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Abstract— In recent years, the Smoothed Particle Hydrody-
namic (SPH) method has been successfully applied to model
swarm robotic systems as incompressible/compressible fluids.
Essentially, the SPH approach models inter-robot interactions
using attraction-repulsion force profiles and in this respect
is reminiscent of traditional analytical frameworks used in
swarm systems such as Artificial Potential Field based methods.
However, in contrast to other virtual force based approaches,
the SPH method provides a much more effective way to control
the density of the robots; a particularly useful feature in several
applications of swarm systems including pattern generation and
coverage control. In this paper, we revisit the SPH method from
a control point of view with an emphasis on density control,
and propose the idea of density-based control for multiple
robots. In addition, we modify the original SPH method by
fully decentralizing the SPH controller while retaining its
density control feature, and introducing an inter-robot collision
avoidance mechanism. This enhances the capability of the
model in controlling a swarm of real-world robots. Finally, the
effectiveness of our density-based control of a large number of
robots is demonstrated through implementing two important
tasks in multi-robot control: group motion and shape control,
and group segregation.

I. INTRODUCTION

The development of efficient control methodologies for

a large number of robots designed to collectively carry

out specified tasks (e.g., surveillance) continues to be an

active area of research. In this paper, we focus on a control

model inspired by physics called the Smoothed Particle

Hydrodynamic (SPH) method. The method has been suc-

cessfully applied in recent years to model multiple robots

as a stream of incompressible/compressible fluid [1]–[3]

resulting in demonstrable capability in tasks such as pat-

tern generation [3], unknown area coverage and corridor

sweeping [1, 2]. For instance, Pac et. al. [1, 2] applied

the SPH model to adaptively deploy sensor nodes in an

unknown environment. While these and other papers offer

a comprehensive understanding of the SPH framework, the

nature of the relationship between the SPH model and the

more commonly employed Potential Field based methods

(or Virtual Force based methods) remains an open question.

On the other hand, several mathematical approaches to the

problem have been attempted. For instance, Pimenta et.

al. [3] have investigated the pattern generation problem in

which multiple robots are driven to collectively form a

pattern defined by an arbitrary curve. They also prove the

stability of the SPH controller in this case. However, to
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the best of our knowledge, density-based control has not

been investigated in the SPH framework. In particular, whilst

inter-robot distance is often the control variable of primary

interest (e.g., in problems such as rigid formation control and

flocking), the density of the robots could emerge as the key

variable in certain applications. For instance, if the objective

is to drive a large number of robots from one place to another,

the robot density is the quantity of key importance while the

inter-robot distance plays only a secondary role as a metric

useful for collision avoidance. Moreover, certain tasks can be

done in an extremely simple manner via controlling density,

such as the task of group segregation which will be discussed

in detail later. Motivated thus, in this paper we propose the

idea of density based control using the framework of the

SPH model.

In order to validate our ideas, we apply the proposed

framework to two problems involving the control of multiple

robots, the first of which is group motion and shape control.

This is motivated by the fact that a human operator can

exercise control over a large number of robots with relative

ease by sending a small set of commands used to define the

shape and motion of the group. The second problem is that

of group separation which arises when several sub-groups

of robots are required to perform tasks simultaneously, for

instance, in tracking multiple intruders. The paper is set as

follows. The original SPH model is introduced in Section 2.

In Section 3 we explore the model from a control perspective

and discuss certain modifications. Section 4 discusses in

detail the controllers designed for the two tasks. Simulation

results presented in Section 5 demonstrate the effectiveness

of the density based controllers.

II. SMOOTHED PARTICLE HYDRODYNAMICS

There are different versions of the SPH model [2, 3],

which are considered equivalent according to [4]. In this

paper, we choose the model used in [3]. The mathematical

definition of robot density is of prime importance in density

control. In the SPH model one defines the density of a robot

as the weighted sum of distances to its nearby robots within

a certain range D. The weight function (or kernel function),

considered in this paper, is the cubic spline function as in

[3]:

W (q, h) =
10

7πh2











1− 3
2κ

2 + 3
4κ

3 if 0 ≤ κ ≤ 1
1
4 (2− κ)3 if 1 ≤ κ ≤ 2

0 otherwise

(1)

where κ = ‖q‖ /h and q is a position vector. The function

support is determined by 2h where 2h = D.
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Now we can write down the definition of density ρi for

robot i as:

