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Abstract— In this paper, a control strategy to mitigate the
vibrational response of adjacent buildings under seismic ex-
citation is presented. The proposed strategy combines inter-
building passive actuators with active actuators placed in the
building stories. The main ideas are presented by means of a
simplified two-building model; however, a semi-decentralized
overlapping approach via the inclusion principle has been used
to impose a proper information exchange structure suitable for
wireless control of large buildings. Numerical simulations have
been carried out to assess the performance of the proposed
methodology with promising results. The overall control sys-
tem exhibits some degree of fault-tolerance since only partial
degradation of the control performance results from partial
failures of the control system.

I. INTRODUCTION

Over the last few decades, structural vibration control of

large civil engineering structures has become an increasingly

active research field. In recent years, the Connected Control

Method (CCM) has been proposed as a viable means to

protect adjacent flexible structures against earthquakes. In

the CCM, two independent structures are linked together

by coupling devices to provide appropriate reaction control

forces. The application of the CCM using different kinds of

passive, active, or semi-active control strategies have been

investigated in a number of papers [1], [2], [3], [4], [5];

in all these works, the control actuators are located in the

coupling devices

Also recently, wireless communications has made a sig-

nificant impact in the area of vibrational control of large

buildings [6], [7]. The use of wireless communications,

instead of the classical coaxial wiring, can critically re-

duce the installation and maintenance costs; furthermore,

it can also add flexibility to the control system, allowing

the implementation of new control strategies without costly

modifications. However, to improve the communications

robustness and to achieve higher sampling frequencies in the

real-time control operation, the controllers need to operate

using local information provided by neighboring sensors.

Consequently, a decentralized control approach is required

for a realistic treatment of Wireless Networked Control

Systems (WNCS). In this context, overlapping controllers

designed via the Inclusion Principle can be a specially
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suitable control strategy for large-scale WNCS, reducing

the design and operation computational effort and providing

semi-decentralized controllers which satisfy the information

exchange constraints, [8], [9].

The aim of this paper is to design a decentralized con-

troller for large adjacent buildings suitable for wireless

implementation. To this end, we consider a two-building cou-

pled system with the following control structure: (i) Every

story is equipped with an ideal active actuator, (ii) passive

actuators are located at the linking elements, (iii) in each

building, the active actuators are operated by an independent

local controller, (iv) for large buildings, the local controller

has a semi-decentralized overlapping structure, suitable for

wireless implementation.

Due to the complexity of the overall system, we have

chosen a minimal configuration that allows a clear presen-

tation of the main ideas while maintaining the generality

of the approach. This configuration consists of a three-story

building, which is considered as a large building, linked to

a two-story building. For this system, local controllers have

been independently designed: a standard LQR state-feedback

controller for the two-story building, and an overlapping

state-feedback LQR controller for the three-story building.

The linking passive actuators have been modeled as vis-

coelastic dampers. A centralized state-feedback LQR control

for the overall system, which has been taken as a reference

in the performance assessment, has also been computed.

Numerical simulations have been conducted to assess the

performance of the proposed methodology.

The paper is organized as follows. In Section 2, a simpli-

fied model of the two-building coupled system is provided.

Section 3 presents a brief summary relative to the Inclusion

Principle. In Section 4, the decentralized overlapping con-

troller and the reference centralized controller are computed.

Finally, in Section 5, numerical simulations of the free and

controlled responses are presented and compared.

II. TWO-BUILDING COUPLED MODEL

In this section, a simplified mechanical model for a two-

building coupled system formed by a three-story building

and a two-story building linked by viscoelastic dampers is

presented.The buildings motion can be described by

M q̈(t)+C q̇(t)+Kq(t) = Tu u(t)−MTw ω(t), (1)

where M is the mass matrix; K, and C are the total stiffness

and damping matrices, respectively, including the buildings

stiffness and damping coefficients as well as the stiffness

and damping coefficients of the viscoelastic dampers; q(t)
is the vector of relative displacements with respect to the
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ground; u(t) is the vector of control forces, and Tu=I5×5 is

the control location matrix; Tw is the index vector with all

its elements equal to 1, and ω(t) is the ground acceleration

(see Fig. 1).
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Fig. 1. Structural model for adjacent buildings

With the notations indicated in Fig. 1, the matrices in

equation (1) have the following structure:

