

One of the major research lines for adaptive control of

nonlinearly parameterized systems is on the convex/concave

property of nonlinear functions. Direct adaptive controllers

have been first reported in the literature for convexly para-

meterized systems in [16] (in Russian, which was brought

to the attention of the western world in [17].) The non-

convexly parameterized systems were first studied in [18]

where a globally stable adaptive controller was derived for

asymptotic regulation to within a desired precision ǫ using a

min-max algorithm. The algorithm was further used in [19]

for global stability with further extensions in [20]. Also, a

re-parametrization technique was used to convexify a non-

convexly parameterized system in [21]. The algorithm in
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[22] represents another point of view on dealing with non-

convexly parameterized models. Along this line, a recent

result is a class of polynomial adaptive controllers based on a

piecewise linearly approximated model for nonlinearly para-

meterized systems [23]. Also, nonlinearly parameterized sys-

tems are studied with the examination on the monotonicity

property of nonlinear functions in, e.g., [24], [25]. Another

major research line is for a class of systems with fractional

parametrization whose unknown parameters appear linearly

in both numerator and denominator. Early results in this

line focused on scalar systems as in [10], [11], [26]. The

multi-variable systems were studied in [27]. More extensions

can be found in recent literature. For instance, a class of

adaptive repetitive control was proposed in [28] for non-

linearly parameterized systems subject to periodic/repeated

disturbances and uncertainties. In [29] a new adaptive con-

trol was proposed by introducing a biasing vector function

into parameter estimate, which can be used for a class of

strict-feedback nonlinearly parameterized systems. Finally,

intelligent computation is another methodology for handling

nonlinearly parameterized uncertainties. In particular, com-

plex uncertainties of nonlinear structures might be simplified

based on the universal approximation theorem including

nonlinearly parameterized fuzzy approximation [30], [31] or

neural network approximation [32].

In the aforementioned attempts to nonlinearly parameter-

ized systems, the intelligent computation method does not

rely on the explicit expression of nonlinear functions which

are approximated by a fuzzy logic or a neural network, but

the other methods usually do. To the best knowledge of the

author, there exists no algorithm for general nonlinearities.

In this paper, we aim to propose a novel methodology that

does not rely on the explicit expression of nonlinearities

or an approximation based intelligent computation. As its

outstanding features, the new adaptation law is of simple

structure, is independent of the diversity of nonlinearities,

and allows blind tuning of parameters. Such a design philoso-

phy reminds us typical PID (proportional-integral-derivative)

controllers. Admittedly, PID controllers are extremely preva-

lent in industrial applications. This is due to their simple

structure which allows blind tuning of parameters to achieve

satisfactory regulation performance. For the same reason,

we expect that the adaptation law developed in this paper

has its potential applications as that previously achieved by

PID controllers. The present adaptation law is based on an

idea of repeatedly switching the evolution direction of the

estimate parameter. Without knowing the precise position of

the real parameter, the estimated parameter blindly switches

its searching direction for a fixed interval. As a result, it

moves forward to be closer to its real value in one interval but

reverses backward in the next one, and repeats. An adaptation

algorithm is properly designed to make the forward rate

effectively faster than the backward one, such that eventually

the parameter asymptotically approaches its real value. As

its name means, this approach is called a forward/backward

adaptation law. The establishment of a forward/backward

adaptation law is the main contribution of this paper, which

is supported by rigorous analysis on asymptotic stability and

parameter convergence and numerical simulation.

II. A FORWARD/BACKWARD ADAPTATION LAW

We consider a general nonlinear system

ẋ(t) = f(x(t), d(t), t) + g(x(t), d(t), t)[γ(r(t), θ) + u(t)]

y(t) = h(x(t), t) (2.1)

where x ∈ R
n is the state, u ∈ R

m the input, r ∈ R
p a

measurable signal, θ ∈ R an unknown parameter, d ∈ R
l

a disturbance vector, and y ∈ R
ℓ a performance output. It

is assumed that a preliminary controller has been designed

such that the system ẋ = f(x, d, t) is globally asymptotically

stable (GAS) when the uncertain term γ(r, θ) is not taken

into account. In this paper, the main objective is to propose an

adaptive compensator to deal with the uncertain term γ(r, θ).
If it is successful, a general stabilization problem for systems

containing an unknown term can be solved separately: first

for the ideal case with the term neglected and then for the

original case by incorporating an adaptive compensator.

