
 

  

Abstract—The harmonic balance (HB) principle is extended 
to transient processes and named the dynamic HB. Based on 
the dynamic HB, first the differential equations for the 
amplitude and frequency of the self-excited oscillations in the 
Lure system in the vicinity of the periodic solution are derived. 
It is then applied to analysis of motions in the vicinity of the 
origin of the complex plane for systems with second-order 
sliding mode control algorithms, therefore, describing the 
process of convergence of state variables in the system. An 
example is provided.  

I. INTRODUCTION 
ARMONIC balance principle is a convenient tool for 
finding parameters of self-excited periodic motions. 

Due to this convenience, it is widely used in many areas of 
science and engineering. For a system with one nonlinearity 
and linear dynamics (Lure system), it can be illustrated by 
drawing the Nyquist plot of the linear dynamics and the plot 
of the negative reciprocal of the describing function (DF) [1] 
of the nonlinearity in the complex plane and finding the 
point of intersection of the two plots, which would 
correspond to the self-excited periodic motion in the system. 
Therefore, the harmonic balance principle treats the system 
as a loop connection of the linear dynamics and of the 
nonlinearity. It is also possible to reformulate the harmonic 
balance, so that the format of the system analyzed is not a 
loop connection but the denominator of the closed-loop 
system. This would imply a different interpretation of the 
harmonic balance, which would allow one to extend the 
harmonic balance principle to analysis of not only self-
excited periodic motions but also other types of oscillatory 
motions. 

One of the types of the systems that exhibit vanishing 
oscillatory motion is the conventional and second-order 
sliding mode (SM) control system. There are a number of 
second-order SM (SOSM) algorithms available now, the 
most popular of which are “twisting”, “super-twisting”, 
“twisting-as-a-filter” [2], [3], “sub-optimal” [4], [5], and a 
number of other algorithms [6]. The problem of 
convergence rate is a valid problem in the conventional SM 
control and “terminal SM” [7], [8] control too. Therefore, 
some common approach to the problem of the convergence 
rate assessment, including qualitative (finite-time or 
asymptotic) and quantitative assessment, is of high 
importance. 
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The frequency-domain approach to assessment of 
convergence rate would provide a number of advantages 
over the direct solution/estimates of the system differential 
equations. The most important one would be the unification 
of the treatment of all the algorithms based on some 
frequency-domain characteristics. This in turn may lead to 
formulation of some criteria that should be satisfied for a 
SOSM algorithm to provide a finite-time convergence, 
which can also lead to relatively simple rules that would 
allow one to develop new SOSM algorithms. 

In publication [9], convergence of the second-order 
system with twisting algorithm was presented. Also, a 
frequency-domain criterion of finite-time convergence that 
involves the so-called phase deficit was formulated. 
However, the approach was limited to second-order systems 
and it was a fundamental limitation, which didn’t allow the 
author to extend it to higher-order systems. 

In the present paper, a different frequency-domain 
approach to analysis of convergence is presented, which is 
suitable for analysis of high-order systems. Also, the 
harmonic balance principle is extended to the case of 
transient oscillations. The paper is organized as follows. At 
first the harmonic balance principle is considered and its 
different representation is proposed. Then a system 
comprising a second-order plant and an asymptotic SOSM 
(relay) controller is analyzed with the use of the approach 
proposed. Such characteristics as frequency and amplitude 
of oscillations as functions of time are derived. After that a 
system comprising the twisting SOSM controller and a 
second-order plant is analyzed with the use of the proposed 
approach. Finally, an approach to analysis of the type of 
convergence based on the frequency-domain characteristics 
is considered.  

II. HARMONIC BALANCE FOR TRANSIENT OSCILLATIONS 
Consider the system that includes linear dynamics given 

by the following equations: 

Cx
BAxx
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+=
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u&

, (1) 

where nR∈x , 1Ry ∈ , 1Ru ∈ , nnR ×∈A , 1×∈ nRB , 
nR ×∈ 1C , and a single-valued odd-symmetric nonlinearity 

( )yf : 
( )yfu −= , (2) 

We shall refer to (1) as to the linear part of the system. 
One can see that the system (1), (2) is a Lure system. The 
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transfer function of the linear part is ( ) BAIC 1)( −−= ssWl , 
which can also be presented as a ratio of two polynomials 