M = diag
[

m
(l)
1 ,m

(l)
2 ,m

(l)
3 ,m

(r)
1 ,m

(r)
2

]

,

C = Cs +Cd, K = Ks +Kd,
(2)

where the story damping matrix is

Cs =
[

CL 0
0 CR

]

, (3)

with

CL =
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The stiffness matrix of the adjacent buildings is

Ks =
[

KL 0
0 KR

]

, (5)

with

KL=
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. (6)

The damping matrix of the viscoelastic dampers is

Cd =











c
(d)
1 0 0 −c

(d)
1 0

0 c
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, (7)

and the stiffness matrix of the viscoelastic dampers is

Kd =











k
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0 k
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. (8)

From the second-order model (1), a first-order state space

model can be derived

S : ẋ(t) = Ax(t)+Bu(t)+Ew(t),

y(t) =Cy x(t),
(9)

where the state vector x(t)∈R10 groups together the displace-

ments and the velocities arranged in increasing order, that is,

x(t)=[q1(t), q̇1(t), . . . ,q5(t), q̇5(t)]
T
, (10)

where qi(t) = q
(l)
i (t), i=1,2,3, is the displacement relative

to the ground of the ith story in the left building, and

q4(t)=q
(r)
1 (t), q5(t)=q

(r)
2 (t) denote the corresponding ones for

the right building. The matrices of the state-space model

used in the controllers design and the response numerical

simulations are

A =

















0 1 0 0 0 0 0 0 0 0
−6201 −0.2 3100 0.1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0
3100 0.1 −6201 −0.9 3100 0.1 0 0 0 0.8

0 0 0 0 0 1 0 0 0 0
0 0 3100 0.1 −3100 −0.1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 −3100 −0.2 1550 0.1
0 0 0 0 0 0 0 0 0 1
0 0 0 0.8 0 0 1550 0.1 −1550 −0.9

















,

B = 10−6 ×















0 0 0 0 0
0.7752 0 0 0 0

0 0 0 0 0
0 0.7752 0 0 0
0 0 0 0 0
0 0 0.7752 0 0
0 0 0 0 0
0 0 0 0.7752 0
0 0 0 0 0
0 0 0 0 0.7752















,

E = [ 0,−1,0,−1,0,−1,0,−1,0,−1 ]T ,

Cy =





1 0 0 0 0 0 0 0 0 0
−1 0 1 0 0 0 0 0 0 0

0 0 −1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 −1 0 1 0



 .

(11)

It should be noted that the output matrix Cy extracts the

inter-story drifts of the buildings, that is,

y(t) =
[

y
(l)
1 (t),y

(l)
2 (t),y

(l)
3 (t),y

(r)
1 (t),y

(r)
2 (t)

]T

, (12)

where y
(l)
1 = q

(l)
1 , y

(l)
i = q

(l)
i+1 −q

(l)
i , i=1,2, y

(r)
1 = q

(r)
1 , y

(r)
2 =

q
(r)
2 − q

(r)
1 . The matrices in (11) correspond to the follow-

ing particular values of the mass, damping and stiffness

coefficients: m
(l)
i =m

(r)
j =1.29×106 Kg; c

(l)
i =c

(r)
j =105 N s/m;

k
(l)
i =4×109 N/m; k

(r)
j =2×109 N/m; c

(d)
1 =0, c

(d)
2 =106 N s/m;

k
(d)
j =0, for i=1,2,3, j=1,2. A detailed derivation of the first-

order state-space model can be found in [6].

III. INCLUSION PRINCIPLE

In this section, the definition of the Inclusion Principle

together with the design of overlapping controllers are briefly

presented. A rigorous treatment can be found in [9], [10],

[11], [12], [13].

Consider a pair of linear systems

S : ẋ(t) = Ax(t)+Bu(t),

y(t) =Cy x(t),

S̃ : ˙̃x(t) = Ã x̃(t)+ B̃ ũ(t),

ỹ(t) = C̃y x̃(t),
(13)
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where x(t)∈R
n
, u(t)∈R

m
, y(t)∈R

l
are the state, the input,

and the output of S at time t≥0 and x̃(t)∈R
ñ
, ũ(t)∈R

m̃
,

ỹ(t)∈R
l̃

are the state, the input, and the output of S̃. A,

B, Cy and Ã, B̃, C̃y are n×n, n×m, l×n and ñ×ñ, ñ×m̃,

l̃× ñ dimensional matrices, respectively. Suppose that the

dimensions of the state, the input, and the output vectors

x(t), u(t), y(t) of S are smaller than those of x̃(t), ũ(t), ỹ(t)
of S̃. Let x(t;x0,u) and y[x(t)] denote the state behavior and

the corresponding output of S for a fixed input u(t) and for an

initial state x(0)=x0, respectively. Similar notations x̃(t; x̃0, ũ)
and ỹ[x̃(t)] are used for the state behavior and output of the

system S̃.