ρi =
∑

j

W (qij, h) (2)

where qij = qi − qj and qi ∈ R2 is the robot’s position

in a two dimensional environment. Given the definition of

density, the SPH controller can then be defined as:

dvi

dt
= −

∑

j

(
Pi

ρ2i
+

Pj

ρ2j
+Πij)∇iWij (3)

where Wij = W (qij), and vi is the vector velocity of

robot i, Piis the pressure variable defined below. The plot of

−‖∇iWij‖ as a function of κ is shown in Fig. 1. Πij is a

dissipative term for handling shocks given by:

Πij =

{

1
ρ̄ij

(−ξ1µij + ξ2µ
2
ij) if vij · qij < 0

0 if vij · qij ≥ 0
(4)

where

µij =
hvij · qij

‖qij −Rsafe‖
2 (5)

Rsafe is the minimal distance between a pair of robots that

guarantees collision avoidance, ρ̄ij is the average density of

robots i and j, and vij = vi − vj .

The SPH model can incorporate either compressible or

incompressible flow. For modeling robots as a compressible

fluid, we define the pressure Pi as:

Pi = Kρi (6)

For modeling robots as an incompressible fluid, we define:

Pi = Kρi

[(

ρi
ρ0

)γ

− 1

]

(7)

where ρ0 is the reference density, K and γ are model specific

coefficients. For illustrative clarity, we maintain K = 200
and γ = 7 in all the simulations reported in this paper.

Keeping in mind the decentralized control , we define Ni

as the set of all the robots in the neighborhood of robot i:

Ni = {j 6= i | ‖qj − qi‖ < D} (8)

Since we define 2h = D, robot i only needs to know the

position and velocity of the robots in Ni.

In this paper, all robots are assumed to obey double-

integrator dynamics given by q̈i = ui. Hence the controller

for each robot is:

ui = fSPH
i − ξvi (9)

where fSPH
i is the SPH force defined as:

fSPH
i = −

∑

j

(
Pi

ρ2i
+

Pj

ρ2j
+Πij)∇iWij (10)

ξ is a positive coefficient which is identically set to unity for

all simulations in this paper. The damping term −ξvi helps

stabilize the system.
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Fig. 1: The plot of −‖∇iWij‖ as a function of κ.

III. MODIFIED SPH MODEL

A. Modifications

1) Collision Avoidance: Pimenta et al. [3] use the dissi-

pative term Πij solely as a mechanism to avoid inter-robot

and robot-obstacle collisions. However, computation of Πij

requires the knowledge of the velocities of all the robots

in the neighborhood. Moreover, Πij acts exclusively as a

damping force the effect of which is the same as the term

−ξvi in (9). Hence, instead of using two separate damping

forces in this system, we get rid of Πij and introduce a new

mechanism to avoid inter-robot collisions.

In this paper, we use the additional repulsive force f
repel
i

that is defined as:

f
repel
i = Krepel

∑

j∈N r
i

1

‖qij‖
·

qij

‖qij‖
(11)

where Krepel is a coefficient used to adjust the magnitude

of the repulsive force, and N r
i is a set of robots inside the

Rsafe range:

N r
i = {j 6= i | ‖qj − qi‖ < Rsafe} (12)

2) SPH model: Since our emphasis has now turned to

density control from the simulation of the fluid motion, it is

no longer imperative to keep the SPH model intact if altering

the model can achieve more efficient density control. The

original SPH model requires the knowledge of densities of all

nearby robots (see (10)) which increases the communication

requirement. In fact, we can safely get rid of the Pj/ρ
2
j term

in (10) without jeopardizing the feature of density control.

Thus the SPH force can be rewritten as:

fSPH
i = −

Pi

ρ2i

∑

j

∇iWij (13)

and the control law becomes:

ui = fSPH
i + f

repel
i − ξvi (14)

In the new controller, each robot only needs to know its

own density and velocity in order to compute the control

force, thereby obviating the need for further communication

between robots.

