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Abstract— An offline nonlinear model predictive control
(NMPC) approach for continuous time nonlinear systems sub-
ject to input and state constraints is presented. The approach
deals with nonlinear systems which can be represented by
polynomial parameter-varying systems. Since the applicability
of NMPC is often limited by the speed at which an optimization
problem can be solved online, we propose an NMPC scheme
with drastically reduced online computational burden. The
basic idea involves the offline computation of nested invariant
sets and associated feedback laws by solving a convex optimiza-
tion problem subject to sum of squares (SOS) constraints via
semidefinite programming (SDP). Online, a search algorithm is
executed to determine the feedback law suitable for the current
state. The resulting offline NMPC controller guarantees stability
and constraint satisfaction. Its applicability and effectiveness is
shown by means of simulation of an example system.

I. INTRODUCTION

Nonlinear model predictive control (NMPC) has been a

prominent subject of research in the last two decades. The

standard NMPC scheme is as follows: at each sampling

instant, an optimal control problem is solved online, based on

the current measurement of the system states, to determine

an optimal input trajectory. The first part of this trajectory

is applied to the system until the next sampling instant

when the procedure is repeated using an update of the state

measurement. Several finite horizon NMPC schemes with

guaranteed stability have been developed [1]–[3]. However,

first, these approaches may lead to hard to solve, non-convex

optimization problems and second, the solution is usually

an open-loop trajectory and not a state-feedback. Thus,

rather short sampling intervals are required to counteract

disturbances and/or model plant mismatch. This may lead to

computational issues when the optimization problem cannot

be solved fast enough. To overcome these problems, an

idea to perform a repeated online calculation of a state

feedback has been developed for linear systems [4] which

has been extended to Lur’e systems [5] and polynomial

control systems [6]. In [7]–[9], the basic idea of [4] is

modified in order to solve the optimization problem offline

to reduce online computational effort. The method is based

on the offline computation of nested invariant sets and

corresponding explicit control laws that are stored in a

lookup table. The online computation is then limited to

finding the smallest possible invariant set which contains
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the state at the current sampling instant, and to determine

the corresponding feedback matrix which defines the control

input. In [5], such an offline NMPC scheme has been derived

for a continuous-time setting. For polynomial control systems

as treated in [6], an offline NMPC approach is described

in [10], however in a discrete-time setting and resulting in a

non-convex optimization problem.

Polynomial control systems have received increasing atten-

tion since the development of the SOS relaxation [11]. SOS

techniques take advantage of the fact that SOS problems can

be formulated as a semidefinite program which allows for

a computationally efficient solution of the control problem.

Semidefinite Programs (SDPs) can be solved efficiently by

interior-point methods [12] with solvers such as SeDuMi [13]

after preprocessing with a parser such as YALMIP [14]. For

a recent overview on the SOS method and its applications

in control, see [15].

A particular application are polynomial approaches using

linear-like system representations which are employed (e.g.

[16], [17]) because they allow to prescribe a specific form

of Lyapunov functions and thus, to formulate a convex

optimization problem which would not be possible with

the direct system representation. In the presented work, we

extend these approaches by using polynomial parameter-

varying (PPV) systems.

PPV systems present an interesting extension of the well-

known concept of linear parameter-varying (LPV) systems.

LPV systems can result from modeling using Linear Dif-

ferential Inclusion (LDI) techniques [18], or Takagi-Sugeno

(T-S) fuzzy models [19]. The technique using a linear model

consequence has been used extensively to develop stability

criteria, as well as for controller synthesis and observer

design (e.g. [20], [21]).

Recently, a new approach to represent general input-affine

nonlinear systems was developed [22] that uses polynomial

model consequences instead of linear model consequences,

and then employs the SOS method. This approach leads to

polynomial parameter-varying systems. Usually, for a given

nonlinear system, LPV systems require more parameters to

represent the system dynamics in comparison to PPV systems

since the class of LPV models is embedded in the class of

PPV systems.

Systems with parameter-dependency have been investigated

thoroughly, especially in the context of robust control where

the parameter is regarded as an uncertainty, e.g. [23]–[25].

