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Abstract— This paper derives simple and explicit formulas
for computing the parameters of the Thevenin’s equivalent
circuit model for a discharging battery. The general Thevenin’s
equivalent circuit model has n pairs of parallel resistors and
capacitors. The main idea behind the new method is to trans-
form the problem of solving a system of high order polynomial
equations into one of solving several linear equations and
a single variable nth order polynomial equation, via some
change of variables. Experimental and computational results
are obtained for 3 types of batteries.
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I. INTRODUCTION

Dynamic models for batteries are important for analysis,

design, and simulation of battery powered electronic sys-

tems (e.g., see [1]–[7]). They are also important for char-

acterization of battery performance, life-time estimation,

power management, and efficient use of batteries [8]–[12].

Fig. 1. Thevenin’s equivalent model for a discharging battery

Depicted in Fig. 1 is a Thevenin’s equivalent circuit
model, which has been widely used to model the discharg-

ing dynamics of various types of batteries such as lead-

acid, lithium-ion (Li-ion), Li-polymer, nickel metal hydride

(NiMH), and fuel cells, e.g., see [1]- [12]. Although the pa-

rameters in the model depend on many factors [1], [7], [11],

[13], such as the state of charge, the load, the temperature

and the history of charge/discharge, under certain working

condition and over a relatively short period of time, they

are assumed to be constants.
The most commonly used model is the circuit with only

one pair of parallel resistor and capacitor (RC). For this 1st-

order model, the parameters can be easily estimated from
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the experiment. However, the voltage response by the 1st-
order model can be quite different from the response of the

real battery, as will be demonstrated with examples. For

models with two or more pairs of parallel RCs, there seems

to be a lack of systematic methods to identify the parame-

ters, except for using brute force numerical methods, such

as minimizing a cost function of the sum (or integral) of

squares of the difference between the experimental data and

analytical expression [13]. The drawback with such kind

of numerical optimization method is that the cost function

is highly nonlinear with respect to circuit parameters and
there is no guarantee to find the global minimum. Plus, it

is a very tricky issue to find proper initial parameters for

optimization.
The purpose of this paper is to derive a simple analytical

method to identify the parameters for the general case with

two or more pairs of parallel RCs.

II. EXPLICIT FORMULAS FOR COMPUTING THE

PARAMETERS

We consider the battery model with n pairs of parallel

resistors and capacitors, (R1, C1), (R2, C2), · · · , (Rn, Cn),
as depicted in Fig. 1. For simplicity, this will be called an

nth-order model. A common set up to obtain the parameters

is to connect the battery to an electronic load which absorbs

a constant current I from the battery, see Fig. 2.

Fig. 2. A battery connected to a load with constant current

Assume that the load is connected at t = 0 and all the

initial capacitor voltages are 0. Then the first two parameters

to be obtained are

E = v(0−), R0 = (v(0−)− v(0+))/I.

The other parameters (R1, C1), · · · , (Rn, Cn) have to be

evaluated via the time response v(t) over a period of time.

The advantage of using a constant current load (over a

resistor) is that v(t) can be simply expressed as

v(t) = E −R0I −
n
∑

k=1

RkI(1− e
−

t

RkCk )
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If only one pair of parallel resistor and capacitor (R1, C1)
is considered in the model, they can be estimated from the

approximate time constant of the experimental response.

However, the voltage response of this simple model can

be very different from that of the actual battery.

In this paper, we present explicit formulas to compute

the parameters for the general nth-order model.