)(/)()( sQsPsWl = . We shall assume that the linear part 
has relative degree higher than two, so that the Nyquist plot 
of system (1) has a point of intersection with the real axis at 
some finite frequency. Assume also an autonomous mode, 
so that the input to the nonlinearity is the output of the linear 
dynamics, and the output of the nonlinearity is the input to 
the linear dynamics. The conventional HB condition (for 
periodic motion) is formulated as 

1)()( −=Ω aNjWl , (3) 
where Ω  is the frequency and a is the amplitude of the self-
excited periodic motion at the input to the nonlinearity, 

)(aN  is the describing function of the nonlinearity. Find the 
closed-loop transfer function )(sWcl  of system (1), (2) 
using the replacement of the nonlinearity with the DF 

yaNu ⋅−= )( : 

)()()(
)()(

)()(1
)()(

)(
aNsPsQ
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aNsW
sW

l

l
cl +

=
+

=  (4) 

Let us note that (3) is equivalent to 
0)()()(),( =Ω+Ω=Ω aNjPjQjaR , (5) 

which means that the denominator of the closed-loop 
transfer function turns into zero when the frequency and the 
amplitude become equal to the frequency and the amplitude 
of the periodic motion. Equation (5) is also sometimes used 
for finding a periodic solution via algebraic methods. 
However, equation (5) usually is not attributed to the 
denominator of the closed-loop transfer function but 
considered a direct result of (3).  Assuming that ),( saR  can 
be represented in the following form 

)())((),( 21 nsssssssaR −⋅⋅−−= K , where is  are roots of 
the characteristic polynomial, we must conclude that there 
must be at least one pair of complex conjugate root with 
zero real parts. It would imply the existence of the 
conservative component in )(sWcl . Indeed, we can consider 
the existence of non-vanishing oscillations as a result of the 
existence of the component ( )22 ρ+s  in the denominator of 

)(sWcl , where ρ  is a parameter that depends on the 
amplitude a. However, one can notice that even if a damped 
oscillation occurs, so that there exists a pair of complex 
conjugate roots is , 1+is  then 0))(( 1 =−− +ii ssss , and the 
characteristic polynomial becomes zero, with Ω±= js σ , 
where σ  is the decay (Note: strictly speaking, we have a 
decaying oscillation only if 0<σ ; yet we will refer to this 
variable as to the decay even if 0≥σ ). 

We now show that a linear system response to the 
harmonic signal with decaying amplitude )sin()( tetu t Ω= σ  
is also a harmonic signal with the same values of the 
frequency and amplitude decay. Indeed, this is a result of the 
property of the Laplace transform that states that 

[ ] )()( asFtfeL a +=− . Therefore, for the system input )(tu , 

the Laplace transform will be [ ] ( )[ ]22/)( Ω+−Ω= σstuL , 
which will result in the system output (in the Laplace 
domain) ( )[ ]22/)()( Ω+−Ω= σssWsY , where )(sW  is the 
transfer function. The substitution σ−=′ ss  yields 

( )[ ]22/)()( Ω+′+′Ω=′ ssWsY σ , which means that 

[ ])()( 1 sYLty ′=′ −  is a sinusoid of frequency Ω , amplitude 

)( Ω+ jW σ , and having the phase shift )(arg Ω+ jW σ . In 

turn, the output signal is )()( tyety t ′= σ , i.e. a decaying 
sinusoid. Therefore, for our analysis of propagation of the 
decaying sinusoids through linear dynamics we can use the 
same transfer functions, in which the Laplace variable 
should be replaced with  )( Ω+ jσ . 

The describing function N in the case of a transient 
oscillation may become a function of not only amplitude but 
of its derivatives too [10] (we disregard possible dependence 
of the DF on the frequency). 

Considering that conditions (3) and (5) are equivalent, 
and the equality of the denominator of the closed-loop 
transfer function to zero (for some s) implies the fulfillment 
of (3), we can rewrite (3) for the transient oscillation as 
follows. 