In some applications it is assumed that a bound on the

time derivative on the parameter is available [26] or that

the parameters are time-invariant [27]. The approach in
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this paper however differs from these results, because the

parameters are not really unknown but used to model non-

polynomial nonlinearities. This makes the parameters state-

dependent and thus time-variant. Although their variation

rates are known, these are not used since they may contain

non-polynomial nonlinearities and their incorporation would

increase the computational effort significantly. Using PPV

systems, the class of nonlinear systems to which the NMPC

approach [6] can be applied is enlarged. Additionally, a

computationally attractive offline formulation of the NMPC

approach is developed using the idea of nested invariant sets.

The remainder of the paper is organized as follows. Section II

introduces the notation, some definitions and useful lemmas

that are important for the subsequent discussion. In Sec-

tion III, the system description and the problem formulation

is presented. Section IV shows the main results with the

derivation of a stabilizing feedback control law which is then

extended to offline NMPC. A numerical example is given

in Section V, and the paper concludes with a summary in

Section VI.

II. PRELIMINARIES AND NOTATION

We call the set of all strictly positive numbers R++. The set

of symmetric matrices is denoted by Sn, symmetric matrices

which are positive (semi-)definite belong to the set Sn
++

(Sn
+). Furthermore, symmetric block matrices

[

A C
CT D

]

are

abbreviated by [ A C
∗ D ].

The set of polynomial n1 × n2-matrices is denoted by

R
n1×n2 [x]. We call a symmetric polynomial matrix P (x) ∈

Sm[x] ⊂ R
m×m[x] a sum of squares (briefly P (x) ∈

Σm[x]), if there exists a polynomial matrix Q(x) ∈
R

m×m1 [x] such that P (x) = QT (x)Q(x).
Lemma 1: (Putinar’s Positivstellensatz [28]) Let the do-

main D, defined by

D := {x ∈ R
n | hj(x) ≥ 0, hj ∈ R[x], j ∈ {1, . . . ,m}} ,

be a compact subset of R
n and P (x) ∈ Sn[x]. Then the

following statements are equivalent:

(i) P (x) ∈ Sn
++ for all x ∈ D.

(ii) P (x) = S0(x) +
∑m

j=1 Sj(x)hj(x) for some SOS

matrices Sj(x) ∈ Σn[x], j = 0, 1, . . . ,m.

(ii)⇒(i) is still true if the degree of Sj(x) is restricted.

Lemma 2: (cf. [29, Theorem 4.10]) Consider the nonlin-

ear control system ẋ = f(x)+g(x)u with the state feedback

u = u(x). Let V : D → R be a continuously differentiable

function such that

k1||x||22 ≤ V (x) ≤ k2||x||22,
∂V (x)

∂x
(f(x) + g(x)u(x)) ≤ −k3||x||22

for all x ∈ D, with k1, k2, k3 ∈ R++. Then, the controller

u(x) exponentially stabilizes the equilibrium x = 0 ∀x ∈ D.

Proposition 1: For α ∈ R++, V(α) := {x ∈ D | V (x) ≤
α} is an invariant set with respect to the dynamics of the

nonlinear control system with u = u(x) if Lemma 2 holds

and V(α) ∈ D, i.e. x(t0) ∈ V(α) ⇒ x(t) ∈ V(α) for all

t ≥ t0.

III. PROBLEM FORMULATION

Consider a general input-affine nonlinear system

ẋ = f(x) + g(x)u, (1)

where the state x evolves on a compact domain D ⊂ R
n

and the input is denoted by u ∈ R
nu . The functions f :

D → R
n and g : D → R

n×nu are nonlinear, continuous

and satisfy f(0) = 0. Nonlinear system (1) can be exactly

represented [30] by a parameter-varying polynomial system

of the form

ẋ = A(x, θ(x))Z(x) + B(x, θ(x))u (2a)

with a vector of polynomials Z(x) ∈ R
nZ [x] (nZ ≥ n)

and the state- and parameter-dependent system and input

matrices A(x, θ) ∈ R
n×nZ [x, θ] and B(x, θ) ∈ R

n×nu [x, θ].
Z(x) satisfies Z(0) = 0 iff x = 0. The function θ : R

n →
Γ ⊂ R

nθ is bounded and evolves continuously over time.