We first give a brief revisit to the conventional certainty

equivalence principle used in adaptive control for linearly

parameterized systems. In particular, the controller is given

as follows,

u(t) = −γ(r(t), θ̂(t)) (2.2)

where θ̂ ∈ R is the estimated value for θ. The conventional

speed-gradient based adaptation law relies on two assump-

tions. First, the term γ(r, θ) is linearly parameterized, i.e.,

γ(r, θ) = a(r)b(θ) for some functions a ∈ R
m×q and b ∈ R

q

with q ≥ 1. Secondly, the asymptotically stable system

ẋ = f(x, d, t) admits an explicit Lyapunov function V (x, t)
such that dV (x, t)/dt ≤ −ρ(x) for a class K∞ function ρ.

As a result, the controller (2.2) and the adaptation law for

ϑ̂ := b(θ̂) can be designed in the following form:

u = −a(r)ϑ̂,
˙̂
ϑ = Λ

[

∂V (x, t)

∂x
g(x, t)a(y)

]

T

where the Λ is any positive definite diagonal matrix for

tuning the update rate (see, e.g., [2].)

There are three inherent technical difficulties or disadvan-

tages for the conventional speed-gradient adaptive control

design including: (i) most importantly, the uncertain term

γ(r, θ) must be linearly parameterized; (ii) the existence

of an explicit Lyapunov function V (x, t) is assumed for

the nominal system ẋ = f(x, d, t); (iii) when q > 1,

the uncertain term is over-parameterized and a higher order

adaptation law is needed for ϑ instead of θ. To overcome

these disadvantages, we propose a novel adaptation law in

this paper, which is given below followed by explanation,

stability analysis, and simulation in the remaining sections.

For the system (2.1) and the controller (2.2), we propose

a forward/backward adaptation law as follows.
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Forward/Backward Adaptation (FBA) Law:

˙̂
θ(t) = ǫ(−1)kχk, k := ⌊t/τ⌋

χo = 0; χk := sup
s∈[kτ−ατ,kτ)

‖y(s)‖, k ≥ 1;

τ > 0, ǫ > 0, 1/4 > α > 0 (2.3)

where ⌊·⌋ represents the floor function.

The main feature of the FBA law (2.3) is that it does

not explicitly depend on the expression of the system vector

field or a Lyapunov function. It has a uniform structure for

all systems with three parameters τ, ǫ, α to be tuned. Its

main mechanism can be explained as follows. In an FBA

law, the update direction of θ̂ switches between positive

and negative for every interval τ . In other words, θ̂ moves

forward to be closer to its real value θ in one interval but

reverses backward in the next one, and repeats. To drive θ̂ to

eventually approach its real value, we expect the forward rate

effectively faster than the backward one. To make it possible,

the rate is determined by the performance output ‖y‖ during

the preceding interval. For instance, in a forward interval

(vice verse in a backward interval), the parameter gets closer

to its real value and a smaller estimation error results and is

reflected in the performance output y, which hence gives a

smaller backward rate in the following interval. To reflect the

influence of the estimation error on the performance output,

we make the following assumption.

Assumption 1: Consider the closed-loop system com-

posed of (2.1), (2.2), and (2.3), there exists a sufficiently

large τ , such that, for t ≥ τ and θ̃ ≥ 0,

|θ̂(s) − θ| ≥ θ̃, ∀s ∈ [t − 2ατ, t] ⇒

sup
s∈[t−ατ,t)

‖y(s)‖ ≥ β(θ̃) (2.4)

|θ̂(s) − θ| ≤ θ̃, ∀s ∈ [t − 2ατ, t] ⇒

sup
s∈[t−ατ,t)

‖y(s)‖ ≤ β(θ̃) (2.5)

for a strictly increasing function β satisfying 0 < l ≤ β̇(θ̃) ≤
L < ∞, ∀θ̃ ≥ 0.

Remark 2.1: The assumption plays the role that the

deviation of θ̂ from the true value θ is reflected in the

performance output y, which usually can be chosen as y = x.