1)(,...),( −=Ω+ jWaaN l σ& , (6) 
The use of the derivatives of the amplitude as arguments 

of the DF is inconvenient because it results in the necessity 
of consideration of additional variables (derivatives of the 
amplitude) which are not present otherwise. It is more 
convenient to consider σ and its derivatives than the 
derivatives of the amplitude. Also, we limit our 
consideration of the describing function arguments to the 
first derivative of the amplitude (or equivalently, to σ ) 
only. We show below that for some nonlinearities the DF is 
a function of the amplitude only – like in the conventional 
DF analysis. Therefore, we can write the condition of the 
existence of a transient or steady oscillation as follows: 

1)(),( −=Ω+ jWaN l σσ , (7) 
We shall refer to (7) as to the dynamic harmonic balance 

condition (equation). 
Assume now that the characteristic polynomial of the 

closed-loop system (with parametric dependence on the 
amplitude of the oscillations) has a pair of complex 
conjugate roots with negative real parts. Then a vanishing 
oscillation of certain frequency and amplitude occurs. The 
idea of considering equations of vanishing oscillations is 
similar to the one of the Krylov-Bogoliubov method [11]. 
However, the latter can only deal with small “deviations” 
from the harmonic oscillator and is limited to second-order 
systems. In the present approach, the “equivalent damping” 
is not limited to small values. Let us consider instantaneous 
values of the frequency, amplitude and decay and formulate 
the dynamic harmonic balance principle as follows. 
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At every time, a single-frequency mode transient 
oscillation can be described as a process of variable 
(instantaneous) frequency, amplitude and decay, which must 
satisfy equation (7). 

Note: In (7) and the formulation given above, we consider 
only transient oscillations with zero mean and single-
frequency mode when the characteristic polynomial (5) has 
only one pair of complex conjugate roots.  

The overall motion can now be obtained from the 
dynamics HB as follows: 

)(sin)()( )( tetaty tt Ψ= σ , (8) 
where )(ta , )(tσ  are obtained from the following 
differential equation:  

0)0(),()()( aattata == σ& , (9) 
and )(tΨ  is the phase computed as follows: 

∫ +Ω=Ψ
t

dt
0

)()( φττ , where )(tΩ  is obtained from (7), φ  

is selected to satisfy initial conditions. 

III. ANALYSIS OF MOTIONS IN THE VICINITY OF A PERIODIC 
SOLUTION 

Carry out frequency-domain analysis of the transient 
process of the convergence to the periodic motion in the 
vicinity of a periodic solution in system (1), (2), using the 
dynamic harmonic balance condition (7). We can write the 
conventional harmonic balance condition, which can also be 
obtained from (7) when 0=σ , as follows: 

1)()( 00 −=ΩjWaN l , (10) 
where 0Ω  and 0a  are the frequency and the amplitude of 
the periodic solution. Write the dynamics harmonic balance 
condition for the increments from the periodic solution: 

1))((),( 00 −=Ω+Ω++ ∆∆ jWaaN l σσ , (11) 
We now take the derivative from both sides of (11) with 
respect to a∆  (or a) in the point 0aa = : 

0
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σ
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σ , (12) 

At first limit our analysis only to the nonlinearities the 
describing function of which does not depend on σ (for 
example, the ideal relay nonlinearity). Later the same 
analysis can be applied to nonlinearities that depend on σ . 

Express the derivative 
0

d
d

aaa
s

=
 from equation (12): 
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Considering that Ω+= js σ , we can rewrite equation 
(13) as follows: 

0
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Equation (14) is a complex equation. It can be split into 
two equations for the real and imaginary parts. However, 
only real parts of (14) give an equation that has a solution. 
Once it is solved and )(ta  is found, )(tΩ  can be found too. 
Considering that 
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and 
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where )()(~ 1 aNaN −−= , we can write for the real part of 
(14): 
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which can be rewritten as follows (we skip for brevity the 
notation of the point in which the derivative is taken): 
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As a “side” product of our analysis, stability of a periodic 

solution can be assessed from as follows: 0
d
d

0

<
=aaa

σ . 

IV. CONVERGENCE RATE OF SOSM SYSTEM WITH 
TWISTING ALGORITHM 

It is worth noting that the dynamic harmonic balance 
condition (7) is valid not only for a Lure system but for 
system having a few nonlinearities, such as systems with 
second-order sliding mode (SOSM) control algorithms. 
However, the describing function of the whole control 
algorithm has to be obtained and used in equation (7) – 
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similar to the analysis of periodic motions [12]. We now 
analyze convergence of the so-called twisting algorithm [2], 
[3], which is defined as follows: 

ycycu &sgnsgn 21 ⋅−⋅−= , (16) 
where 1c  and 2c  are amplitudes of the two relays in the 
control law. 

Firstly, we formulate the following lemma, which will be 
instrumental below. 

