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Abstract— During subsea lifting operations in harsh sea
conditions, the involved crane system is subjected to extensive
dynamic forces due to vertical vessel motion. Thus, active heave
compensation systems can be used to compensate for vertical
vessel motion and to reduce forces acting on the crane structure.
Furthermore, such systems allow an exact positioning of the
load on the seabed. However, active heave compensation systems
always require knowledge about the vertical position of the
crane depending on the ship’s heave, roll, and pitch motion.
Hence, an attitude estimation method for ships during subsea
lifting operations is proposed. To estimate the roll and pitch
motion of a vessel with high accuracy, rotation rate sensors are
fused with accelerometers using an Extended Kalman Filter.
Since an exact knowledge of the yaw motion is not required
to determine the crane’s vertical motion, the yaw angle is
stabilized around zero with an additional virtual sensor signal.
The attitude estimation algorithm is evaluated with simulation
and measurement results from an experimental setup.

I. INTRODUCTION

There is an increasing demand for offshore installations,

such as underwater conveying systems for oil and gas fields

or wind parks in the near future. Offshore oil and gas

fields will be developed to a large extent with all processing

equipment on the seabed. Thus, high operability on the

underwater construction is required.

On the other hand, dealing with such installations puts new

challenges on the equipment for the offshore industry, be-

cause waves, wind, and ocean currents easily cause the vessel

to move away both horizontally and vertically. Especially,

the vessel’s vertical motion has a significant effect on the

involved crane system shown in Fig. 1 during subsea lifting

operations. Thus, it is important to keep the load motion

unaffected by the wave induced vessel motion even under

harsh sea conditions. For decoupling the vertical load motion

from the vertical vessel motion, passive or active heave

compensation systems can be used. All active systems have

in common that they require exact knowledge of the vertical

crane tip’s position where the load is attached to, as described

in the literature [1], [2], [3]. However, the vertical motion

of the crane tip is not only affected by the vessel’s heave

motion, but also by the vessel’s roll and pitch motion. Hence,

active heave compensation systems require the actual heave,

roll, and pitch motion of a vessel.

All six degrees of freedom of a vessel or ship can be obtained

from an inertial measurement unit (IMU). Such a standalone
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motion sensor has three accelerometers for measuring surge,

sway, and heave and three rotation rate sensors for roll,

pitch, and yaw. Obviously, the accelerometer signals have

to be integrated twice and the rotation rate signals once to

obtain the relative position and attitude of a vessel. To reduce

typical errors like sensor noise, bias, and misalignment of the

rotation rate sensors and accelerometers, different approaches

for signal conditioning can be found in the literature. For

example, Godhavn [4] proposes integrating filters to obtain

the relative position of a vessel. The filter coefficients are

chosen in accordance to the actual sea spectrum. Other

approaches for attitude estimation of a body fuse different

sensor signals to compensate different errors of each sensor.

A widely-used approach is to aid the IMU signals with GPS

measurements to eliminate the resulting drift terms of the

estimated position and attitude as described by Godhavn [5]

or Fossen and Perez [6]. However, the proposed method

requires additional GPS signals resulting in higher costs.

Another possibility for attitude estimation is to fuse the sig-

nals of the gyro rate sensors with the measured accelerations

of the IMU to estimate the errors of the rotation rate signals.

Kim and Golnaraghi [7] propose such a method. They model

the rotation rates as first order systems and formulate an

Extended Kalman Filter (EKF) estimating the attitude of a

rigid body. Metni et al. [8] fuse signals of three gyroscopes,

three accelerometers, and three magnetometers in two com-

plementary filters. The derived filters are used to estimate

the attitude of an unmanned aerial vehicle. The first filter

fuses the gyroscopes with the accelerometers to estimate

the roll and pitch angles, while the second filter is used to

aid the gyroscopes with the magnetometers to estimate the

yaw angle. The additional usage of magnetometers results in

a better estimation of the yaw angle. Data fusion of three

gyroscopes, two inclinometers, and a compass via an EKF

is presented by Setoodeh et al. [9]. The paper derives an

indirect error state model basing on attitude errors and bias

of the gyroscopes. The resulting EKF is realized in a way

that it separates the model of the bias and the error dynamics

resulting in two subsystems. However, all these methods

have problems estimating the correct roll and pitch angles

in situations when the IMU is accelerated, since they use a

model of the earth’s gravitational vector, which is only valid

for an IMU that is not accelerated, to stabilize the roll and

pitch motion.

