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Abstract— A Lyapunov approach is developed in this paper
for estimation of the magnitude of self-induced oscillations
for systems with piecewise linear elements. The oscillatory
trajectories are bounded by invariant level sets of a piece-
wise quadratic Lyapunov function. An optimization problem
with bilinear-matrix-inequality constraints is formulated to
minimize the invariant level set and to obtain tight bound
for oscillatory trajectories. Several examples demonstrate the
effectiveness of the new method on analysis of self-induced
oscillations.
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I. INTRODUCTION

Nonlinear oscillations are ubiquitous in physical systems
and have been studied for systems of various types in
biology, chemistry, circuits, communications, biophysics,
plasma physics, power electronics, etc, (e.g., see [2], [4],
[16]). Some oscillations are natural phenomena, some are
artificially created, e.g., for transmitting information [8] or
mixing substances [20] and some are undesirable and need
to be eliminated or suppressed (e.g., [3]). In many cases,
the oscillations demonstrate chaotic behaviors.

An important problem in nonlinear oscillations is to
estimate the magnitude of the oscillation. In many chaotic
systems, the oscillation occurs within a global attractor
(e.g., see [5], [12], [13], [23]). If we can determine a
bounded set which contains the global attractor, then we
are certain that the system has no other equilibrium points,
periodic solutions, or chaotic attractors outside this bounded
set. Thus we can focus our study inside the bounded set.
Estimating the bounds for chaotic oscillations is also useful
for chaos control and chaos synchronization.

The concept of invariant set plays an important role in
estimating the bounds for periodic or chaotic attractors.
The positively invariant set can be effectively derived from
the level set of a Lyapunov function. In [21], Lyapunov
functions are used to study the bounds for trajectories of
the Lorenz equations. Later in [17], [18], [22], quadratic
Lyapunov functions are used to construct ellipsoidal in-
variant sets for estimating the bounds for various types of
Lorenz systems and other types of chaotic systems. In [9],
[10], piecewise quadratic Lyapunov functions are used to
construct invariant sets for bounding oscillating trajectories
for systems with one piecewise linear element which is
continuous and odd-symmetric.

In this work, we will study more general systems whose
piecewise linear element is continuous but may not be odd-
symmetric. The reason for studying systems with piecewise
linear elements is that, they are numerically tractable and
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they can be used to approximate most nonlinear systems.
Furthermore, many typical nonlinear oscillation patterns can
be realized with Chua’s circuit family [5], [23], or gener-
alized Chua’s circuit [19]. These circuits have three energy
storage elements and one piecewise linear resistive element.
They can be used to generate limit cycles, double scroll and
multiscroll chaotic attractors. More recently in [14], [15],
multiscroll chaotic attractors are generated with third order
circuits whose nonlinear element contains saturated function
series. The nonlinear elements in [14], [15] may not be odd-
symmetric.

A natural and effective way to incorporate the piece-
wise linear property of the nonlinear element is to use
piecewise quadratic Lyapunov functions, which were ini-
tially developed in [11] for stability analysis of piecewise
linear systems. A great advantage of piecewise quadratic
Lyapunov functions is that they can be constructed by
solving optimization problems constrained by linear matrix
inequalities (LMIs) or bilinear matrix inequalities (BMIs).

The piecewise quadratic Lyapunov functions were first
used in [9], [10], to estimate the bounds for oscillatory
attractors via invariant sets. The Lyapunov approach in
[9], [10] is based on the idea of representing a piecewise
linear function as the sum of a linear function and a family
of saturation functions. This treatment turns a piecewise
linear system into a standard saturated system. However,
this approach is only applicable to the case where the
nonlinearity is odd-symmetric. In this work, we will present
a new method that is applicable to general piecewise linear
systems. Moreover, less conservative conditions will be
derived for the invariance of the level set of the Lyapunov
function. When applied to the examples in [9], [10], tighter
bound for the magnitude of oscillations will be obtained.