A. Detailed results for the 3rd-order model

For the 3rd-order model,

v(t)=E−R0I−R1I(1−e
−

t

R1C1 )−R2I(1− e
−

t

R2C2 )

−R3I(1− e−
t

R3C3 ) (1)

To find the 6 parameters (Rk, Ck), k = 1, 2, 3, we pick 6

equally spaced time instants, tk = kT, k = 1, · · · , 6. Let

d1 = e
−

T

R1C1 , d2 = e
−

T

R2C2 , d3 = e
−

T

R3C3

Then for k = 1, 2, · · · , 6,

v(kT )=E−R0I−R1I(1−dk1)−R2I(1−dk2)−R3I(1−d
k
3),

k = 1, 2, · · · , 6. (2)

Theoretically, the 6 parameters (R1, d1), (R2, d2), (R3, d3)
can be determined from the above 6 equations with

v(kT ) obtained from experiment. With these 6 parameters,

C1, C2, C3 are easy to compute.

At first sight, it may seem that the 6 nonlinear equations

in (2) are impossible to solve by analytical method, since the

last equation has three 7th order terms R1d
6
1, R2d

6
2, R3d

6
3.

However, after further examination on the structure of the

equations, all the solutions can be explicitly obtained with
some change of variables.

The main idea of the new method is to define the

following variables

u1=d1+d2+d3, u2=d1d2+d2d3+d3d1, u3=d1d2d3. (3)

It turns out that these variables can be solved via a system

of linear equations. Then d1, d2, d3 can be obtained by

solving a 3rd order single variable polynomial equation

with coefficients formed with u1, u2, u3. After that, the

computation of Rk, Ck, k = 1, 2, 3 is straightforward. The

main result is summarized as follows.

Main Result: Given E,R0, v(kT ), k = 1, 2, · · · , 6 from

experiment. The parameters (Rk, Ck), k = 1, 2, 3 can be

computed from the following steps:

1. Compute b1 = E − R0I − v(T ). For k = 2, · · · , 6,

bk = v((k − 1)T )− v(kT ).

2. Compute





u1

u2

u3



 =





b3 −b2 b1
b4 −b3 b2
b5 −b4 b3





−1 



b4
b5
b6



.

3. Let the roots to q3 − 2u1q
2 + (u2

1 + u2)q + (u3 −
u1u2) = 0 be q1, q2, q3. Then





d1
d2
d3



 =





0 1 1
1 0 1
1 1 0





−1 



q1
q2
q3





4. Let





x1

x2

x3



 =





1 1 1
d1 d2 d3
d21 d22 d23





−1 



b1
b2
b3



. Then

Rk = xk

I(1−dk)
, Ck = − T

Rk ln(dk)
, k = 1, 2, 3.

Proof of the main result:

Define

x1 = R1I(1−d1), x2 = R2I(1−d2), x3 = R3I(1−d3)

The 6 equations in (2) can be rewritten as follows:

x1 + x2 + x3 = E −R0I − v(T ) (4)

(1 + d1)x1 + (1 + d2)x2 + (1 + d3)x3

= E −R0I − v(2T ) (5)

(1 + d1 + d21)x1 + (1 + d2 + d22)x2 + (1 + d3 + d23)x3

= E −R0I − v(3T ) (6)
N
∑

k=0

dk1x1+

N
∑

k=0

dk2x2+

N
∑

k=0

dk3x3 = E−R0I−v((N+1)T )

N = 3, 4, 5 (7)

By keeping (4), subtracting (4) from (5), subtracting (5)

from (6), and so on, we obtain

x1 + x2 + x3 = E −R0I − v(T ) =: b1 (8)

d1x1 + d2x2 + d3x3 = v(T )− v(2T ) =: b2 (9)

d21x1 + d22x2 + d23x3 = v(2T )− v(3T ) =: b3 (10)

d31x1 + d32x2 + d33x3 = v(3T )− v(4T ) =: b4 (11)

d41x1 + d42x2 + d43x3 = v(4T )− v(5T ) =: b5 (12)

d51x1 + d52x2 + d53x3 = v(5T )− v(6T ) =: b6 (13)

The above 6 equations still have high order polynomials

(in the variables d1, d2, d3, x1, x2, x3) but the structure is

very clear. With further change of variables, the complexity

will be reduced. Let u1, u2, u3 be defined as in (3).