This paper presents a method for estimating the attitude of a

ship or vessel during subsea lifting operations. The scheme

utilizes a low-cost IMU (ADIS 16365) from Analog Devices

as a standalone motion sensor without aiding external sensor

sources like a GPS receiver or a compass. The IMU has
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Fig. 1. Vessel/Ship with offshore crane.

three accelerometers and three rotation rate sensors. To avoid

dependency on the knowledge about a certain magnetic field,

the algorithm does not use additional magnetometers. Special

attention is given to the roll and pitch motion, as these

influence the vertical motion of a crane during subsea lifting

operations as depicted in Fig. 1. Exact knowledge of the

yaw motion is not required for active heave compensation

systems as it does not result in a vertical motion of the crane

tip that must be compensated. To estimate the roll and pitch

motion, the rotation rate signals of the gyroscopes are fused

with the accelerometers using an EKF. To guarantee good

performance also in situations when the IMU is accelerated,

the covariance matrices of the EKF are adapted online

using the absolute values of the measured accelerations and

rotation rates. Furthermore, it is shown that a virtual sensor

for the yaw angle can be used to aid the estimated yaw angle

and to stabilize it around zero to avoid an unbounded drift

of this angle resulting in numerical problems.

II. SENSOR MODELING

In the following a dynamic model for an orientation sensor

is derived. The sensor used in this work is a standard low-cost

strapdown IMU (ADIS 16365) from Analog Devices. The

IMU consists of three rate gyros and three accelerometers

in orthogonal triads. The objective of the model is to design

an observer estimating the pitch and roll angles of a ship or

vessel during subsea lifting operations without requiring any

ship specific parameters. Thus it is desired that the model

only consists of sensor specific parameters or dynamics.

As depicted in Fig. 1, there are two main frames used in the

following. The navigation frame, denoted by n, is defined as

a North-East-Down frame (NED-frame) with the vertical axis

directing toward the center of the earth (down). Because the

ship stays at a fixed position during subsea lifting operations,

the n-frame is fixed to the earth. Furthermore, the effects due

to the rotation of the earth are considered as negligible, since

these effects are in the range of the sensor noise; hence, the

n-frame is considered as the inertial frame. The second frame

is the body frame, denoted by b, and attached to the IMU.

The orthogonal axes are aligned with the sensor axes.

The rotation model of the sensor is derived using quater-

nions rather than direction cosines and Euler angles, as the

quaternion representation does not have a problem with sin-

gularities, handles normalization better, and does not require

bulky trigonometric calculations of Euler angles. Following

[10], the propagation of the quaternion q b
n = [q0 q1 q2 q3]

T
,

indicating the transformation from the n- to the b-frame, can

be expressed using the rotation rates ω b
nb = [ωx ωy ωz]

T

(rotation rate of the b-frame relative to the n-frame expressed

in the b-frame) and written as

q̇0 = − 1
2 (q1ωx + q2ωy + q3ωz),

q̇1 = 1
2 (q0ωx − q3ωy + q2ωz),

q̇2 = 1
2 (q3ωx + q0ωy − q1ωz),

q̇3 = − 1
2 (q2ωx − q1ωy − q0ωz).

(1)

Because every gyroscope measures an additive offset and

sensor noise to the rotation rate itself, the measured rates of

the IMU ωb
imu are not the same as the actual rates of the

body ωb
nb. Thus, each measured rate of the IMU is modeled

as the sum of the actual body rate, an offset term, and random

sensor noise. The resulting rotation rates measured through

the IMU are given by

ωb
imu = ωb

nb + ρ+ ξω, (2)

where ρ = [ρx ρy ρz]
T

and ξω =
[

ξωx
ξωy

ξωz

]T
are the

offset term and sensor noise of the gyroscopes.