II. SYSTEM DESCRIPTION AND PIECEWISE QUADRATIC

LYAPUNOV FUNCTIONS

A. Systems with a piecewise linear element

Most systems with one nonlinear element ψ(·) can be
described as:

ẋ = Ax+Bψ(Kx) (1)

where x ∈ R
n. We consider the case where

ψ(·) is a piecewise linear function with ψ(0) =
0. Throughout the paper we assume that ψ(·) is
a continuous function with J + N + 1
partitions: (−∞, aN ], (aN , aN−1], · · · , (a1, ā1), [ā1, ā2),
· · · , [āJ−1, āJ), [āJ ,∞), where 0 ∈ (a1, ā1), aj < 0,
āj > 0, for all j. The slopes in each interval are cN , cN−1,
· · · , c0, c̄1, · · · , c̄J−1, c̄J , respectively.

Given h > 0, denote

Ωh = {x ∈ R
n : Kx ∈ [−h, h]}.
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Assume that the oscillatory trajectories are inside Ωh. We
may start with a large h and then reduce it for better estima-
tion. For simplicity, we assume that h > max{−aN , āJ}.
Denote aN+1 = −h, āJ+1 = h, and

Ω0 = {x ∈ R
n : Kx ∈ [a1, ā1]}

Ω1 = {x ∈ R
n : Kx ∈ [ā1, ā2]}

...

ΩJ = {x ∈ R
n : Kx ∈ [āJ , āJ+1]}

ΩJ+1 = {x ∈ R
n : Kx ∈ [a2, a1]}

...

ΩJ+N = {x ∈ R
n : Kx ∈ [aN+1, aN ]}

Let

f̄1 = ā1c0, f
1
= a1c0

f̄j = f̄j−1 + c̄j−1(āj − āj−1), j = 2, · · · , J

f
j
= f

j−1
+ cj−1(aj − aj−1), j = 2, · · · , N.

Then

ψ(Kx) =







c0Kx x ∈ Ω0

f̄j + c̄j(Kx− āj) x ∈ Ωj , j = 1, · · · , J
f
j
+ cj(Kx− aj), x ∈ ΩJ+j , j = 1, · · · , N

And the system (1) can be described as follows

ẋ=























(A+BKc0)x, x ∈ Ω0

(A+BKc̄j)x+B(f̄j−āj c̄j), x∈Ωj ,
j = 1, · · · , J

(A+BKcj)x+B(f
j
−ajcj), x ∈ ΩJ+j ,

j = 1, · · · , N

(2)

B. The piecewise quadratic Lyapunov function

A piecewise quadratic Lyapunov function was introduced
in [11] for the stability analysis of piecewise linear systems.
Another form of piecewise quadratic Lyapunov function
was defined in [6] for systems with saturation/deadzone,
where the function was used to investigate global and
regional stability, and some other performances such as
the reachable set and the nonlinear L2 gain. It turns out
that the two forms of piecewise quadratic function in [11]
and [6] are actually equivalent for systems with satura-
tion/deadzone. In [9], [10], the definition in [6] was adopted
since the systems have odd-symmetric nonlinear element
and thus can be described as systems with saturation.

In this paper, we use the definition in [11] to deal with
systems with more general piecewise-linear elements.

Based on the special partition of the state-space by J +
N parallel hyperplanes, Kx = āj , j = 1, · · · , J , Kx =

aj , j = 1, · · · , N , we choose

F0 =

[

In
0(J+N)×n

]

F1=





In 0
K −ā1

0(J+N−1)×n 0



 , · · · , FN =















In 0
K −ā1
...

...

K −āJ
0N×n 0















FJ+1=









In 0
0J×n 0
K −a1

0(N−1)×n 0









, · · · , FJ+N =















In 0
0J×n 0
K −a1
...

...

K −aN















where the 0’s are zero blocks with compatible dimensions,
as in the sequel. Let P ∈ R

(J+N+n)×(J+N+n) be a
symmetric matrix. Define

V (x)=







xTF T

0PF0x, x ∈ Ω0
[

xT 1
]

F T

jPFj

[

x
1

]

, x ∈ Ωj , j>0
(3)

Then V (x) is a continuous piecewise quadratic function.
We will be interested in V satisfying V (x) > 0 for x �= 0.

We will use an invariant level set of V to bound the
oscillatory trajectories. The following issues need to be
addressed:

- What is the condition for a level set to be invariant?
- What is the condition for the level set to be within Ωh?
- How to measure the magnitude of a certain output

variable inside the level set?

After these issues have been addressed, we will form a
BMI optimization problem to estimate the magnitude of
oscillation.