Lemma 1 (given without proof, which can be based upon 
consideration of time being function of z). For the first-order 
nonlinear differential equation 

)(zgz −=& , (17) 
where 0)( >zg  for all 0>z , and 0)0( =g , and the initial 
condition 0)0( 0 >= zz  the following holds. If there exists 
function h(z), such that h(z)≤ g(z) for all z∈[0;z0], h(z)>0, 
and h(0)=0, so that a finite-time convergence to zero in the 
equation 

)(zhz −=&  (18) 
takes place (z(Th)=0, z(t)∈[0;z0]) then the finite-time 
convergence to zero in the original equation takes place too, 
with the convergence time  hg TT ≤ . 

We shall prove the following statement.  
Theorem 1. In the system (1) controlled by the twisting 

controller (16), asymptotic convergence takes only if 
02 =c , and finite-time convergence takes place only if 
02 >c . 

Proof. Prove the theorem via assuming that the 
conventional harmonic balance condition holds in the origin 
and showing that this is a valid assumption for 02 =c , 
which leads to the conclusion about the asymptotic 
convergence, and invalid assumption for 02 >c  
necessitating finite-time convergence (proof by 
contradiction). Write the conventional harmonic balance 
condition of the following form for the origin: 

[ ] 1)()()( 00220011 −=Ω⋅Ω+ jWaNjaN l , (19) 

where 001 →a , 002 →a , ∞→Ω0 , subscript “0” denotes 
the variable in the origin. We investigate convergence of the 
transient process in the vicinity of the origin by giving the 
amplitude a small increment and analyzing the type of 
convergence from this disturbed initial point. We shall write 
the dynamic harmonic balance equation for an incremented 
from the origin point: 

[ ]
1))((

)())(()(

0

202201011
−=∆Ω+Ω+∆⋅

∆+⋅∆Ω+Ω+∆+∆+
jW

aaNjaaN

l σ
σ

,

 (20) 

Taking the derivative with respect to 1a  from both sides 
of (20) yields: 
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(21) 

where )( 0 ∆Ω+Ω+∆= js σ  is the Laplace variable; the 

derivatives 
1

1
a
N

∂
∂

 and 
1

2
a
N

∂
∂

 can be obtained by 

differentiating the describing functions of the two relay 
nonlinearities [12], respectively, as follows: 
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Express the quantity 
1da

ds  from equation (21). 
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Considering that )( 0 ∆Ω+Ω+∆= js σ  and, therefore, 
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following expression for the derivative of the decay: 
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where 

r
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∂
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, (23) 

 r is the relative degree of the plant transfer function, which 
reflects the fact of the existence of high-frequency 
asymptotes of the Bode magnitude plot, 
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With account of (23) and (24), formula (22) can be rewritten 
as follows: 
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It follows from formula (25) that if 02 =c  then 

0
ln 1

=
ad

dσ  and if 02 >c  then 0
ln 1

>
ad

dσ . Before 

interpreting these conclusions, we analyze the derivative 

1ln ad
dσ . By definition 11 / aa&=σ  and, therefore,  
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We can interpret (26) as the second-order differential 
equation with state variables 1a  and 1a&  without explicit 
time and draw the phase portrait of this second-order system 
in the phase plane using the isoclines technique (Fig. 1). 

 

Fig. 1. Phase trajectory of system (25) with isoclines shown 

Denote two angles (their tangents) as 
1

1tan
da
ad &

=ϕ  and 

1

1tan
a
a&

=ψ ; ϕ gives the slope of the tangent line in a point 

of the phase portrait and ψ gives the slope of the vector from 
the origin to a point of the phase portrait. The condition 

0
ln 1

=
ad

dσ  means that the angles ϕ and ψ must be equal, 

which means in turn that the phase portrait is a strait line and 
constaa =11 /& . The last condition constitutes the 

asymptotic convergence of a1 to 0. 

In the case when 02 >c , the angle ψ  (absolute value) is 
always greater than the angle ϕ (absolute value). In fact, the 
difference between the tangents of these angles is equal to 
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phase portrait. Therefore, the phase trajectories of the 
system 
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1

1

1

1 &&
,   0≥q  (27) 

look like in Fig. 1 (the example of 101 =c , 102 =c , r=2, 
and q=0.2), with the trajectory schematically shown by the 
dash line. The fact that the difference between the tangents 
of the angles ϕ and ψ must be constant and equal to q in all 
points (including the origin) results in the infinite slope of 
the phase trajectories in the origin (the difference of two 
infinite values still gives q, which would be impossible with 
finite slopes). Therefore, in the vicinity of the origin, the 
differential equation for the amplitude is )( 11 aha =& , with 
function 0)( 1 ≤ah  having infinite slope at 01 →a . 