The dynamic behavior of the actual body rates ω b
nb itself is

assumed as a first order system with additive white noise as

unknown input as it is proposed by Kim and Golnaraghi [7].

Thus the ODE for each body rate may be expressed as

ω̇x = 1
τω
ωx + ζωx

,

ω̇y = 1
τω
ωy + ζωy

,

ω̇z = 1
τω
ωz + ζωz

(3)

with the time constant τω > 0 and the additive white noise

ζω . The time constant τω reflects the expected dynamics

of the rotation rates of the body. In the following, a very

slow dynamic is assumed for the offset term in (2). Hence,

each gyro offset is modeled as a random walk process with

additive white noise, yielding the following expression:

ρ̇ = ζρ, (4)

where ζρ =
[

ζρx
ζρy

ζρz

]T
denotes the offsets’ white noise.

It is clear that a direct integration of the measured rates

ωb
imu using (1) would result in a drift of the quaternion

qb
n, due to the gyro offsets. Therefore, the rate sensors of

the IMU have to be aided by an additional sensor for a

drift-free integration of the quaternion. Since it is desired

that the IMU acts as a standalone sensor for the vessel’s

attitude estimation, the accelerometers of the IMU are used

to compensate the gyro offsets. The basic principle of aiding

rotation rate sensors with accelerometers is the fact that the
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accelerometers measure only the earth’s gravitation in the b-
frame during phases when the IMU is not accelerated by

other forces. Furthermore, the earth’s gravitational vector

measured by the IMU always directs toward the negative

z-axis in the n-frame. Thus the measured accelerations in

the b-frame during phases when the gravitational vector only

acts on the IMU may be written as

abimu = Cb
n [0 0 − g̃]

T
+ ξa, (5)

where g̃ = ‖g‖ denotes the absolute value of the earth’s

gravitation and ξa =
[

ξax
ξay

ξaz

]T
is the additive sensor

noise of the accelerometers. The transformation matrix C b
n

from the n- to the b-frame using the quaternion representa-

tion is given by (see [10])

Cb
n =





q20 + q21 − q22 − q23 2q1q2 + 2q0q3
2q1q2 − 2q0q3 q20 − q21 + q22 − q23
2q1q3 + 2q0q2 2q2q3 + 2q0q1

2q1q3 − 2q0q2
2q2q3 − 2q0q1

q20 − q21 − q22 + q23



 .

(6)

Hence, using (5) and (6), the measured accelerations of the

IMU due to the gravitational vector may be written as

abx,imu = (2q0q2 − 2q1q3)g + ξax
,

aby,imu = −(2q0q1 + 2q2q3)g + ξay
,

abz,imu = (−q20 + q21 + q22 − q23)g + ξaz
.

(7)

Due to a higher clearness of Euler angles compared to

a quaternion representation, Euler angles are used in the

following to depict the results and explain certain effects

of the proposed algorithm. In this research, the order of

successive rotations expressing the transformation from the

n- to the b-frame with Euler angles is defined as yaw-pitch-

roll [10] yielding the following relationship:

tan(Ψ) =
2(q1q2 + q0q3)

q20 + q21 − q22 − q23
, (8)

sin(Θ) = −2(q1q3 − q0q2), (9)

tan(Φ) =
2(q2q3 + q0q1)

q20 − q21 − q22 + q23
. (10)

Here, Ψ, Θ, and Φ denote the yaw, pitch, and roll angles

around the z, y, and x axis of the respective coordinate

systems.

III. OBSERVER DESIGN

The derived dynamical model of the gyroscope sensors

can be used to design an observer estimating the attitude

of a ship. Obviously, the objective of designing an observer

that estimates the ship’s roll and pitch angle without any

drift can be achieved using the properties of the earth’s

gravitational vector (7). However, a drift-less estimation

of the yaw angle is not possible using (7), since a yaw

motion does almost not affect the direction of the earth’s

gravitational vector in the b-frame. To avoid an unbounded

drift of the yaw angle that results in numerical problems, an

additional relation is required. Since a ship does not perform

great yaw motion during subsea lifting operations, it can be

assumed that the relative yaw angle oscillates around zero.