III. ESTIMATING MAGNITUDE OF OSCILLATIONS VIA

INVARIANT SET

Consider the system (1) again and the equivalent descrip-
tion (2). Assume that ψ(·) is continuous and the system is
not stable at the origin, i.e., A+BKc0 is not Hurwitz, so
that self-induced oscillation is possible. A trajectory may
diverge to the infinity, or stay within a bounded set. In the
later case, it may converge to a single non-zero equilibrium
point, or an oscillatory attractor (e.g., limit cycle, chaos).
To estimate the magnitude of oscillation, we need to find
a set that bounds the oscillatory trajectories as tightly as
possible.

An effective way to bound a trajectory that does not
diverge to infinity is to use invariant set. A set is called
invariant if every trajectory starting from it stays inside.

A. Level set of V and matrix conditions for invariance

Without loss of generality, we consider the 1-level set of
V , defined as

LV := {x ∈ R
n : V (x) ≤ 1}.

The boundary of LV is denoted as ∂LV . Other level set
where V (x) is below another number can be converted into
a 1-level set by scaling the matrix P (since V (x) depends
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on P via a linear relationship, see (3)). For now we assume
that LV ⊂ Ωh.

Denote the one-sided directional derivative of V at x
along z as

V̇ (x; z) := lim
∆t→0,∆t>0

V (x+ z∆t)− V (x)

∆t
.

The directional derivative of V at x along ẋ, which is

V̇ (x; ẋ), will be simply denoted as V̇ (x). For system (1),

if V̇ (x) < 0 for all x ∈ ∂LV , then whenever a trajectory
reaches ∂LV , V (x) is strictly decreasing, implying that the
trajectory is entering LV . Because of the same reason, every
trajectory starting from within LV has to stay inside. In

short, the invariance of LV is ensured by V̇ (x) < 0 for all
x ∈ ∂LV .

Denote V0(x) = xTF0PF0x and Vj(x) =
[

xT 1
]

F T

jPFj

[

x
1

]

. Then V (x) = Vj(x) for x ∈ Ωj .

For x ∈ int(Ωj) (i.e., Kx �= ai or Kx �= āi for any i),
the partial derivative ∂V/∂x exists and ∂V/∂x = ∂Vj/∂x.
Thus,

V̇ (x) = (∂Vj/∂x)
Tẋ, ∀x ∈ int(Ωj).

Lemma 1: Assume that V (x) > 0 for all x ∈ Ωh \ {0}
and LV ⊂ Ωh. If

V̇ (x) = (∂Vj/∂x)
Tẋ < 0, ∀x ∈ int(Ωj) ∩ ∂LV , ∀j,

(4)
then LV is an invariant set.

Unlike stability analysis for which it is required that

V̇ (x) < 0 for almost all x ∈ LV \ {0}, the condition for
the invariance of LV is more relaxed.

We will use a different approach than that in [11] to
derive BMI conditions for V (x) > 0 and V̇ (x) < 0 in each
Ωj , j = 0, · · · , J + N . In fact, the special structure of the
parallel partitions allows each Ωj to be exactly described
with one quadratic inequality. This will be used to derive

a less conservative condition for V (x) > 0 and V̇ (x) < 0
within Ωh for the piecewise linear system.

First we see that Ω0 can also be written as

Ω0 =

{

x ∈ R
n :

∣

∣

∣

∣

Kx−
ā1 + a1

2

∣

∣

∣

∣

2

≤

(

ā1 − a1
2

)2
}

This can be equivalently described as

Ω0 =

{

x ∈ R
n :

[

xT 1
]

M0

[

x
1

]

≤ 0

}

, (5)

where

M0 =

[

2KTK −(ā1 + a1)K
T

−(ā1 + a1)K 2ā1a1

]

(6)

Similarly, for j = 1, · · · , J +N ,

Ωj =

{

x ∈ R
n :

[

xT 1
]

Mj

[

x
1

]

≤ 0

}

, (7)

where for j = 1, · · · , J ,

Mj =

[

2KTK −(āj + āj+1)K
T

−(āj + āj+1)K 2āj āj+1

]

and for j = 1, · · · , N ,

MJ+j =

[

2KTK −(aj + aj+1)K
T

−(aj + aj+1)K 2ajaj+1

]

We first consider the set Ω0 which contains 0 in its
interior. To obtain simple matrix condition, we denote

A0 = A+BKc0.