Since θ(x) is used to model non-polynomial nonlinearities,

its value can be safely assumed to be known online. However,

when formulating and solving SOS conditions, it is necessary

to regard θ(x) as an unknown parameter and only use poly-

nomial information about the domain Γ. In these instances,

the parameter is denoted by θ, otherwise by θ(x). Using

the parameters allows the application of SOS techniques to

non-polynomial nonlinear systems. The bounded domain Γ
is assumed to be a semi-algebraic set described by

Γ := {θ ∈ R
nθ |pk(θ) ≥ 0, k ∈ K} , (2b)

where pk(θ) ∈ R[θ]. Furthermore, we define M(x) ∈
R

nZ×n[x] as M(x) = ∂Z(x)
∂x

, and J = {j1, . . . , jm} (m <
nu) as the row indices of B(x, θ) whose corresponding rows

are equal to zero, which then also defines Aj(x, θ) as the j-th

row of A(x, θ) and x̃ = (xj1 , . . . , xjm
).

The control task is to stabilize the origin of system (1)

such that a set of combined state and input constraints are

satisfied while minimizing the following infinite horizon cost

functional with weighting matrices Q ∈ SnZ

++ and R ∈ Snu

++:

J(x(·), u(·)) =

∫ ∞

t0

ZT (x(τ))QZ(x(τ)) + uT (τ)Ru(τ)dτ.

(3)

The constraints are described by the sets Ci defined as

Ci =

{[

x
u

]

∈ R
n+nu

∣

∣

∣
|ci(x)Z(x) + di(x)u| ≤ 1

}

, (4)

where ci(x) ∈ R
1×nZ [x] and di(x) ∈ R

1×nu [x] for i ∈ I =
{1, . . . , r}. The overall set of all combined input and state

constraints is then given by the intersection of all constraint

sets, i.e. C = ∩i∈ICi. We can define a set of pure state

constraints which is given by Cs = ∩i∈Is
Ci with Is := {i ∈

I | di(x) = 0}. We assume that the compact set D is a semi-

algebraic set containing the set of pure state constraints Cs,

i.e. Cs ⊆ D, described by D = {x ∈ R
n|hD(x) ≥ 0}, with

hD(x) = 1 − ZT (x)P−1
0 Z(x) and P0 ∈ Sn

++.

To satisfy the control task, we apply a parameter-dependent

state feedback control law u(x) = K(x, θ(x))Z(x) which is

obtained via the solution of a convex optimization problem.
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IV. MAIN RESULTS

In the following, we first present the main theoretical result,

then regard a special case and lastly describe an offline

NMPC algorithm for PPV systems.

A. Time-invariant feedback control

We exploit the idea of invariant sets for the derivation of

a convex optimization problem for the computation of the

stabilizing feedback controller which guarantees constraint

satisfaction and minimizes an upper bound on the cost

functional (3).

Theorem 1: Consider system (1) in representation (2a)

subject to state and input constraints (4). For given ǫ and

state x(t0) at time t0, suppose the optimization problem

minimize α
α∈R++,X(x̃)∈S

nZ [x̃],Y (x,θ)∈R
nu×nZ [x,θ],

Sh
−2

(x,θ),Sh
−1

(x,θ)∈ΣnZ [x,θ], Sh0
(x,θ)∈Σ2nZ+nu [x,θ],

Shi
(x,θ)∈ΣnZ+1[x,θ]∀ i∈I, Sci,k

(x,θ)∈ΣnZ+1[x,θ]∀k∈K, i∈I,

Spk
(x,θ)∈Σ2nZ+nu [x,θ]∀ k∈K,

(5a)

subject to

X(x̃) − ǫInZ
− Sh−2

(x)hD(x) ∈ ΣnZ [x], (5b)

P0 − X(x̃) − Sh−1
(x)hD(x) ∈ ΣnZ [x], (5c)

[

1 ZT (x(t0))
∗ X(x̃(t0))

]

∈ SnZ+1
+ , (5d)

Φ(x, θ) − Υ(x, θ)

−Sh0
(x, θ)hD(x) ∈ Σ2nZ+nu [x, θ], (5e)

Ψi(x, θ) − Υc,i(x, θ)

−Shi
(x, θ)hD(x) ∈ ΣnZ+1[x, θ] ∀i ∈ I (5f)

is feasible with the substitutions Φ(x, θ), Ψi(x, θ), Υ(x, θ)
and Υc,i(x, θ) given in (9) below. Then, with

K(x, θ) := Y (x, θ)X−1(x̃) and P (x̃) := αX−1(x̃) (6)

the following properties hold:

(a) The feedback law

u(t) = K(x(t), θ(x(t)))Z(x(t)), t ≥ t0, (7)

guarantees exponential stability of (2a) by means of the

Lyapunov function V (x) = ZT (x)P (x̃)Z(x). Further,

the domain V(α) is an invariant set.