Hence, a virtual sensor signal is used in the following to

reflect the property that the yaw angle oscillates around zero.

The output equation of the virtual sensor is given by (8) with

Ψ = 0.

To design an observer, the derived sensor model and the

relationship for the virtual sensor have to be transformed

to a state space model. Defining the state vector as x =
[

qb
n ωb

nb ρ
]T

and neglecting the IMU’s sensor noise in (2)

and (7) as well as the process noise in (3) and (4), equations

(1) - (4), (7), and (10) can be transformed to state space form

given by

ẋ = f(x) =

































− 1
2 (x2x5 + x3x6 + x4x7)

1
2 (x1x5 − x4x6 + x3x7)
1
2 (x4x5 + x1x6 − x2x7)

− 1
2 (x3x5 − x2x6 − x1x7)

1
τω
x5

1
τω
x6

1
τω
x7

0
0
0

































, (11)

y = h(x) =





















(2x1x3 − 2x2x4)g
−(2x1x2 + 2x3x4)g

(−x2
1 + x2

2 + x2
3 − x2

4)g
x5 + x8

x6 + x9

x7 + x10
2(x2x3+x1x4)
x2

1
+x2

2
−x2

3
−x2

4





















. (12)

Note that the last row of the system’s output vector y7

stands for the virtual sensor signal with the corresponding

measurement for the observer’s correction always set to

tan(Ψ = 0) = 0.

Global observability of the proposed state space model can

be proven with some simple algebraic calculations. However,

it can be shown that the observability of the yaw angle gets

lost, if the virtual sensor signal y7 is not used in the system’s

output vector. Thus it is expected that the yaw angle gets

estimated with an error, despite the usage of a virtual sensor

signal.

For real-time implementation of the observer, the described

state space model in continuous time has to be discretized in

time. The discretization is performed using the Euler-forward

method. The observer itself is realized as a standard EKF.

In the following R and Q denote the covariance matrices of

the sensor noise and the process noise, respectively. Theses

matrices are chosen as diagonal matrices and given by

R = diag (rω rω rω ra ra ra rΨ) , (13)

Q = diag (qq qq qq qq qω qω qω qρ qρ qρ) . (14)

In (13) rω and ra denote the sensor noise of each rotation

rate sensor and each accelerometer of the IMU, while rΨ
is the sensor noise of the virtual sensor signal for the yaw

angle. In (14) qq, qω, and qρ are the process noise of the
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four elements of the quaternion, each rotation rate, and each

corresponding offset term.

The elements of R are used in the following to reflect

uncertainties of different sensor signals. The elements rω
and rΨ are chosen to be constant with rΨ ≫ rω assigning

more uncertainties to the virtual sensor than to the rotation

rate sensors. As already mentioned, the output equations

of the accelerometers (7) are only valid during phases

when the IMU is only affected by the earth’s gravitational

vector. On the other hand, this means that the measured

accelerations are very uncertain if the IMU is accelerated by

other external forces. To take these situations into account,

the accelerometers’ sensor noise ra is adapted to different

situations as proposed by Favre et. al [11]. However, to

avoid hard switches between different parameter values as

it was done by Favre, ra is adapted linearly to situations

when external forces act on the IMU. Such situations are

characterized by the difference of the absolute value of the

earth’s gravitational vector g̃ and the absolute value of the

measured accelerations ã = ‖abimu‖ as well as the absolute

value of the measured rates ω̃ = ‖ωb
imu‖, if the IMU is not

located in the center of gravity of the ship. Thus, ra is given

by

ra = ra + βaαεa (|ã− g̃|) + βωαεω (ω̃) , (15)

where ra is the minimum value of ra during non-accelerated

situations, βa, βω > 0 are the linear adaption coefficients,

and αε(η) is defined by

αε(η) =











η − ε, if η > ε

0, if − η ≤ ε ≤ η

η + ε, if η < −ε

(16)

to generate a dead band where ra is not adapted. The

parameters βa and βω are obtained from experiments and

chosen in a way that ra ≫ ra holds during phases when

the IMU is accelerated by forces other than the earth’s

gravitation.