Then by (2),

ẋ = A0x, for x ∈ Ω0. (8)

Recall that V (x) = xTF T

0PF0x for x ∈ Ω0. Thus V (x) > 0
for x ∈ Ω0 \ {0} can be equivalently stated as

F T

0PF0 > 0, (9)

since Ω0 contains the origin in its interior.

To examine V̇ (x) for x ∈ ∂LV ∩ int(Ω0), we note that

V̇ (x) =
[

xT 1
]

[

AT

0F
T

0PF0 + F T

0PF0A0 0
0 0

][

x
1

]

and

∂LV∩ int(Ω0)=

{

x :
[

xT 1
]

[

F T

0PF0 0
0 −1

][

x
1

]

=0,

[

xT 1
]

M0

[

x
1

]

< 0

}

(10)

By S-procedure ([1], page 23), V̇ (x) < 0 for all x ∈ ∂LV ∩
int(Ω0), if there exist β0 ≥ 0, ζ0 ∈ R such that

[

AT

0F
T

0PF0 + F T

0PF0A0 0
0 0

]

<β0M0+ζ0

[

F T

0PF0 0
0 −1

]

(11)
Note that ζ0 can be either positive or negative since the
first constraint for describing ∂LV ∩ int(Ω0) in (10) is an
equality.

Next we consider Ωj , j = 1, · · · , J + N . For j =
1, · · · , J , denote

Aj =

[

A+BKc̄j B(f̄j − āj c̄j)
01×n 0

]

,

and for j = 1, · · · , N , denote

AJ+j =

[

A+BKcj B(f
j
− ajcj)

01×n 0

]

.

Then by (2), we have

d

dt

[

x
1

]

= Aj

[

x
1

]

, for x ∈ Ωj , j = 1, · · · , J +N.

(12)

Recall that V (x) =
[

xT 1
]

F T

jPFj

[

x
1

]

for x ∈ Ωj .

Thus for all x ∈ int(Ωj),

V̇ (x) =
[

xT 1
]

(AT

jF
T

jPFj + F T

jPFjAj)

[

x
1

]

.
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By S procedure, V (x) > 0 for x ∈ Ωj and V̇ (x) < 0 for
all x ∈ ∂LV ∩ int(Ωj), if there exist αj , βj ≥ 0, ζj ∈ R

such that

F T

jPFj + αjMj > 0,

AT

jF
T

jPFj+F T

jPFjAj

< βjMj + ζj

(

F T

jPFj−

[

0n 0
0 1

])

(13)

In summary, we have the following result.

Proposition 1: Given a symmetric matrix P ∈
R

(J+N+n)×(J+N+n). Let LV be the 1-level set of
the piecewise quadratic Lyapunov function as defined
in (3). Suppose that LV ⊂ Ωh. If there exist scalars
αj , βj ≥ 0, ζj ∈ R, j = 0, 1, 2, · · · , J + N , so that the
matrix inequalities (9), (11) and (13) are satisfied, then LV

is an invariant set.

B. LMI conditions for set inclusion

In Proposition 1, we assumed that LV ⊂ Ωh. In what
follows, we give matrix conditions for LV ⊂ Ωh.

It is easy to see that LV is strictly inside Ωh if and
only if V (x) > 1 for all x in the hyperplanes Kx = ±h,
equivalently, if and only if V (x)−Kx/h > 0 for Kx−h =
0 and V (x)+Kx/h > 0 for Kx+h = 0. By S procedure,
this is satisfied if there exist ηJ , ηJ+N ∈ R such that

F T

JPFJ−
1

2h

[

0 KT

K 0

]

+ ηJ

[

0 KT

K −2h

]

>0 (14)

F T

J+NPFJ+N+
1

2h

[

0 KT

K 0

]

+ηJ+N

[

0 KT

K 2h

]

>0(15)

Recall that the planes Kx = ±h are in ΩJ and ΩJ+N

respectively.

Due to the condition F T

jPFj+αjMj > 0 in (13) and the
structure of Mj , it can be shown that V is a convex function
when restricted to a plane Kx = r for any constant r.
Combining this with the condition that LV is strictly inside
Ωh, it can be further shown that LV is simply connected.