Let us consider the following linear transformations:

V : R
n
−→ R

ñ
, U : R

ñ
−→ R

n
,

R : R
m
−→ R

m̃
, Q : R

m̃
−→ R

m
,

T : R
l
−→ R

l̃
, S : R

l̃
−→ R

l
,

(14)

where rank(V )=n, rank(R)=m, rank(T )=l and such that

UV =In, QR=Im, ST =Il , where In, Im, Il are the identity

matrices of indicated dimensions.

Definition 1: (Inclusion Principle) A system S̃ includes

the system S if there exists a quadruplet of matrices

(U,V,R,S) such that, for any initial state x0 and any fixed

input u(t) of S, the choice

x̃0 =V x0,

ũ(t) = Ru(t), for all t ≥ 0
(15)

of the initial state x̃0 and input ũ(t) of the system S̃, implies

x(t;x0,u) =Ux̃(t; x̃0, ũ),

y[x(t)] = Sỹ[x̃(t)], for all t ≥ 0.
(16)

Suppose that the pairs of matrices (U,V ), (Q,R) and (S,T )
are given. Then, the expanded matrices Ã, B̃, and C̃y can be

expressed as

Ã =VAU +M, B̃ =V BQ+N, C̃y = TCyU +L, (17)

where M, N and L are complementary matrices of appro-

priate dimensions. In terms of complementary matrices, the

inclusion principle can be established in the following way.

Theorem 1: A system S̃ includes the system S if and only

if UMiV =0, UMi−1NR=0, SLMi−1V =0 and SLMi−1NR=0 for

all i=1,2, ..., ñ.

Two particular forms of the inclusion principle, called

restrictions and aggregations, are normally used in practice

[9]. In this paper, a restriction has been chosen.

Proposition 1: A system S is a restriction of the system

S̃ if and only if MV =0, NR=0 and LV =0.

Let us suppose that the system S given in (13) admits an

overlapping decomposition. In terms of the system matrices,

this assumption means that A, B and Cy present a block

tridiagonal structure

A =
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,

Cy =
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p

p

p
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(Cy)21 (Cy)22 (Cy)23
−−−

p

p

p

−−−
0

p

p

p

(Cy)32 (Cy)33









,

(18)

where Aii, Bi j, (Cy)i j, i, j=1,2,3, are ni×ni, ni×m j, li×n j

dimensional matrices, respectively. The partition of the

state x=(xT
1 ,x

T
2 ,x

T
3 )

T has components of respective dimen-

sions n1, n2, n3, satisfying n1+n2+n3=n; the partition of

u=(uT
1 ,u

T
2 ,u

T
3 )

T has components of dimensions m1, m2, m3,

such that m1+m2+m3=m; and y=(yT
1 ,y

T
2 ,y

T
3 )

T has components

of respective dimensions l1, l2, l3, satisfying l1+l2+l3=l.

The controller design starts with the selection of the

expansion transformations

V =
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0 0

0 In2
0

0 In2
0

0 0 In3



 , R=





Im1
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0 Im2
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0 Im2
0

0 0 Im3
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0 0
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0
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0

0 0 Il3



 (19)

with their corresponding pseudoinverse contractions

U =





In1
0 0 0

0 1
2 In2

1
2 In2

0

0 0 0 In3



 , Q=
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0 0 0

0 1
2 Im2

1
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 ,
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Il1
0 0 0

0 1
2 Il2

1
2 Il2

0

0 0 0 Il3



 ,

(20)

where U=(V TV )−1V T , Q=(RT R)−1RT , S=(T T T )−1T T .