The strength of the assumption is explained as follows. If θ̂
is away from θ by at least θ̃ during the interval [t− 2ατ, t],
then, allowing a sufficiently long time ατ for settling, the

superior value of ‖y‖ is larger than β(θ̃) during [t − ατ, t).
A similar explaination is given for (2.5) when θ̂ is close to θ
with a difference less than θ̃. In particular, we have β(0) = 0.

In fact, when θ̃ = 0, i.e., θ̂ = θ during some time interval,

it easily implies that ‖y‖ = 0 for the same interval. More

importantly, it makes the FBA law practically implementable

that we do not need explicitly examine this assumption.

The FBA law can be implemented with blind tuning for

the parameters τ , ǫ, and α for any system satisfying the

assumption.

Successful applications of an FBA law are supported by

the precise analysis on the asymptotic stability and parameter

convergence. To facilitate the analysis, we define some

concepts below. In the FBA law (2.3), it is noted that, for

each k,
˙̂
θ is fixed over the interval [kτ, (k + 1)τ ]. So, the

trajectory of θ̂(t) is continuous and piecewise linear (with

a sawtooth waveform). We call each straight line θ̂(t), t ∈
[kτ, (k + 1)τ) as a segment k, denote as

Sk := {θ̂(t) | t ∈ [kτ, (k + 1)τ)}.

The union of more than one adjacent segments can be

denoted as Sk,i := Sk ∪ · · ·∪Sk+i for any integer i ≥ 0. For

completeness, we have Sk,0 = Sk and Sk,∞ = Sk ∪ Sk+1 ∪
· · · . The two ends of Sk are denoted as

bk := θ̂(kτ), ek := θ̂((k + 1)τ)

respectively. Then,

S−

k,i := bk, S+
k,i := ek+i

are the two ends of the segments Sk,i. Obviously, we have

ek = bk+1 because the trajectory θ(t) is continuous.

T̂

t
Wk W)1( �k

A�kS

T

T̂

t
Wk W)1( �k

B�kS

T

T̂

t
Wk W)1( �k

C�kS

T

Fig. 1. Segments of classes A, B, and C.

A segment Sk is said to be a class A segment, denoted

as Sk ∈ A, if and only if θ /∈ Sk and |bk|θ ≥ |ek|θ
1.

Similarly, we can define class B segment and class C segment

(see Fig. 1). Specifically, we say Sk ∈ B, if and only if

θ /∈ Sk and |bk|θ < |ek|θ; and Sk ∈ C if and only if θ ∈ Sk.

Geometrically, a class A segment gets closer to the true value

of θ but a class B segment gets farther from θ. Neither of

them gets through θ, while a class C segment does. For a

segment Sk,i, we denote Sk ∈ X1, · · · , Sk+i ∈ Xi+1 in a

compact form of Sk,i ∈ X1 . . .Xi+1 where X1, · · · ,Xi+1 ∈
{A,B, C}.

T̂

t
Wk W)1( �k

AB�
1,

Sk

T

kb
1�ke

W)2( �k

T̂

t
Wk W)1( �k

BA�
1,

Sk

T

kb
1�ke

W)2( �k

Fig. 2. Segments of classes AB and AB.

For two adjacent segments Sk ∈ A and Sk+1 ∈ B, it is

obvious that

|S−

k,1|θ = |bk|θ ≥ |ek|θ = |bk+1|θ < |ek+1|θ = |S+
k,1|θ.

1Throughout this paper, we denote |x|θ := |x − θ| for any x ∈ R.
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However, it is not clear which end (|S−

k,1|θ or |S+
k,1|θ) is

closer to θ. As illustrated in Fig. 2, two more notations are

introduced to compare |S−

k,1|θ and |S+
k,1|θ: we say Sk,1 ∈ AB

if and only if |S−

k,1|θ ≥ |S+
k,1|θ; and Sk,1 ∈ AB if and only

if |S−

k,1|θ < |S+
k,1|θ (see Fig. 2).

III. STABILITY ANALYSIS AND PARAMETER

CONVERGENCE

In this section, we will show that under Assumption 1 the

estimated parameter asymptotically approaches its real value

through forward-backward iterations under the proposed

FBA law, and hence the closed-loop system composed of

(2.1), (2.2), and (2.3) is asymptotically stable. The analysis

will be conducted by examining the evolution tendency of

the trajectory θ̂(t). Some lemmas will be first given and then

followed by the main theorem.