The elements qq and qρ of the diagonal matrix Q given in

(14) are selected to be constant with qq ≫ qρ, as the offset

terms are almost constant compared to the quaternion. The

process noise of the rotation rates qω is equal to the unknown

white noise parameters of (3). To guarantee a fast dynamic

of the states corresponding to the rotation rates during fast

rotations, the process noise qω is adapted to the absolute

value of the measured rates. It can be expressed as

qω = q
ω
+ κωαεω (ω̃) (17)

with the minimum value q
ω

and αε(η) as defined in (16). The

linear adaption coefficient κω is obtained from experiments.

IV. RESULTS

In the following the proposed observer for ship’s attitude

estimation is evaluated. Special attention is given to the

performance of estimating the roll and pitch angle, as these

angles are required for active heave compensation during

subsea lifting operations. First, some simulation results are
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Fig. 2. Estimated offsets ρ̂x, ρ̂y , and ρ̂z of the rotation rate sensors together
with their nominal values during simulation.

given. After that measurement results from an experimental

setup are presented.

A. Simulation

The motion sequence used for simulation is obtained from

a six degrees of freedom simulation of a ship [12]. The model

used in the following corresponds to a ship that is 82.8m

long and has 6,362 tons of weight. The model is excited

with a JONSWAP spectrum with a significant wave height of

4m. The resulting rotation rates in the b-frame are disturbed

with a constant offset and sensor noise; the translational

accelerations are also disturbed with sensor noise.

It is clear that the performance of the attitude estimation de-

pends mainly on the correct offset estimation of the rotation

rate sensors. Fig. 2 shows the estimated offsets of all three

sensors in the b-frame together with the nominal ones used

in the simulation. The initial values for the estimated offsets

ρ̂x(0), ρ̂y(0), and ρ̂z(0) are obtained from an initialization

phase at the beginning. During this phase the rotation rate

sensor’s mean values are taken over a certain time horizon

and used to initialize each state to reduce the observer’s

decay time. In the following •̂ denotes the estimated values

of a certain state. As can be seen, the estimated offsets ρ̂

converge to the nominal offsets after a short decay time.

Furthermore, the estimated offsets are almost constant after

they reached their nominal values. This also holds for the

offset of the z-axis ρ̂z , which can be attributed to the virtual

sensor for the yaw angle. Since the performance of the offset

estimation is good, it is expected that the ship’s attitude is

also estimated correctly.

Fig. 3 compares the estimated Euler angles Φ̂, Θ̂, and Ψ̂ with

the simulated ones for the same simulation as in Fig. 2. For

a better depiction, the figure only shows a time slot of the

whole sequence after the initial errors are decayed. Figs. 3a

and 3b show that the error of the estimated pitch angle Θ̂
is slightly higher than the error of the estimated roll angle

Φ̂. That is due to the fact that the absolute pitch motion

are bigger than the absolute roll motion. Nevertheless, both

errors are in an acceptable range. Fig. 3c indicates that

the yaw angle gets also estimated with an tolerable error,

however the performance is not as good as the performance

for the roll and pitch angles. The maximum errors and

the Root Mean Square (RMS) errors for each axis are
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Fig. 3. Simulated (dashed line) and estimated (solid line) Euler angles
together with their estimation errors (dotted line).

TABLE I

SIMULATED ESTIMATION ERRORS

Φ [◦] Θ [◦] Ψ [◦]

max. error 0.16 0.42 0.37

RMS error 0.06 0.16 0.18

max. amplitude 3.03 5.55 1.04

KUKA

IMU

Fig. 4. Experimental setup consisting of a KUKA robot and an IMU from
Analog Devices (ADIS 16365).

summarized in Tab. I together with the maximum amplitude

of the corresponding motion sequence.