Then, the expanded matrices Ā=VAU , B̄=V BQ, C̄y=TCyU ,

have the form

Ā=











A11
1
2 A12

p

p

1
2 A12 0

A21
1
2 A22

p

p

1
2 A22 A23

−−− −−−−−−− −−−
A21

1
2 A22

p

p

1
2 A22 A23

0 1
2 A32

p

p

1
2 A32 A33











, B̄=











B11
1
2 B12

p

p

1
2 B12 0

B21
1
2 B22

p

p

1
2 B22 B23

−−− −−−−−−− −−−
B21

1
2 B22

p

p

1
2 B22 B23

0 1
2 B32

p

p

1
2 B32 B33











C̄y=











(Cy)11
1
2 (Cy)12

p

p

1
2 (Cy)12 0

(Cy)21
1
2 (Cy)22

p

p

1
2 (Cy)22 (Cy)23
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1
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.

(21)

In order to get an almost-decoupled expanded system, we add

complementary matrices as indicated in (17). In the case of

a restriction, these matrices have the form

M =







0 1
2 A12 − 1

2 A12 0

0 1
2 A22 − 1

2 A22 0

0 − 1
2 A22

1
2 A22 0

0 − 1
2 A32

1
2 A32 0






, N =







0 1
2 B12 − 1

2 B12 0

0 1
2 B22 − 1

2 B22 0

0 − 1
2 B22

1
2 B22 0

0 − 1
2 B32

1
2 B32 0






,

L =







0 1
2 (Cy)12 − 1

2 (Cy)12 0

0 1
2 (Cy)22 − 1

2 (Cy)22 0

0 − 1
2 (Cy)22

1
2 (Cy)22 0

0 − 1
2 (Cy)32

1
2 (Cy)32 0






,

(22)
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resulting

Ã= Ā+M =
[

Ã11 Ã12

Ã21 Ã22

]

=











A11 A12
p

p
0 0

A21 A22
p

p
0 A23

−−− −−−−−−− −−−
A21 0

p

p
A22 A23

0 0
p

p
A32 A33











,

B̃= B̄+N =
[

B̃11 B̃12

B̃21 B̃22

]

=











B11 B12
p

p
0 0

B21 B22
p

p
0 B23

−−− −−−−−−− −−−
B21 0

p

p
B22 B23

0 0
p

p
B32 B33











,

C̃y= C̄y +L =

[

(C̃y)11 (C̃y)12

(C̃y)21 (C̃y)22

]

=











(Cy)11 (Cy)12
p

p
0 0

(Cy)21 (Cy)22
p

p
0 (Cy)23

−−− −−− − −−− −−−
(Cy)21 0

p

p
(Cy)22 (Cy)23

0 0
p

p
(Cy)32 (Cy)33











.

(23)

The expanded system can be denoted by

S̃ : ˙̃x(t) = Ã x̃(t)+ B̃ ũ(t),

ỹ(t) = C̃y x̃(t),
(24)

with state x̃T =(xT
1 ,x

T
2 ,x

T
2 ,x

T
3 ), input ũT =(uT

1 ,u
T
2 ,u

T
2 ,u

T
3 ), and

output ỹT =(yT
1 ,y

T
2 ,y

T
2 ,y

T
3 ). Using the block notation given in

(23), we can write

S̃1 : ˙̃x1(t) = Ã11 x̃1(t)+ B̃11 ũ1(t)+ Ã12 x̃2(t)+ B̃12 ũ2(t),

ỹ1(t) = (C̃y)11 x̃1(t)+(C̃y)12 x̃2(t),

S̃2 : ˙̃x2(t) = Ã22 x̃2(t)+ B̃22 ũ2(t)+ Ã21 x̃1(t)+ B̃21 ũ1(t),

ỹ2(t) = (C̃y)21 x̃1(t)+(C̃y)22 x̃2(t),
(25)

where x̃T
1 =(xT

1 ,x
T
2 ), ũT

1 =(uT
1 ,u

T
2 ), ỹT

1 =(yT
1 ,y

T
2 ), x̃T

2 =(xT
2 ,x

T
3 ),

ũT
2 =(uT

2 ,u
T
3 ), ỹT

2 =(yT
2 ,y

T
3 ). By removing the interconnection

blocks, two decoupled expanded subsystems result

S̃
(1)

D
: ˙̃x1(t) = Ã11 x̃1(t)+ B̃11ũ1(t),

ỹ1(t) = (C̃y)11 x̃1(t),

S̃
(2)