Lemma 3.1: Under Assumption 1, the trajectory of the

closed-loop system composed of (2.1), (2.2), and (2.3) satis-

fies Sk,3 /∈ ABAB for any k ≥ 0.

T̂

t
Wk W)1( �k

BABA�
3,

Sk

T

W)2( �k W)3( �k W)4( �k

A�kS
B�

�1
Sk

A�
�2

Sk

B�
�3

Sk

1�kp
2�kp

3�kp
4�kp

Fig. 3. A segment Sk,3 ∈ ABAB.

Proof: If it is not true, we assume Sk,3 ∈ ABAB for

some k ≥ 0 (see Fig. 3). For convenience, we define a time

pk := kτ − 2ατ .

On one hand, since Sk+1 ∈ B and Sk+2 ∈ A, from

Assumption 1 and the definition of χk in (2.3), we have

χk+2 ≥ β(θ̂(pk+2)) and χk+3 ≤ β(θ̂(pk+3)), respectively.

And hence,

L[θ̂(pk+3) − θ̂(pk+2)] ≥ β(θ̂(pk+3)) − β(θ̂(pk+2))

≥ χk+3 − χk+2 > 0. (3.1)

The last inequality is from the assumption that Sk+2,1 ∈ AB.

On the other hand, it is not difficult to see that

θ̂(pk+3) − θ̂(pk+2) = −ǫχx+2(1 − 2α)τ + ǫχk+12ατ. (3.2)

As a result, (3.1) and (3.2) imply that

Lǫτ [χk+12α − χx+2(1 − 2α)] ≥ χk+3 − χk+2 > 0, (3.3)

and clearly χk+1 − χk+2 > 0.
Next, since Sk ∈ A we have χk+1 ≤ β(θ̂(pk+1)), which,

together with χk+2 ≥ β(θ̂(pk+2)), implies

L[θ̂(pk+1) − θ̂(pk+2)] ≥ β(θ̂(pk+1)) − β(θ̂(pk+2))

≥ χk+1 − χk+2 > 0. (3.4)

Again, it is not difficult to see that

θ̂(pk+1) − θ̂(pk+2) = ǫχk2ατ − ǫχx+1(1 − 2α)τ. (3.5)

As a result, (3.4) and (3.5) imply that

Lǫτ [χk2α − χx+1(1 − 2α)] ≥ χk+1 − χk+2 > 0, (3.6)

and clearly χk > χk+1, which contradicts the assumption of

Sk,1 ∈ AB.

Lemma 3.2: Suppose the trajectory of the closed-loop

system composed of (2.1), (2.2), and (2.3) with ǫτLα <
1/(4a) − 1 satisfies Assumption 1. For any k ≥ 0, if

Sk,3 ∈ ABAB, then |S−

k,3|θ ≥ |S+
k,3|θ.

Proof: By using the same arguments, we have (3.3) and

(3.6) which imply that

χk+1 + χk+3

≤ [1 + Lǫτ2α]χk+1 + [1 − Lǫτ(1 − 2α)]χk+2

≤ [1 + Lǫτ2α]
2α

1 − 2α
χk + [1 − Lǫτ(1 − 2α)]χk+2

≤ ε(χk + χk+2)

where

ε := max {[1 + Lǫτ2α]2α/(1 − 2α), 1 − Lǫτ(1 − 2α)}

< 1.

As a result,

|S−

k,3|θ − |S+
k,3|θ = ǫτ(χk + χk+2 − χk+1 − χk+3)

≥ ǫτ(1 − ε)(χk + χk+2) ≥ 0. (3.7)

The proof is thus complete.

Lemma 3.3: Suppose the trajectory of the closed-loop

system composed of (2.1), (2.2), and (2.3) satisfies Assump-

tion 1. If there exists an integer ℓ > 0, such that S2k,1 ∈ AB
for any k ≥ ℓ, then limt→∞ θ̂(t) = θ.

Proof: From the definition of AB, the sequence |b2k|θ
is monotonically decreasing along k. As a result, we have

limk→∞ |b2k|θ = ρ ≥ 0. Now, it suffices to prove ρ = 0.

For any small σ > 0, there exists an integer K, such that

ρ ≤ |b2k|θ < ρ + σ, ∀k ≥ K.