The equations of collective motion of the system of N
robots are given by:

q̇ = v

v̇ = −∇V (q)− ξv
(15)
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where, q ∈ R2N is the stacked position vector of all robots,

and v ∈ R2N is the stacked velocity vector of all robots,

and

V (q) =
∑

i

[

V SPH
i + V repel

i

]

(16)

where

V SPH
i = K

[

1

γ

(

ρi
ρ0

)γ

− ln ρi

]

(17)

V repel
i = Krepel

∑

j

ln (‖qij‖) (18)

for the incompressible fluid version. For the compressible

fluid version:

V SPH
i = K ln ρi (19)

The SPH controller can be written as:

ui = −∇V SPH
i −∇V repel

i − ξvi (20)

In order to carry out the stability analysis of the collective

motion of all robots, we consider the following positive

definite function as the Lyapunov function:

φ (q,v) = V (q) +
1

2
vTv (21)

Lemma 1: Consider a system of N mobile robots, the

dynamics of which is dictated by (15) and the con-

trol law is given by (20). For all initial conditions be-

longing to the level set of φ (q,v) given by ΩC =
{(q,v) : φ (q,v) ≤ C,C > 0}, the system asymptotically

converges to the largest invariant set in ΩI ⊂ ΩC . In ΩI ,

the velocities of all the robots vanish and the total potential

of all robots given by (16) approaches a local minimum.

Proof: Differentiating φ (q,v) with respect to time and

using (15), one obtains:

φ̇ (q,v) = vT∇V (q) + vT v̇

= vT∇V (q) + vT (−∇V (q)− ξv)

≤ 0.

(22)

From the LaSalle’s Invariance Principle, all solutions of the

systems starting in ΩC will converge to the largest invariant

set in ΩI =
{

(q,v) ∈ ΩC : φ̇ (q,v) = 0
}

. In particular, this

occurs when the velocities of all the robots become zero.

Furthermore, in the steady state, the velocities of the robots

do not change, i.e.v̇ = 0. Hence, from (15) we have:

∇V (q) = 0 (23)

Hence, the total potential of all robots is locally minimized.

Proposition 1: A pair of robots i and j with dynamics

given by q̈i = ui (q, t) and a control law determined by

(14) will never collide with each other.

Proof: Collision between robots i and j is characterized

by qij = 0 = qji. Consider the SPH force on robot i given

by (13). From the expression for the cubic spline function

(1), limq→0 W (q, h) = 10/7πh2, a finite constant. However,

from (11), the repulsive force f
repel
i → ∞ as q → 0. Hence,

the repulsive forces on robots i and j grows unboundedly

large as the robots approach each other thereby eliminating

the possibility of a collision.

B. Density-based Controller

In density-based control, robot density plays an important

role, and the controller either controls the density directly

or exercises control based on it. The incompressible fluid

version of SPH model turns out to be an ideal density

controller because the definition of pressure in (7) introduces

a typical feedback mechanism to control the density. In

particular, since −∇iWij is always a repulsive force between

robot i and robot j (see Fig. 1), when ρi > ρ0, the SPH force

between robot i and j generates a repulsive force that reduces

the density. When ρi < ρ0, it generates an attractive force

resulting in an increase in the robot’s density. In this sense,

the SPH model is very similar to Virtual Force or Potential

Field based methods because there are only attractive and

repulsive forces. The difference is that fSPH
i can change its

type according to the density in real time, which also is the

source of the strength of the density-based controller.

The compressible fluid version of SPH implies a varying

density. Thus we use (6) to define the pressure. Clearly, we

have a typical positive feedback controller. In this case the

SPH force will always be repulsive as Pi is always positive

and −∇iWij is always a repulsive force. Furthermore, a

closer look at the SPH equation:

Pi

ρ2i
=

K

ρi
(24)

reveals that a decrease in ρi (when the group is expanding)

is accompanied by an increase in the SPH force. This feature

is in fact quite useful since when the robot density is large,

moving slowly helps avoid potential collisions.

In the next section, we demonstrate the utility of the

density control feature of the SPH model by implementing

multi-robot controllers in two tasks: group motion and shape

control, and group segregation.

IV. CONTROLLER DESIGN

A. Group Motion and Shape Control

A simple group-level motion and shape control mechanism

is very important for a single human operator to exercise

control on a large number of robots. Significant previous

contributions to this topic includes the works of Pimenta et

al. [3], Cheah et al. [5], and Belta and Kumar [6]. In [3], the

authors apply SPH model to drive a swarm of robots to form

a pattern defined by a curve, while the motion of the robot

resembles that of a fluid. Belta and Kumar [6] specify group

level properties by initially providing the first and second

moments of the robot distribution and then designing a

controller to obtain that distribution. This kind of abstraction

method helps in developing high level control command in

lower dimensions rather than specifying positions of each

robot. They reported that, in the steady state, the robots form

an ellipse centered at the point specified by the first moment

and with principal axes specified by the second moments.