D
: ˙̃x2(t) = Ã22 x̃2(t)+ B̃22 ũ2(t),

ỹ2(t) = (C̃y)22 x̃2(t),

(26)

which define a decoupled expanded system

S̃
D

: ˙̃x(t) = Ã
D

x̃(t)+ B̃
D

ũ(t),

ỹ(t) = (C̃y)D
x̃(t),

(27)

where Ã
D

, B̃
D

, (C̃y)D
are block diagonal, Ã

D
=diag{Ã11, Ã22},

B̃
D

=diag{B̃11, B̃22} and (C̃y)D
=diag{(C̃y)11

,(C̃y)22
}. At this

point, a expanded decentralized controller ũ
D
(t)=K̃

D
x̃(t) for

S̃
D

can be designed by independently computing local con-

trollers for S̃
(1)

D
and S̃

(2)

D
.

Definition 2: (Contractibility) Suppose that S̃ is an expan-

sion of the system S. Then, a control law ũ(t)=K̃ x̃(t) for S̃

is contractible to the control law u(t)=Kx(t) for S if there

exist transformations as in (14) such that, for any initial state

x0∈R
n

and any input u(t)∈R
m
, if x̃0=V x0 and ũ(t)=Ru(t)

then Kx(t;x0,u)=QK̃x̃(t;V x0,Ru) for all t≥0.

Proposition 2: Suppose that S̃ is an expansion of the

system S. Then, a control law ũ(t)=K̃ x̃(t) for S̃ is contractible

to the control law u(t)=Kx(t) for S if and only if QK̃V =K,

QK̃MiV =0, QK̃Mi−1NR=0, for i=1, . . . , ñ.

According to Definition 2 and Proposition 2, the expanded

decentralized controller ũ
D
(t)=K̃

D
x̃(t) can be contracted to

an overlapping controller u(t)= Ko x(t) to be implemented

into the original system S. The contracted gain matrix is

computed as

Ko = QK̃
D
V =









K11 K12

p

p

p

0
−−−

p

p

p

−−−
K21 K22 K23

−−−
p

p

p

−−−
0

p

p

p

K32 K33









, (28)

which has a desired block tridiagonal structure.

Decentralized Controllers Design

In this paper, the independent local controllers for S̃
(1)

D

and S̃
(2)

D
have been designed as optimal LQR controllers;

however, it is clear that other control strategies could have

been used. More precisely, for the expanded decoupled

subsystems S̃
(1)

D
and S̃

(2)

D
, let us consider the local quadratic

cost functions

J̃
(1)

D
(x̃

10
, ũ1(t)) =

∫
∞

0

[

x̃T
1 (t)Q̃

∗
1x̃1(t)+ ũT

1 (t)R̃
∗
1ũ1(t)

]

dt,

J̃
(2)

D
(x̃

20
, ũ2(t)) =

∫
∞

0

[

x̃T
2 (t)Q̃

∗
2x̃2(t)+ ũT

2 (t)R̃
∗
2ũ2(t)

]

dt,

(29)

where x̃
10

and x̃
20

are the initial states of S̃
(1)

D
and S̃

(2)

D
,

respectively, and Q̃∗
1, Q̃∗

2, R̃∗
1 and R̃∗

2 are appropriate expanded

matrices. The gain matrices for the control laws that mini-

mize the cost functions given in (29)

ũ1(t) = K̃1 x̃1(t), ũ2(t) = K̃2 x̃2(t), (30)

can be independently computed as

K̃1 =
[

R̃∗
1

]−1
B̃T

1 P̃1, K̃2 =
[

R̃∗
2

]−1
B̃T

2 P̃2, (31)

where P̃
1

and P̃
2

are the solutions of the corresponding

Riccati equations. In the decoupled expanded system S̃
D

, the

gain matrix of the controller ũ(t)=K̃
D

x̃(t) which minimizes

the cost function

J̃
D
(x̃

0
, ũ(t)) =

∫
∞

0

[

x̃T (t)Q̃∗
D

x̃(t)+ ũT (t)R̃∗
D

ũ(t)
]

dt, (32)