Now prove that the equation )( 11 aha =& , with function 
0)( 1 ≤ah  having infinite slope at 01 →a , features finite-

time convergence. Define a majoring nonlinearity as 
αβ 112 )( aah −=  for the function )( 1ah  through the selection 

of values α and β in such a way that in the initial point the 
following two equalities hold: )()( 112 ahah =  and 
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equations: 1
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1
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1tan −−== αβψ a
a
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. Solution of these equations results in 

the following expressions: 
ψ

α
tan

1 q
−= , 

ψβ α tan1
10

−= a , where 10a  is the value of 1a  in the 
initial point. It follows from the last formulas if α and β are 
selected to ensure the same initial point and the same initial 
slope for the original and the majoring nonlinearities then in 
all other points corresponding to any selected ψ  the slope 
(absolute value) of the original nonlinearity is steeper than 
the slope of the majoring nonlinearity for all );0( 101 aa ∈ . 
Therefore, 0)()( 121 <= ahah  for all );0( 101 aa ∈ . Since 

differential equation αβ 11 aa −=&  has finite-time 
convergence [7], [8], according to Lemma 1, the original 
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equation )( 11 aha =&  (or −∞→= σ
1

1
a
a&

) has finite-time 

convergence of a1 to 0. 
Because we assumed the existence of a periodic solution 

in the origin, which requires the fulfillments of the condition 
0=σ  at 01 →a , and we also showed that it is the case 

only if 02 =c , and therefore, our assumption was not valid 
for 02 >c , we can now conclude that asymptotic 
convergence of the transient oscillation amplitude takes 
place only if 02 =c , and finite-time convergence takes 
place if 02 >c .  

A simple illustration of the majoring nonlinearity 
(corresponding to certain trajectory, which has to be found) 
is the square root function. If, for example, 112 )( aah −= , 

then 2/1
1

1

2

1

2
2
1

d
d −=− a

a
h

a
h

. Consider only one trajectory that 

begins in the point where qa =− 2/1
105.0  and, therefore, the 

slopes of )( 1ah  and )( 12 ah  are equal. This point 

corresponds to 2
10 25.0 −= qa . For all );0( 101 aa ∈ , the 

slope of )( 12 ah  is steeper, and, therefore )( 1ah  is located 

below 112 )( aah −= . The nonlinearity 112 )( aah −=  is, 
therefore, a majoring nonlinearity for )( 1ah  (corresponding 

to the trajectory that begins in the point 2
10 25.0 −= qa , 

1
10 5.0 −−= qa& ). The latter analysis is valid only for the 

considered trajectory. However, the use of function 
αβ 112 )( aah −= , as shown above, allows one to design a 

majoring nonlinearity corresponding to any trajectory. 

V. EXAMPLE 
An example of analysis of the system with the linear plant 

)1/(1)( 2 ++= sssWl  and the twisting controller with 
501 =c , 52 =c  is given in Fig. 2. One can see from Fig. 2 

that there is a good match between the results based on the 
presented theory, and the simulations. The instantaneous 
frequency and amplitude of the “theoretical” plot are close 
to the values obtained via simulations. However, due to the 
effect of the accumulation of phase (via integration of the 
instantaneous frequency) caused by the errors of frequency 
estimation, the instantaneous error of the system output may 
not necessarily be monotone decreasing function of time. In 
overall, the proposed approach provides a good estimate of 
the SOSM transient dynamics. 

VI. CONCLUSION 
The dynamic harmonic balance condition is formulated, 

and a frequency-domain approach to analysis of transient 
oscillatory processes is developed. The proposed method is 
applied to analysis of convergence of SOSM controlled 
systems. The previously developed approach applicable only 

to second-order systems is now extended, through the use of 
the dynamic harmonic balance condition, to high-order 
systems. The proposed approach may find many 
applications in various areas of engineering, in solving the 
problems that involve estimation of the dynamics of 
establishing of oscillations. 

 
Fig. 2. Example of analysis of twisting SOSM controlled system 
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