In what follows, we provide the key step to derive 3
linear equations for u1, u2, u3. Then it is straightforward to

find d1, d2, d3, x1, x2, x3 and the parameters (Rk, Ck), k =
1, 2, 3. Let

A =





1 1 1
d1 d2 d3
d21 d22 d23





From (8)-(10), we have




x1

x2

x3



 = A−1





b1
b2
b3



 (14)

Applying this to (11), we have

d31x1+d32x2+d33x3=
[

d31 d32 d33
]

A−1





b1
b2
b3



=b4

(15)

It can be verified via straightforward computation that
[

d31 d32 d33
]

=
[

u3 −u2 u1

]

A, (16)

where u1, u2, u3 are defined in (3). Thus
[

d31 d32 d33
]

A−1 =
[

u3 −u2 u1

]

(17)
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It follows from (15) that

b1u3 − b2u2 + b3u1 = b4 (18)

Similarly, from (9)-(11), we have




d1x1

d2x2

d3x3



 = A−1





b2
b3
b4





Applying this to (12), and using (17), we obtain

b2u3 − b3u2 + b4u1 = b5 (19)

From (10)-(12), we have




d21x1

d22x2

d33x3



 = A−1





b3
b4
b5





Applying this to (13), and using (17), we obtain

b3u3 − b4u2 + b5u1 = b6 (20)

Combine (18), (19), (20), we have




b3 −b2 b1
b4 −b3 b2
b5 −b4 b3









u1

u2

u3



 =





b4
b5
b6





Thus u1, u2, u3 can be solved as




u1

u2

u3



 =





b3 −b2 b1
b4 −b3 b2
b5 −b4 b3





−1 



b4
b5
b6





With u1 = d1+d2+d3, u2 = d1d2+d2d3+d3d1, u3 =
d1d2d3 computed, we can find d1, d2, d3 by the following

procedure. Let p = d1d2, q = d1 + d2, then d3 = u1 − q
and u3 = p(u1 − q), u2 = p + q(u1 − q). By substituting

p = u2 − u1q + q2 into u3 = p(u1 − q), we obtain a 3rd

order equation for q:

q3 − 2u1q
2 + (u2

1 + u2)q + (u3 − u1u2) = 0 (21)

Let the three roots be q1, q2, q3. Then q = d1 + d2 is one

of the roots. Here we notice that the relationship between

(d1, d2, d3) and (u1, u2, u3) is symmetric. This means that

the values of u1, u2, u3 are the same if d1, d2, d3 are

exchanged in any manner. If we let p = d2d3, q = d2 + d3,

or let p = d1d3, q = d1 + d3, we obtain the same equation

(21). This implies that both q = d2 + d3 and q = d1 + d3
satisfy (21). Therefore, (21) must have 3 positive roots

which are d1 + d2, d2 + d3 and d1 + d3, respectively, i.e.,

d2 + d3 = q1, d1 + d3 = q2, d1 + d2 = q3

From the three roots q1, q2, q3, we can solve for




d1
d2
d3



 =





0 1 1
1 0 1
1 1 0





−1 



q1
q2
q3





With d1, d2, d3 solved, we obtain x1, x2, x3 from (14). And

finally,

Rk = xk/(I(1−dk)), Ck = −T/(Rk ln(dk)), k = 1, 2, 3.

B. Algorithm for the 2nd-order model

For the case with two capacitors, we need to obtain

the voltage response v(t) at 4 equally spaced time instant:

v(kT ), k = 1, 2, 3, 4. The new variables are defined as

u1 = d1 + d2, u2 = d1d2.

The parameters (Rk, Ck), k = 1, 2 can be computed from

the following steps:

1. Compute b1 = E − R0I − v(T ). For k = 2, 3, 4,

bk = v((k − 1)T )− v(kT ).

2. Compute

[

u1

u2

]

=

[

b2 −b1
b3 −b2

]

−1 [
b3
b4

]

.