However, the robots are distributed without any fixed bound-

ary (the boundary provided in [6] is excessively conservative

when the number of robots is large), and the distribution is

only statistical in nature. In contrast, the region-based method
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proposed in [5, 7] provides a rigid boundary within which

robot positions are constrained. However, they do not provide

a mechanism to distribute the robots once they are inside

the boundary. In this paper, we propose a new controller

that fuses the region-based controller with compressible fluid

version of the SPH controller. The new controller has the

following properties:

• Every robot will be driven into a bounded region

specified by several functions.

• Inside the bounded region, the robots will exploit the

compressible nature to spread out to occupy the whole

space.

Here we show the equations for region-based control and

refer to [5] for the details. In region-based control, the

boundary function is defined by fGi
(∆qi), where

∆qi = qi − qc (25)

and qi = [qi1, qi2]
T is the two-dimensional coordinate of

robot i and qc = [qc1, qc2]
T is a reference point of the shape.

If qi lies on the shape, then fGi
(∆qi) = 0. We define a

potential energy function for robot i:

PGi(∆qi) =
k

2
[max(0, fG(∆qi))]

2 (26)

where k is a positive coefficient. Now we can define a force

f
Shape
i that is used to drive all robots into the shape:

f
Shape
i = ∇iPGi

=
∂PGi(∆qi)

∂qi

=







kfG(∆qi)
(

∂fG(∆qi)
∂qi

)T

fG(∆qi) > 0

0 fG(∆qi) ≤ 0

= k ·max(0, fG(∆qi))

(

∂fG(∆qi)

∂qi

)T

(27)

Hence the region-based SPH controller is defined as:

ui = f
Shape
i + fSPH

i + f
repel
i − ξvi (28)

To facilitate the mathematical analysis, in this task, the SPH

force is defined as in (13).

Proposition 2: Given a system of N mobile robots with

dynamics given by q̈i = ui (q, t) and a control law deter-

mined by (28), where f
Shape
i = ∇iPGi and PGi is a shape

potential function, the equilibrium points of the system are

at an extremum of φS(q) =
∑

i PGi.

Proof: Since the system is in equilibrium we have

q̈ = q̇ = 0. Hence, we have ui = 0. Therefore
∑

i ui = 0.

Since in (11), we have qij = −qji and in (13), we have

∇iWij = −∇jWji, we have
∑

i ui =
∑

i ∇iPGi = 0.

However,
∑

i ∇PGi = 0 is the necessary condition for φS(q)
to be an extremum.

B. Group Segregation

In multi-robot cooperative control, a very interesting prob-

lem is that of segregation, i.e., splitting of a group of robots

into spatially identifiable subgroups. The robots can be het-

erogeneous or homogeneous. Heterogeneous robots can be

segregated by using concepts based on differential potential

as proposed in [8]. For homogeneous robots, segregation is

much more challenging because the robots do not have an

identifiable property that distinguishes them to form separate

groups. Therefore, the robots need to reach an agreement

on which robot belongs to which group. A common way

to reach such an agreement in a distributed manner is to

use market-based methods in which robots can communicate

with each other and reallocate themselves based on expected

utility. In contrast to these methods, we propose a con-

troller to separate robots in a self-organizing manner. In this

approach, the global behavior, group segregation, emerges

from the local simple interactions between robots. The group

segregation controller is given as:

ui = fSPH
i + f

repel
i − ξvi (29)

In this controller, we choose Rsafe = D = 2h, and apply the

incompressible fluid version of SPH force where the pressure

Pi is defined by (7). From extensive numerical simulations, it

was observed that the proposed controller has the following

properties:

• Robots can be separated into several subgroups in a

distributed manner.

• Each subgroup forms a perfect circular pattern.

From the behavior-based control point of view, the SPH

force fSPH
i is a behavior to hold the group together, while

the additional repulsive force f
repel
i is a behavior to break

the group. Group segregation may also be viewed as a

process of these two forces reaching a balance. Essentially,

this system shows resemblance to a nonlinear time-variant

consensus control system [9], and the following proposition

shows that the SPH force fSPH
i almost always points towards

a weighted geometric center during the whole dynamic

process.

Proposition 3: If ρi < ρ0, the SPH force fSPH
i always

points to the point qi
wc =

∑
j δijqj

∑
j δij

.