C. Maximal output magnitude in the level set

Let the output variable of interest be y = Cx. To estimate
the maximal output y along an oscillatory trajectory inside
LV , we may compute the minimal γ > 0 such that Cx ≤ γ
for all x ∈ LV , which is satisfied if

V (x) − 1 ≥ 0 for all x such that Cx/γ ≥ 1. (16)

Using S procedure on each set Ωj∩{x : Cx/γj ≥ 1}, γj ≤
γ, j = 0, 1, · · · , J + N , the above condition is equivalent
to the existence of ξj , δj , γj ≥ 0, such that

γj ≤ γ, j = 0, 1, · · · , J +N (17)
[

F T

0PF0 0
0 −1

]

+δ0

[

0 −CT/2γ0
−C/2γ0 1

]

+ξ0M0≥0 (18)

F T

jPFj+

[

0 0
0 −1

]

+δj

[

0 −CT/2γj
−C/2γj 1

]

+ξjM0≥0,

j = 1, · · · , J +N (19)

D. Estimating the magnitude of oscillation via BMI opti-

mization

In summary, to estimate the maximal output y = Cx
along oscillatory trajectories, we need to find an invariant
set LV that bounds the oscillatory trajectories as tightly
as possible. To reduce the conservatism of estimation, we
perform the analysis in the set Ωh = {x : |Kx| ≤ h},
where h is a scalar to be adjusted, so that the condition for
set invariance is least conservative. In the previous sections,
we obtained

1. The condition for the level set LV to be invariant by
(9), (11) and (13).

2. The condition for LV to be inside Ωh by (14), (15).
3. The condition for Cx ≤ γ for all x ∈ LV by (17),

(18), (19).

An optimization problem can be formed by minimizing γ
so that all the conditions are satisfied, where the optimiz-
ing variables include the matrix P defining the Lyapunov
function, and the scalars αj , βj , ξj , δj , γj ≥ 0, ζj ∈ R,
j = 0, 1, · · · , J +N and ηJ , ηJ+N ∈ R.

The bilinear terms in the matrix inequalities include ζjP
in (11) and (13), and δjC/2γj in (18) and (19). All the
other terms are either linear or constant matrices.

The nonlinear terms δjC/2γj in (18) and (19) can be
turned into linear terms by a change of variables. Define
new variables sj = δj/2γj . Then (17), (18), (19) can be
replaced with

δj ≤ 2γsj, j = 0, 1, · · · , J +N (20)
[

F T

0PF0 0
0 −1

]

+

[

0 −s0C
T

−s0C δ0

]

+ξ0M0≥0, (21)

F T

jPFj+

[

0 0
0 −1

]

+

[

0 −sjC
T

−sjC δj

]

+ξjM0≥0,

j = 1, · · · , J +N (22)

And the optimization problem can be descibed as

inf γ, (23)

s.t. δj ≤ 2γsj, j = 0, 1, · · · , J +N

(9), (11), (13), (14), (15), (21), (22)

P = P T, αj , βj, ξj , δj, sj ≥ 0, j = 0, · · · , J +N.

For fixed ζj ’s, the above is a generalized eigenvalue prob-
lem. To simplify computation, we may at first assume that
ζj = ζ for all j and use a one dimensional sweep to find
ζ which minimizes γ. Then use this ζ as the initial value
for every ζj and apply a standard nonlinear optimization,
such as “fminsearch” to optimize ζj . To use “fminsearch”,
a function J(ζ0, ζ1, · · · , ζJ+N ) is defined as the minimal γ
for the problem (23) with these given ζj ’s. This approach is
effective on the examples in the following section. One may
also try more general algorithms for solving BMI problems,
e.g., see [7].

IV. EXAMPLES

Example 1: Consider the system for generating a van del
pol oscillator,

ẋ = Ax+Bψ(Kx)

=

[

0 1
−4000 0

]

x+

[

0
−200

]

ψ([0 1]x).
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where ψ(v) = −v + v3/3. We approximate the function
ψ(v) = −v + v3/3 with a piecewise linear function with
8 breakpoints at ±0.5,±1,±1.5,±2. This system was used
in [9]. A plot of the function can be found in [9].