3. The roots to the second order equation d2−u1d+u2 =
0 will be d1, d2.

4. Let

[

x1

x2

]

=

[

1 1
d1 d2

]

−1 [
b1
b2

]

. Then

Rk =
xk

I(1 − dk)
, Ck = −

T

Rk ln(dk)
, k = 1, 2.

C. Algorithm for higher-order models

For the case with n pairs of parallel RCs, we need to

obtain the voltage response v(t) at 2n equally spaced time

instants: v(kT ), k = 1, · · · , 2n. Define the new variables:

u1 = d1 + d2 + · · ·+ dn (22)

u2 =
∑

dk1
dk2

, k1 �= k2, k1, k2 ≤ n (23)

...

un−1=
∑

dk1
dk2

· · · dkn−1
,

k1, · · · , kn−1 are distinct, ki ≤ n (24)

un = d1d2 · · · dn (25)

The parameters (Rk, Ck), k = 1, 2, · · · , n can be computed

from the following steps:

1. Compute b1 = E −R0I − v(T ). For k = 2, · · · , 2n,

bk = v((k − 1)T )− v(kT ).
2. Compute











u1

u2

...

un











=











bn −bn−1 · · · (−1)n+1b1
bn+1 −bn · · · (−1)n+1b2

...

b2n−1 −b2n−2 · · · (−1)n+1bn











−1









bn+1

bn+2

...

b2n











3. Solve d1, · · · , dn from u1, · · · , un by forming an nth

order polynomial from (22)-(25):

f(q) = qn + c1q
n−1 + · · ·+ cn = 0. (26)

The roots are qj = (Σn
k=1dk) − dj , j = 1, 2, · · · , n.

Then dj’s can be obtained from qj ’s by solving a
system of linear equations. The procedure in this step

can be implemented with the following Matlab code

(where u(i) stands for ui):

c=[ 1 -u(1) u(2)]

for i=3:n

c=conv(c,[1 -u(1)])+[zeros(1,i) u(i)];

end
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q=roots(c);

d=inv(ones(n,n)-eye(n))*q;

The first 4 lines form the coefficients of the polyno-

mial f(q) with a recursive procedure, where “conv”

computes the coefficients of the product of two poly-

nomials.

4. Let










x1

x2

...

xn











=











1 1 · · · 1
d1 d2 · · · dn
...

dn−1
1 dn−1

2 · · · dn−1
n











−1 









b1
b2
...

bn











Then for k = 1, 2, · · · , n,

Rk =
xk

I(1− dk)
, Ck = −

T

Rk ln(dk)
.

III. EXPERIMENTAL EXAMPLES AND COMPUTATIONAL

RESULTS

We obtained experimental data for 3 types of batteries:

lead acid (6V), NiMH (7.2V) and Li-polymer (11.1V).

Terminal voltage responses under constant current load were

recorded via a 16-digit data acquisition (DAQ) device. All

the experiment is conducted under room temperature.

A. Data collection

The sampling period of the DAQ is Td = 0.01 second.

The input voltage range is -10V to 10V. Thus the resolution
is 20/216 = 3.0518−4V . We also measured the current

via a 0.1Ω resistor and an operational amplifier to see

its transience after the load is turned on and also to see

the ripples at steady state so that we can make proper

adjustment to the terminal voltage. No digital or analog

filter is used to process the data/signals.

We use the data obtained from a 6V lead-acid battery

rated 13Ah to demonstrate the procedure. Fig. 3 shows the

0 20 40 60 80 100 120

5.98

6

6.02

6.04

6.06

6.08

6.1

6.12

t (sec)

v
 (

v
o

lt
s
)

Fig. 3. Voltage response of a lead-acid battery to 1A load, 60% SOC

voltage response of the battery to a 1A load. The initial

voltage is 6.117V (corresponding to about 60% residual

capacity or state of charge (SOC)). Fig. 4 is plotted to show

the voltage and the current around t = 0 and at steady

state. The plot at lower-left shows that the electronic load
generates a current that jumps from 0A to 1A within one

sampling period. Since the current load can be turned on

−0.05 0 0.05 0.1

6.04

6.06

6.08

6.1

6.12

v
(v

o
lt
s
)