with Q̃∗
D
=diag{Q̃∗

1, Q̃
∗
2} and R̃∗

D
=diag{R̃∗

1, R̃
∗
2}, can be written

as a block diagonal gain matrix K̃∗
D
=diag{K̃∗

1 , K̃
∗
2}. Finally,

the expanded decentralized controller ũ
D
(t)=K̃

D
x̃(t) is con-

tracted to an overlapping controller u(t)=Ko x(t) to be im-

plemented into the original system S. The contracted gain

matrix is computed as

Ko = QK̃
D
V (33)

which has the desired block tridiagonal structure shown in

(28).
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IV. CONTROLLER DESIGN

In this section, a centralized controller and a decentralized

overlapping controller are designed for the system (9) defined

by the matrices given in (11). In the overall coupled model,

the buildings are linked by a single damper, with damping

constant c
(d)
2 =106 N s/m, located at the second story. This

can be considered as a minimal configuration of the passive

control system, in the sense that the numerical simulations

show that no significant reduction of the vibrational response

results when a similar second damper is placed linking the

first stories, or elastic linking elements are considered. In

terms of the damping and stiffness coefficients, this means

c
(d)
1 =0, k

(d)
1 =k

(d)
2 =0 (see Fig. 1).

Centralized State-Feedback Controller

The centralized LQR controller is computed using the

overall coupled model and the cost matrices Q∗=CT
y Cy,

R∗=10−17×I5, which define the quadratic cost function

J(x
0
,u(t)) =

∫
∞

0

[

xT(t)Q∗x(t)+uT (t)R∗u(t)
]

dt,

=
∫

∞

0

[

yT(t)y(t)+uT (t)R∗u(t)
]

dt.

(34)

The resulting gain matrix is

Kc = 107×




1.140 0.522 0.325 0.022 −0.221 −0.013 −0.075 0.003 0.091 0.016
−0.218 0.022 1.459 0.509 −0.109 0.009 −0.073 0.012 0.159 0.025

0.115 −0.013 0.096 0.009 1.139 0.531 0.551 0.021 −0.296 0.026
0.107 0.003 0.203 0.012 −0.340 0.021 2.267 0.744 0.204 −0.010
0.059 0.016 −0.834 0.025 0.565 0.026 −0.451 −0.010 2.686 0.732



 .

(35)

The gain matrix K
C

is a full matrix and, consequently, to

compute the control action for any actuator, the knowledge

of the complete state in both buildings is required.

Decentralized Overlapping Controller

For the decentralized controller, we follow a two-level de-

centralized approach. At the first level, the linking elements

are ignored, and a controller is independently designed for

each building. At the second level, an overlapping controller

is designed for the left building, which is considered as a

large building. More precisely, we consider the left building

as composed by two overlapping subsystems S̃
(1)

D
=[1,2] (first

and second story) and S̃
(2)

D
=[2,3] (second and third story),

with an overlapped part in the second story. In the expanded

space, the following matrices are used:

(C̃y)11 =
[

1 0 0 0

−1 0 1 0

]

, (C̃y)22 =
[

1 0 0 0

−1 0 1 0

]

,

Q̃∗
1 = (C̃y)11

T
(C̃y)11, Q̃∗

2 = (C̃y)22
T
(C̃y)22,

R̃∗
1 = 10−17 × I2, R̃∗

2 = 10−17 × I2.

(36)

to compute a decentralized expanded LQR controller, which

is subsequently contracted to obtain a local overlapping

controller for the left building with block tridiagonal gain

matrix K
(l)
o . Regarding to the right building, matrices (Q∗)(r)

and (R∗)(r) with the same structure as those shown in

(36) are used to independently design a local LQR con-

troller with gain matrix K(r).The gain matrix for the overall

system is finally obtained as the block diagonal matrix

Ko=diag{K
(l)
o ,K(r)}. In our particular example, we have

Ko = 107×




0.835 0.441 0.411 −0.049 0 0 0 0 0 0
−0.414 −0.024 1.039 0.494 −0.001 0.005 0 0 0 0

0 0 −0.002 0.009 1.246 0.557 0 0 0 0
0 0 0 0 0 0 2.485 0.781 −0.015 0.007
0 0 0 0 0 0 −0.015 0.007 2.470 0.788





(37)

The gain matrix Ko is a structured matrix that allows to

compute the control action for any actuator using only the

local state of the corresponding building. Moreover, for the

large building, the control actions can be computed using

only the state of neighboring stories.

V. NUMERICAL SIMULATIONS

In this section, numerical simulations of the free and

controlled responses of the two-building system, using the El

Centro 1940 earthquake as acceleration input, are presented.