We choose y = v = [0 1]x as the output. By simulating
the piecewise linear system, the magnitude of the output
along the limit cycle is 2.0033. By simulating the original
nonlinear system, the magnitude is 2.0247. By using the
optimization algorithm in [9], the output bound on y = v
is obtained as 2.2131V.

By solving the optimization problem (23), we obtained
a smaller bound for y, 2.0750, which is much closer to
the actual magnitude 2.0247 than the estimate in [9]. The
resulting invariant set is plotted in Fig. 1 (outer closed
curve) along with the limit cycle (the inner dotted closed
curve).

−0.06 −0.04 −0.02 0 0.02 0.04 0.06

−2

−1

0

1

2

x
1

x
2

Fig. 1. Limit cycle and an invariant level set.

Example 2: The system in this example is modified from
a system in [14] (for generating Fig. 5 in [14]), which
has a 3-scroll chaotic attractor, as plotted in Fig. 2. Since

−40
−20

0
20

40

−20

0

20

−10

0

10

x
1

x
2

x
3

Fig. 2. The 3-scroll chaotic attractor

the chaotic attractor in [14] is not a global attractor, we
added two breakpoints for the piecewise linear function
and slightly changed the other parameters. In terms of this
paper’s notation, the system is described by (1) with

A =





0 1 0
0 0 1

−0.72 −0.72 −0.73



 , B =





0
0
1





and K = [1 0 0]. The nonlinear function ψ is not
symmetric. Its breakpoints are a2 = −20, a1 = −1, ā1 =
1, ā2 = 19, ā3 = 21, ā4 = 34. The slopes are c2 = 0.6; c1 =
0; c0 = 7, c̄1 = 0.1, c̄2 = 7, c̄3 = 0, c̄4 = 0.4.

Let us first estimate the magnitude of y1 = x1 = C1x,
where C1 = [1 0 0]. If we use a quadratic Lyapunov
function, the minimal upper bound for y 1 by the algorithm
is 60.5. The resulting invariant ellipsoid is plotted in Fig. 3.
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Fig. 3. Invariant ellipsoid by using quadratic function for bound of x1.

If we use the piecewise quadratic (PWQ) Lyapunov
function by solving the optimization problem (23), a smaller
upper bound for y1 = x1 is obtained as 47.7831. The
invariant set is plotted in Fig. 4.
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Fig. 4. Invariant set by using PWQ function for bound of x1

Fig. 5 plots the chaotic trajectory, the boundaries of the
two resulting invariant sets, projected to the (x1, x2) plane,
where the outer ellipsoidal boundary corresponds to the
invariant set in Fig. 3 and the smaller asymmetric boundary
is projected from the invariant set in Fig. 4.
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−30

−20

−10
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10

20

30
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Fig. 5. Projections of a trajectory and two invariant sets

Since the nonlinear element is not symmetric, the 3-scroll
chaotic attractor is not symmetric. Thus the maximal x1

and the maximal −x1 are different. Therefore we chose
y2 = −x1 = [−1 0 0]x and obtained an upper bound for
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y2 as 31.8853, which is indeed smaller than the upper bound
on x1. To form a tighter bound for the chaotic attractor, we
obtained 2 more invariant sets, by minimizing the upper
bounds on x2 and x3, which are obtained as 16.2172 and
13.0725.

Fig. 6 plots the boundary of the intersection of the 4
invariant level sets, which is also an invariant set.

−40
−20

0
20

40

−20

0

20

−10

0

10

x
1

x
2

x
3

Fig. 6. Intersection of four invariant sets

The projections of the intersection of the four invariant
sets are plotted in Fig. 7.
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Fig. 7. Projections of the invariant set

The above examples demonstrate that the invariant level
sets of piecewise quadratic functions can provide tight
bounds for the oscillatory trajectories and yield good es-
timates for the magnitude of the oscillations. From each
example, we see some gap between the attractors and the
boundary of the invariant set. This gap is caused by the
difference between the trajectory of the system and the
shape of the level set. A possible approach to obtain tighter
bound is to add extra partitions between āj and āj+1 (with

the same slope c̄j for ψ). This will increase the dimension
of P and the number of parameters to be optimized.

V. CONCLUSION

We derived a new BMI-based method to estimate the
magnitude of self-induced oscillations for systems with one
piecewise linear element. Invariant level sets of piecewise
quadratic functions are used to bound the oscillatory orbits.
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