B. Experimental setup

The experimental setup used to evaluate the algorithm for

attitude estimation consists of an IMU from Analog Devices

(ADIS 16365) and a KUKA robot. The accelerometers of

the IMU have a range of ±18g and the measurement noise

is rated at 0.5mg/
√

Hz. The gyros have a range of ±150◦/s

and a noise rating of 0.044◦/s/
√

Hz [13]. The reference

 

 

t [s]

ρ̂
i
(t
)
[◦
]

0

-0.2

-0.4

0.2

0.4

0.6

0.8

0 200 400 600 800 1000 1200

ρ̂x
ρ̂y
ρ̂z

Fig. 5. Estimated offsets ρ̂x, ρ̂y , and ρ̂z of the rotation rate sensors
obtained from the experimental setup.

TABLE II

ESTIMATION ERRORS FROM EXPERIMENTAL SETUP

Φ [◦] Θ [◦] Ψ [◦]

max. error 0.39 0.29 0.44

RMS error 0.14 0.10 0.15

max. amplitude 8.36 5.13 1.68

paths for all six degrees of freedom of the KUKA robot are

generated with the same ship model used for simulation. The

simulated motion are recorded and used afterward to move

the KUKA robot. The measured IMU signals are used for

an online estimation of the IMU’s attitude with the proposed

method. The estimated Euler angles are compared to the

angles obtained from the incremental encoders of the KUKA

robot denoted as reference signals in the following. Fig. 4

shows the complete setup.

Fig. 5 presents the estimated offsets ρ̂ of all three rotation

rate sensors. In contrast to the simulation results, the nominal

values of the offsets are unknown. Thus Fig. 5 only shows

the estimated values. However, it indicates that after a short

decay time every offset oscillates around a constant value, as

it is expected from simulation. In addition, the figure clearly

illustrates the effect of the virtual sensor for the yaw angle.

The offset of the z-axis ρ̂z does not diverge away.

Fig. 6 illustrates the corresponding Euler angles for 900s ≤
t ≤ 1100s. Figs. 6a and 6b obviously show that the estimated

roll and pitch angles are in good accordance with the

reference signals, while Fig. 6c depicts that the yaw angle

does not diverge and oscillates around zero. Again, Tab. II

summarizes the maximum error values, the RMS errors and

the maximum amplitudes of the motion sequences for each

axis. From the results follows that the estimation error of

the roll and pitch angles stay beyond acceptable values. The

error for the yaw axis is relatively higher; however the correct

estimation of the yaw angle is not required for active heave

compensation systems as mentioned above.

The adapted values for the sensor noise of the accelerometers

ra and the process noise of the rotation rates qω as given in

(15) and (17) are demonstrated in Fig. 7 for the test sequence.

The figure shows that qω is almost constant, while ra changes

due to the absolute value of the measured accelerations ã

which is given in Fig. 8.
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Fig. 6. Estimated Euler angles (solid line) and the corresponding references
(dashed line) obtained from the experimental setup. The estimation errors
are also depicted (dotted line).
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Fig. 7. Adapted sensor noise of the accelerometers ra and adapted process
noise of the rotation rates qω used for the EKF.
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sensor noise ra.

V. CONCLUSION

This paper has presented an attitude estimation approach

for ships or vessels used during subsea lifting operations.

Since active heave compensation systems require actual roll

and pitch motion of a vessel, special attention was given

to these motion. The derived approach fuses the rotation

rates of an IMU with its accelerometer measurements to

estimate the vessel’s attitude. To stabilize the unobservable

yaw motion around zero, a virtual sensor signal for the yaw

angle is applied. The parameters of the EKF are adapted

online and depend on the measured absolute values of the

accelerometers and rotation rate sensors.

Through simulation and measurement results, the attitude

estimation algorithm was validated. It was shown that the

estimated vessel’s roll and pitch motion are in good accor-

dance with the reference signals. Furthermore, the estimation

error of the yaw angle was also in an acceptable range.
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