(b) The solution of the optimization problem (5) mini-

mizes the upper bound V (x(t0)) on the cost func-

tional (3) at time t0.

(c) The satisfaction of the combined state and input con-

straints (4) is guaranteed for all t ≥ t0.

Proof: The proof is divided into three parts establishing

the properties (a)-(c).

Part (a): The important steps are first applying Positivstellen-

satz (Lemma 1) to (5e) ensuring local positive definiteness on

the domain D×Γ (represented by hD and pk(θ)) 1, and in a

second step to exploit Schur complement of Φ(x, θ) (cf. [6]).

Then, we use the fact that if a matrix Λ ∈ Sn
+ ⇒ Z̃T ΛZ̃ ≥ 0,

1Using the slack variables Sh0
(x, θ) and Spk

(x, θ).

Φ(x, θ) :=

2

6

4

−∆(x, θ) − ∆T (x, θ) + Ω(x, θ) ∗ ∗

Q
1
2 X(x̃) αInZ

∗

R
1
2 Y (x, θ) 0 αInu

3

7

5

(9a)

with ∆(x, θ) = M(x)(A(x, θ)X(x̃) + B(x, θ)Y (x, θ)),

and Ω(x, θ) =
P

j∈J
∂X(x̃)

∂xj
(Aj(x, θ)Z(x)).

Ψi(x, θ) :=

»

1 ci(x)X(x̃) + di(x)Y (x, θ)
∗ X(x̃)

–

, (9b)

Υ(x, θ) :=

nθ
X

k=1

pk(θ)Spk
(x, θ), (9c)

Υc,i(x, θ) :=

nθ
X

k=1

pk(θ)Sci,k
(x, θ). (9d)

Φ̃(x) :=

2

6

6

4

Φ̃11(x) . . . Φ̃1nθ
(x)

.

.

.
. . .

.

.

.

Φ̃nθ1(x) . . . Φ̃nθnθ
(x)

3

7

7

5

(10a)

where

Φ̃kl(x) :=

2

4

−∆kl(x) − ∆T
kl

(x) + Ωk(x) X(x̃)Q
1
2 Y T

l
(x)R

1
2

∗ αInZ
0

∗ ∗ αInu

3

5

with ∆kl(x) = M(x)(Ak(x)X(x̃) + Bk(x)Yl(x)),

and Ωk(x) =
P

j∈J
∂X(x̃)

∂xj
(Ak,j(x)Z(x)).

Ψ̃i,k(x) :=

»

1 ci(x)X(x̃) + di(x)Yk(x)
∗ X(x̃)

–

. (10b)

and apply the coordinate transformation Z̃ =
√

α−1PZ with

the substitutions from (6). This implies

V̇ (x) ≤ −ZT (x)(Q + KT (x)RK(x))Z(x)∀x ∈ D, (8)

and thus, guarantees exponential stability.

Part (b): Integrating (8) from τ = t0 to τ → ∞ with the

stabilizing feedback u(x, θ) = K(x, θ)Z(x) yields

V (x(t0)) ≥
∫ ∞

t0

ZT (x(τ))QZ(x(τ)) + uT (τ)Ru(τ)dτ.

Inequality (5d) implies α ≥ V (x(t0)). Thus, α gives an

upper bound on the cost functional. Furthermore, by propo-

sition 1, V(α) is an invariant set.

Part (c) is omitted due to space limitations. The basic idea is

to use condition (5f) to show that the computed invariant

set lies inside the set of state and input constraints. The

techniques used in the derivation are again Positivstellensatz

and Schur complement (cf. Part (a)).

For more insight on this proof and the omitted parts, see [6]

where a similar proof is presented.