0 0.7 1.4 2.1 2.8 3.5
1

2

3

Left Build. Max. abs. drift(cm)

F
lo

o
r 

n
u

m
b

e
r

 

 

0 0.5 1 1.5 2 2.5
1

2

3

Left Build. contr. force (x10
6
 N)

F
lo

o
r 

n
u

m
b

e
r

F

P

C

O

Fig. 2. Left building inter-story drifts and control forces

The maximum absolute inter-story drifts, and the max-

imum absolute control actions are displayed in Fig. 2 and

Fig. 3. Four different situations are showed: (i) free response

of the uncoupled system (denoted by F in the legend);

(ii) free response of the coupled system, i.e., response

under passive control (denoted by P); (iii) response of the

coupled system under the centralized full-state feedback

control (denoted by C); and (iv) response of the coupled

system under the decentralized overlapping control (denoted

by O). The graphics show that a remarkable reduction of

the vibrational response is achieved by the passive control

system. Regarding the active controllers, the performance of

the decentralized overlapping control is certainly excellent:

despite the decentralized design and the restricted exchange

of information, the decentralized controller behaves practi-

cally the same as the overall centralized controller.

The obtained results, the different characteristics of passive

and active control elements, and the exceptional conditions

under which a seismic protection control system must work,

suggest the combination of both kinds of control elements to
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Fig. 3. Right building inter-story drifts and control forces

Left Building Right Building

y
(l)
1 y

(l)
2 y

(l)
3 y

(r)
1 y

(r)
2

Free 2.71 2.13 1.17 3.16 1.95

Passive 1.65 1.32 0.72 1.81 1.10

Centralized 0.59 0.49 0.28 0.65 0.42

Overlapping 0.62 0.52 0.30 0.65 0.42

Left failure 1.24 1.03 0.61 0.68 0.43

Right failure 0.65 0.54 0.31 1.64 1.03

TABLE I

Maximum absolute inter-story drifts (cm)

design an active-passive fault-tolerant decentralized control

system. From this point of view, the free uncoupled response

corresponds to a total failure mode; the free coupled response

can be seen as a full failure of the active control system;

partial failures of the active control system can be associated

to the failure of the corresponding local active control

system.

Left Building Right Building

u
(l)
1 u

(l)
2 u

(l)
3 u

(r)
1 u

(r)
2

Centralized 0.81 1.52 1.95 1.29 2.17

Overlapping 0.52 1.37 2.04 1.28 2.18

Left failure 0 0 0 1.35 2.28

Right failure 0.54 1.42 2.12 0 0

TABLE II

Maximum absolute actuation force (×106N)

Table I presents the maximum inter-story drifts for the dif-

ferent failure modes; the maximum absolute control actions

are collected in Table II. These tables also include the data

corresponding to the centralized controller as a reference.

When the active control system is in full-failure mode, a

remarkable reduction of the maximum inter-story drifts in

both buildings is achieved by the passive control system. In

case of semi-failure mode of the active control system, i.e.,

when one of the local active controllers fails, the building

that remains actively controlled is not affected by the failure;

moreover, the control forces in the working active controller

increase slightly and act through the linking elements to drive

the response of the failing building to a level that is clearly

below the level obtained by the pure passive control. In all the

cases, the results achieved by the decentralized overlapping

controller are similar to those obtained by the centralized

controller.

VI. CONCLUSIONS

A combination of active and passive control elements

have been used to design a decentralized control strategy

suitable for wireless implementation in large adjacent build-

ings. Numerical simulations of the vibrational response of

the system have been conducted, using the El Centro NS

1940 earthquake as ground acceleration. The simulation

results indicate that the decentralized active controller, de-

spite the decentralized design and the reduced exchange

of information, behaves practically the same as the overall

centralized active controller, and it is not affected by the

failure of the passive control system. When the active control

system is in full-failure mode, a remarkable reduction of the

maximum inter-story drifts in both buildings is achieved by

the passive control system. In case of semi-failure mode of

the active control system, that is, when one of the local active

controllers fails, the building that remains actively controlled

is not affected by the failure; moreover, the control forces

in the working active controller increase slightly and act

through the linking elements to drive the response of the

failing building to a level that is clearly below the level

obtained by the pure passive control.
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