Next, we will prove that

χ2k+1 ≤
2aκσ

(1 − 4a)ǫτ
, κ := max{1/(2al), 1}, ∀k ≥ K.(3.8)

Otherwise, if (3.8) is not true, there exists a k such that

(1 − 4a)χ2k+1 >
2aκσ

ǫτ
. (3.9)

Also, we note that

ǫτ(χ2k − χ2k+1) = |b2k|θ − |b2k+2|θ ≤ σ,

ǫτ(χ2k+2 − χ2k+3) = |b2k+2|θ − |b2k+4|θ ≤ σ. (3.10)

Since κ ≥ 1, (3.9) and the first equation of (3.10) imply

that

(1 − 2a)χ2k+1 > 2aχ2k+1 +
2aσ

ǫτ
≥ 2aχ2k (3.11)
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and hence θ̂(p2k+2) > θ̂(p2k+1) where pk := kτ−2aτ . This

further implies χ2k+2 > χ2k+1 and θ̂(p2k+2) > θ̂(p2k+3).
Since β(θ̂(p2k+2)) ≤ χ2k+2 and β(θ̂(p2k+3)) ≥ χ2k+3,

we have

0 < l(θ̂(p2k+2) − θ̂(p2k+3)) ≤ β(θ̂(p2k+2)) − β(θ̂(p2k+3))

≤ χ2k+2 − χ2k+3 ≤ σ/(ǫτ)

where the second equation of (3.10) is used. On the other

hand, we have

θ̂(p2k+2) − θ̂(p2k+3)

= (1 − 2a)χ2k+2 − 2aχ2k+1

= (1 − 2a)(χ2k+2 − χ2k+1) + (1 − 4a)χ2k+1

≥ (1 − 4a)χ2k+1 > 2aκσ/(ǫτ).

The above two inequalities imply that

σ

ǫτl
≥ θ̂(p2k+2) − θ̂(p2k+3) >

2aκσ

ǫτ

that is κ < 1/(2al), which contradicts the definition of κ.

Thus, (3.8) is proved.

From (3.8), we have limk→∞ χ2k+1 = 0, which easily

implies limk→∞ χ2k = 0. Then, it is ready to show ρ = 0.

Theorem 3.1: Under Assumption 1, if ǫ is sufficiently

small such that

ǫτL < min{1, [1/(4α) − 1]/α}, (3.12)

then the system composed of (2.1), (2.2), and (2.3) is globally

asymptotically stable in the sense of

lim
t→∞

x(t) = 0, lim
t→∞

θ̂(t) = θ (3.13)

for any initial states x(0) and θ̂(0).
Proof: Without loss of generality, we assume θ̂(0) 6= θ.

We will first show that Sk /∈ C for any k. Otherwise, let Sk

be the first segment of class C. Therefore, Sk−1 ∈ B and

hence, χk ≤ β(|bk|θ). Now, we have

|bk|θ + |bk+1|θ = ǫχkτ

and

|bk+1|θ = ǫχkτ − |bk|θ

≤ ǫτβ(|bk|θ) − |bk|θ ≤ (ǫτL − 1)|bk|θ < 0,

which is a contradiction.

Next, we will show that there exists a finite ℓo ≥ 0, such

that Sℓo,∞ consists of only (AB), i.e.,

Sℓo,∞ ∈ AB · · ·AB · · · .

If S1 ∈ A, let ℓo = 1; if S1 ∈ B, let ℓo = 2. Then, it suffices

to prove that there does not exist two adjacent segments Sk,1

such that (i) Sk,1 ∈ AA; or (ii) Sk,1 ∈ BB. In (2.3), since

χk ≥ 0, the direction of θ̂ is determined by (−1)k. As a

result, (ii) is obviously true. For (i), Sk,1 ∈ AA happens

only when χk = 0 or χk+1 = 0, which implies θ̂(t) = θ for

all t ∈ [kτ, (k +1)τ ] or t ∈ [(k +1)τ, (k +2)τ ], i.e., Sk ∈ C
or Sk+1 ∈ C.

From Lemma 3.1, we know that, the trajectory θ̂(t)
starting from the ℓo-th segment consists of only the units of

AB and ABAB. Now, denote the value θ̂ at the head of the

r−th unit as zr. From the definition of AB and Lemma 3.2,

we note that |zr|θ is monotonically decreasing. So, we have

lim
r→∞

|zr|θ = ρ ≥ 0.