Notice that the state-dependency of X(x̃) and thus of P (x̃)
is restricted to the states in x̃ in order to prevent non-convex

conditions.

B. Exploiting a special case

Similarly to LPV systems [18] and T-S fuzzy systems [19],

PPV systems can sometimes be designed (e.g. following [22]
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or [30]) in such a way that the system matrices vary inside

a convex polytope Ξ
[

A(x, θ) B(x, θ)
]

∈ Ξ,

which is defined by the convex hull of the nθ local vertex

matrices [Ak(x), Bk(x)], k = 1, . . . nθ, i.e.

Ξ := conv
{[

A1(x) B1(x)
]

, . . . ,
[

Anθ
(x) Bnθ

(x)
]}

.

Thus, the system matrices in (2) take the form

A(x, θ) =

nθ
∑

k=1

θkAk(x), (11a)

B(x, θ) =

nθ
∑

k=1

θkBk(x), (11b)

where Ak(x) ∈ R
n×nZ [x] and Bk(x) ∈ R

n×nu [x]. In this

case, the set (2b) is realized by the standard (nθ − 1)-simplex

Γ =

{

θ ∈ R
nθ

∣

∣

∣

∣

∣

nθ
∑

k=1

θi = 1 , 0 ≤ θk ≤ 1

}

. (11c)

Finally, using

Y (x, θ) :=

nθ
∑

k=1

θkYk(x) (11d)

with Yk(x) ∈ R
nu×nZ [x] (k ∈ K = {1, ..., nθ}) the

expressions (9a) and (9b) take the specific form2

Φ(x, θ) = (θ ⊗ I2nZ+nu
)T Φ̃(x)(θ ⊗ I2nZ+nu

), (12a)

Ψ(x, θ) =

nθ
∑

k=1

θkΨ̃i,k(x), (12b)

where Φ̃(x) and Ψ̃k,i(x) are given in (10). Naturally, it is

possible to use these substitutions in the conditions (5e)

and (5f) in this form but this still requires the use of slack

variables which depend not only on x but also on θ. However,

since (12a) and (12b) are homogeneous forms in θ of second

respectively first order, there are possibilities to formulate

computationally more attractive conditions being sufficient

conditions to guarantee (5e) and (5f). In the following, we

want to briefly mention some of the sufficient conditions

known in the literature.

We start with the easier expression (12b) which appears in

condition (5f). As (12b) is linear, and thus convex in θ which

itself is constrained to lie in the convex polytope (11c),

checking (5f) for all θ ∈ Γ can be reduced to checking the

nθ extreme points Ψ̃i,k(x) (k ∈ K).

Exploiting the specific form (12a) to guarantee (5e) is a little

bit more involved as (12a) is not necessarily convex in θ. This

has led to various conditions differing in complexity on the

one hand and loss of exactness on the other hand:

• Simple blockwise checking (cf. [31]):

Φ̃kl + Φ̃lk − Sh0,kl
(x)hD(x) ∈ Σ2nZ+nu [x]

for all k ∈ K and all strictly positive l ≤ k.

2
⊗ denotes the Kronecker product.

• A series of relaxations using or based on the matrix

version of Polya’s theorem (see [32] for an overview)

which can be extended from LMI to SOS conditions.

As an example, we present [32, Theorem 3] (also in

[21]) adapted to SOS conditions with the auxiliary

matrix Π(x) ∈ Σnθ(2nZ+nu)[x]:

Φkl + Φlk − Πkl − Πlk − Sh0,kl
hD ∈ Σ2nZ+nu [x],

for all k ∈ K and all strictly positive l ≤ k (the block

structure of Φ̃ given in (12a) also applies to Π).

C. Offline NMPC

The computation of a feedback control law instead of an

open-loop input trajectory in Theorem 1 allows to react

to disturbances and/or model plant mismatch. However, by

being forced to obey the parameterized feedback law (7)

instead of any open-loop input trajectory, the input is strongly

restrained. This may result in conservative control inputs.

To overcome this restriction, the results from Theorem 1 are

employed in combination with an offline NMPC strategy to

obtain the algorithm below. In the following, the index i
describes the association of matrices, optimization variables,

functions etc. with the i-th algorithm step. The user-selected

number of nested invariant sets is denoted by S, with a higher

number leading to better performance at the cost of a larger

lookup table which needs to be stored.