50 50.1 50.2
5.984

5.985

5.986

5.987

−0.05 0 0.05 0.1
0

0.5

1

t (sec)

I 
(A

)

50 50.1 50.2

0.995

1

1.005

t (sec)

Fig. 4. Voltage and current around t = 0s and t = 50s.

any instant within a sampling period of the DAQ, the value

of the current at the first sampling instant (after the load is

turned on) varies between 0 and the set value. Thus it may
also take two sampling steps for the current to reach the set

value, which has been observed in some of our tests. But

mostly the set value of the current is reached in one step,

as depicted in Fig. 4. The time 0 is chosen as the sampling

instant when the current first reaches the set value.
The upper-left plot in Fig. 4 shows the initial voltage

drop. From these initial values, we can obtain E = v(−Td)
(= 6.117V in this case), and R0 = (v(−Td) − v(0))/I
(= 0.0656Ω in this case). If the set value of the current is

reached in two steps, we take E = v(−2Td), and R0 =
(v(−2Td)− v(0))/I .

The two plots to the right show the ripples of the current

at steady state and the spikes of the voltage (light-colored).

We see that the current oscillates around 1A with a period

of 5 sampling periods. Due to the relatively large time

constants RkCk for the parallel resistors and capacitors, the

small current ripples mostly affect the voltage across the

inner resistance R0. Thus we can make slight corrections
to the battery voltage by replacing v(jTd) with v(jTd) −
R0 ∗ (1 − I(jTd)) for all j > 0. The darker curve in the

upper-right plot shows the corrected voltage. The spikes are

reduced. The corrected voltage will be used for estimating

the parameters.

B. Models for a lead-acid battery

A lead-acid battery rated 6V, 13Ah is used for the tests.
The voltage response is collected under a load of 1A.

The open circuit voltage is 6.117V and R0 = 0.0656Ω.

The voltage response is plotted in Fig. 3.
In this section, we use the explicit formula in Section II

to estimate the parameters for the model of different order.

For the nth−order model, we need the voltage v(kT ), k =
1, · · · , 2n, where T = MTd for a certain integer M . Due to

the noises and other non-idealities, the resulting parameters

(Rk, Ck) will be dependant on M . We may let M vary in

a proper range and choose the one which yields the least

RMSE. To further reduce the effect of noises, we may use

the average around v(kT ), e.g., the average of v(kT−mTd),
· · · , v(kT ), · · · , v(kT +mTd) for a certain integer m. The

best m may depend on the noise pattern of the experimental
setup. For the data we have collected, the best m is between

0 and 5.
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For the 1st-order model, the minimal RMSE obtained

is 4.96 × 10−3. The resulting parameters are R1 =
0.071Ω, C1 = 205.1F . The response by the model and that

from experiment are compared in Fig. 5, where the fuzzy

light-colored curve is from experiment and the smooth

darker curve is by the 1st-order model.
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6
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6.06

6.08

6.1

6.12

t (sec)

v
 (

v
o

lt
s
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RMSE=4.96× 10
−3

By a 1st−order model

Fig. 5. Matching the response with a 1st-order model, a lead-acid battery,
1A load, 60% SOC

For the 2nd-order model, the minimal RMSE obtained is

9.14× 10−4. The parameters are

R1 = 0.0334Ω, R2 = 0.044Ω, C1 = 84.4F,C2 = 834F.

The response by the 2nd-order model (darker, smooth) and

that from experiment (light-colored, fuzzy) are compared

in Fig. 6. The stars “*” mark the points (ti, v(ti)), ti =
T, 2T, 3T, 4T that are used to solve for the parameters. In

subsequent figures, we use the same symbols and notations

to compare voltage responses.
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Fig. 6. Matching the response with a 2nd-order model, a lead-acid battery,
1A load, 60% SOC

For the 3rd-order model, the minimal RMSE obtained is

4.62× 10−4. The parameters are

R1 = 0.0187Ω, R2 = 0.0260Ω, R3 = 0.0365Ω,

C1 = 79.7F, C2 = 358.9F, C3 = 1684.2F.