If ρ = 0, the proof is complete obviously. Otherwise, we

will consider the case of ρ > 0. Let Sk,3 ∈ ABAB for

some k. Clearly, we have |θ̂(kτ − 2ατ)|θ ≥ (1 − 2α)ρ and

χk ≥ β((1 − 2α)ρ). From (3.7) of Lemma 3.2, we have

|S−

k,3|θ − |S+
k,3|θ ≥ ǫτ(1 − ε)χk

≥ ǫτ(1 − ε)β((1 − 2α)ρ) > 0.

As a result, there are only finite units of class ABAB,

otherwise, we have |zr|θ < 0 for a sufficiently large r.

In the other words, there exists an integer ℓ, such that

S2k,1 ∈ AB for any k ≥ ℓ. The proof is thus complete

by using Lemma 3.3.

To demonstrate the FBA law’s performance and effec-

tiveness, we will study an academic example to examine

the influence of the control parameters τ and ǫ on pa-

rameter convergence performance. Actually, the FBA law

has been tested for more systems including control of low-

velocity friction model and synchronization of Hindmarsh-

Rose model neurons, etc. In these applications, a variety

of nonlinear functions have been examined including hyper-

bolic, sinusoidal, exponential, and polynomial functions. Due

to the space limit, the details of these applications are not

given here.

Example 3.1: We consider the following nonlinear sys-

tem in the form of (2.1):

ẋ =

[

−x1 + 0.2 sin x2

−2x2 − x3
2

]

+

[

5
10

]

[tanh(θr) + u],

r(t) = 0.2 sin(10t)

Without the unknown term tanh(θr), the system is globally

asymptotically stable. To deal with the term tanh(θr), the

controller is designed as follows u = − tanh(θ̂r) where

θ̂ is updated as (2.3) with α = 1/5 and different sets of

parameters τ and ǫ. The simulation results are given in

Fig. 4 with the true value θ = 2 and the initial states

x(0) = [10,−2] and θ̂(0) = 0 or 4. It is illustrated in the top

graph that the state x(t) converges to the equilibrium point,

and in the middle and bottom graphes that θ̂ converges to θ.

Next, we will discuss how the parameters τ , ǫ, and α
affect the closed loop system’s performance. We will mainly

examine the first two parameters because α is not designed

as an effective tuning parameter and it is chosen as α =
1/5 < 1/4. On one hand, to guarantee the stability of the

closed-loop system, τ should be sufficiently large to make

Assumption 1 satisfied and in turn ǫ should be sufficiently

small to make (3.12) satisfied. On the other hand, a too large

τ or a too small ǫ obviously induces a long settling time for

the system. This is a typical tradeoff between steady and

transient performances. To achieve the balance to match the
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Fig. 4. Profiles of asymptotic stabilization and parameter convergence.
Above: profile of states x with τ = 10 and ǫ = 0.4; middle: profile of
parameter convergence with τ = 10 for ǫ = 0.3, 0.4, 0.6 (along arrow line);
bottom: profile of parameter convergence with ǫ = 0.4 for τ = 5, 10, 15

(along arrow line).

design requirements, these two parameters need a careful

tuning. In the middle graph of Fig. 4, for a given τ = 10,

a larger ǫ corresponds to a shorter settling time, but may

induce some offshoot. For the case with the curve marked

in bold, the asymptotic stability of the plant is demonstrated

in the top graph. In the bottom graph of Fig. 4, for a given

ǫ = 0.4, a larger τ corresponds to a shorter settling time. But

for a small τ , there is more space to increase ǫ to shorten

the settling time.

IV. CONCLUSION

Engineers always look after simple but effective con-

trollers. Such a controller is proposed in this paper to deal

with the adaptive problem for nonlinearly parameterized

systems. The adaptation law has a uniform format with

two major tuning parameters and it is effective for a wide

range of systems with various nonlinearities. By properly

tuning the parameters, the system stability and parameter

convergence can be achieved with a satisfactory transient

performance. This novel design methodology is expected to

be a new attempt to the development of adaptive control for

nonlinearly parameterized systems.
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