Proof: The SPH force is given by (13).

fSPH
i = −

Pi

ρ2i

∑

j∈Ni

∇iWij (30)

=
Pi

ρ2i

∑

j

δij(qj − qi) (31)

=
Pi

ρ2i





∑

j

δijqj − (
∑

j

δij) · qi



 (32)

=
(
∑

j δij) · Pi

ρ2i

(

∑

j δijqj
∑

j δij
− qi

)

(33)

=
(
∑

j δij) · Pi

ρ2i
(qi

wc − qi) (34)

where δij = g(‖qij‖) =
−∇iW (‖qij‖)

‖qij‖
≥ 0 and qi

wc =
∑

j δijqj
∑

j δij
. Since Pi > 0 because of ρi < ρo, the SPH force
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Fig. 2: Robots form various circular patterns in different

desired densities. Densities are the same for robots on the

same circle.

fSPH
i has the same direction with the vector (qi

wc − qi). In

other words, fSPH
i is pointing towards qi

wc at all times. In

fact, qi
wc is the weighted center of mass and the weight is

determined by the kernel function W (see (1)).

Extensive simulations demonstrate that in the steady state,

each group will form a perfect circular pattern (either a

single ring or multiple rings). Fig. 2 shows that the robots

form circular patterns that change from multiple ring-like

pattern to a single ring as the desired density is decreased.

A mathematical explanation of this phenomenon remains

an interesting, open problem. An intuitive understanding of

this phenomenon can be arrived at by considering the fact

that decreasing the desired density results in an equilibrium

condition where robots need to be more spatially distributed

and this can happen when robots in multiple-ring like pattern

move out to form a single ring. If we further decrease

the desired density, any pattern with a given number of

robots become unstable and separates to exhibit segregation

behavior. It is note worthy that equilibrium condition always

results in a highly symmetrical circular (with either single

or multiple rings) pattern.

V. SIMULATIONS

A. Simulation #1 (Group Motion and Shape Control)

The region based SPH controller is very much applicable

to dynamic situations when the shape function changes

with time. In order to demonstrate the effectiveness of the

proposed method to redistribute when the shape of the region

changes, we carried out extensive simulations. As shown

in Fig. 3, initially 17 robots were randomly placed in a

5 by 5 square region. The parameters D and Krepel were

chosen to be 12 and 7 respectively. The initial desired shape

function is a circle with radius 15. Further, the circle moves

along the x axis towards right at the speed of 1m/s. At the

timestep = 300 (1 timestep = 0.1sec for all simulations

in this paper), the shape function is changed into an ellipse

with principal axes 7 units and 20 units. As we can see

from the figure, the robots converge to the boundary and

redistribute themselves inside the ellipse, which is due to

the self-spreading property of the compressible fluid. From

the plot of minimum inter-robot distance versus time, we

can see that the robots never collide with each other in the

process.

B. Simulation #2 (Group Segregation)

By tuning the parameters D, Krepel and ρ0, we can split

the robots into several subgroups. In Fig. 4, initially 46 robots

are randomly placed in a 10 by 10 square region. Desired

density ρ0 is 0.06 at the beginning. At 550 timestep we

change it to 0.02 and at 1000 timestep we change it back

to 0.06 again. The parameters D = 25, Krepel = 7. As

we can see, in the first phase, robots are separated into two

groups and each group forms a solid circular pattern (with

multiple rings). After the desired density is decreased, they

are further separated into four smaller groups and each group

still forms a circular pattern (with single ring). As the desired

density increased again, each ring pattern collapses into a

solid circular pattern while the number of groups remains.

From the plot of the densities of all robots (Fig. 5), we can

clearly see the three different phases with different patterns

formed. Also we notice that the densities are the same for

robots on the same layer of the ring . From Fig. 5 we can

also see that the transition time between two phases is very

short (less than 200 timestep or 20 sec), which demonstrates

the effectiveness of the density-based controller in group

segregation task.

VI. CONCLUSIONS AND FURTHER WORK

In this paper, we propose the idea of density-based control

for controlling multiple robots in the framework of SPH. In

fact, the density of robots plays an important role in control-

ling a large number of robots. Two tasks have been chosen to

demonstrate the effectiveness of the density-based controller:

group motion and shape control, and group segregation.

Mathematical analysis and extensive simulations show the

effectiveness of the controller for group motion and shape

control. Furthermore, extensive simulations demonstrate the

ability of the density based controller to achieve segregation.

Future research will focus on the mathematical analysis
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Fig. 3: The demonstration of the effectiveness of SPH

controller to redistribute robots inside a new shape.

of the controller and development of a theoretical basis

to understand the role played by different parameters in

achieving different types of self organizing behaviors.
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Fig. 4: The demonstration of self-organized group separation

behavior
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