The response by the 3rd-order model and that from exper-

iment are plotted in Fig. 7 for comparison.

From these three figures and the RMSE values, we see

that the 1st-order model matches the experimental response
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v
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Fig. 7. Matching the response with a 3rd-order model, a lead-acid battery,
1A load, 60% SOC

poorly. The 2nd-order model shows significant improve-
ment. However, there are still visible difference in the first

interval (between t = 0 and the first “*”). The 3rd-order

model matches the experimental response almost perfectly.

Recall that the resolution of the DAQ is 3.0518−4V . The

RMSE by the 3rd-order model is not much greater than this.

C. Models for an NiMH battery

The battery under test is a 7.2V (6-cell) NiMH battery

rated 5000mAh. The voltage response is measured under
a load of 1A. The open circuit voltage is E = 7.87V
and R0 = 0.0588Ω. We use the same procedure as that

for the lead-acid battery to obtain the 1st,2nd and the 3rd-

order models. For the 1st-order model, the minimal RMSE

obtained is 5.1 × 10−3, with R1 = 0.083Ω, C1 = 503F .

The response by the model also differs significantly from

the experimental response, similarly to that for the lead-acid

battery.

For the 2nd-order model, the minimal RMSE obtained is

9.57× 10−4. The parameters are

R1 = 0.022Ω, R2 = 0.104Ω, C1 = 95.7F,C2 = 1290F

The response by the 2nd-order model and that from exper-

iment are plotted in Fig. 8.
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Fig. 8. Matching the response with a 2nd-order model, an NiMH battery,
1A load, 55% SOC

For the 3rd-order model, the minimal RMSE obtained is
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2.88× 10−4. The parameters are

R1 = 0.0129Ω, R2 = 0.0099Ω, R3 = 0.1117Ω,

C1 = 8.6F,C2 = 663F,C3 = 1350.7F

The response by the 3rd-order model and that from

experiment are plotted in Fig. 9.
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Fig. 9. Matching the response with a 3rd-order model, an NiMH battery,
1A load 55% SOC

As with the lead-acid battery, the 1st-order model does a

very poor job matching the terminal voltage, the 2nd-order

model shows significant improvement, while the 3rd-order

model matches the experimental response almost perfectly.

D. Models for a Li-Polymer battery

The battery under test is a 11.1V (3-cell) Li-polymer

battery rated 5000mAh. The voltage response was obtained

under a load of 2A. The open circuit voltage was 11.51V

and R0 = 0.0483Ω. For the 2nd-order model, the minimal

RMSE obtained is 5.04× 10−4. The parameters are

R1 = 0.0097Ω, R2 = 0.0220Ω, C1 = 571.6F,C2 = 4051.1F

The response by the 2nd-order model and that from exper-

iment are plotted in Fig. 10.
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Fig. 10. Matching the response with a 2nd-order model, 2A load, 55%
SOC, a Lipo battery

For the 3rd-order model, the minimal RMSE obtained is

4.11× 10−4. The parameters are

R1 = 0.0056Ω, R2 = 0.0083Ω, R3 = 0.0332Ω,

C1 = 638.3F,C2 = 2124.8F,C3 = 7866.5F.

The response by the 3rd-order model and that from exper-

iment are plotted in Fig. 11.
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Fig. 11. Matching the response with a 3rd-order model

IV. CONCLUSIONS

We derived simple analytical algorithms to compute the
parameters for batteries. Experiment and computation are
implemented on 3 different types of batteries. For all these
batteries, the computation shows that the 1st-order model
does a very poor job matching the experimental responses,
the 2nd-order model shows significant improvement and the
3rd-order model can produce a response that matches the
experimental data almost perfectly.
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