Algorithm 1: (Offline NMPC)

Offline: Consider system (2a) subject to the state and input

constraints (4). Given an initial feasible state vector x1,

generate a lookup table of αi, Pi(x̃), Ki(x, θ) (i = 1, . . . , S)

in the following way. Set i := 1.

1) Compute and store αi, Pi(x̃), Ki(x, θ) using Theo-

rem 1, and if i > 1 with the additional constraint

Xi−1(x̃) − Xi(x̃) ∈ ΣnZ [x]. (13)

2) If i < S, choose a new state vector xi+1 ∈ int(Vi(αi)),
where int(Vi(αi)) is the interior of the invariant set

Vi(αi) = {x ∈ D|ZT (x)Pi(x̃)Z(x) ≤ αi}. Then, set

i := i + 1 and go back to step 1.

Online: Consider a state x(t0) at time t0 which lies inside

V1(α1). Perform the following steps.

1) Maximize i0 (i0 ∈ [1, S]) such that

x(t0) ∈ Vi0(αi0 ).

Set i := i0. If i0 = S, go to step 4, else to step 3.

2) As soon as Z(x(t))T Pi+1(x̃(t))Z(x(t)) ≤ αi, set i :=
i+1. If i = S, go to step 4, else continue with step 3.

3) Apply the control input u(x) = Ki(x, θ(x))Z(x) and

go back to step 2.

4) Apply the control input u(x) = KS(x, θ(x))Z(x) for

all times.

Theorem 2: Consider the system (1) in the representation

(2a) subject to the state and input constraints (4). For a

state x(t0) at time t0 satisfying x(t0) ∈ V(α1), the offline

NMPC Algorithm 1 exponentially stabilizes the system and

guarantees constraint satisfaction.
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Proof: From the additional constraint (13), we get

1 − ZT (x)
Pi−1(x̃)

αi−1
Z(x) ≥ 1 − Z(x)T Pi(x̃)

αi

Z(x)

which means that Vi(αi) ⊂ Vi−1(αi−1). This ensures that

there exists a unique i0 such that x(t0) ∈ Vi0(αi0 ).
Convergence: With the additional constraint, the closed-loop

system becomes

ẋ =















(A + BKi)Z if x(t) ∈ Vi(αi)
x(t) /∈ Vi+1(αi+1),
i 6= S,

(A + BKS)Z if x(t) ∈ VS(αS).

Since V̇i < −ki||x||22 (ki > 0), the control law Ki will drive

the state x(t) satisfying

x(t) ∈ Vi(αi), x(t) /∈ Vi+1(αi+1), i < S

into the next invariant set Vi+1(αi+1) in finite time. By

induction, the state converges towards VS(αS) where it is

driven to the origin by KS .

Stability: Consider the two innermost sets where V̇S < 0 and

V̇S−1 < 0 respectively. If

∃ δS−1 > 0 such that min
x∈ρS

(δS−1VS−1 − VS) > 0

is true, where ρS = {x ∈ D|αS − ZT (x)PS(x̃)Z(x) = 0},

a decreasing Lyapunov function can be constructed. Since

∃ ᾱS−1 > 0 such that VS−1(ᾱS−1) ⊆ VS(αS)

where VS−1(ᾱS−1) = {x ∈ D|ZT (x)PS−1(x̃)Z(x) ≤
ᾱS−1}, it follows that δS−1 > αS

ᾱS−1
. Recursively, a δi can

be found for every transition which results in the following

Lyapunov function

V (x) =















δiZ
T (x)Pi(x̃)Z(x) if x(t) ∈ V(αi)

x(t) /∈ V(αi+1),
i 6= S,

Z(x)T PS(x̃)Z(x) if x(t) ∈ V(αS).

which is decreasing because all the Vi are decreasing.

Constraint satisfaction: When x(t) ∈ Vi(αi), the associated

active control law Ki guarantees constraint satisfaction.

Even though the Vi are all decreasing, stability is not obvious

here since the simple combination of the Vi might increase

at the transitions from one invariant set into the next. The

existence of scaling factors at the transition make sure that

there always exists a strictly decreasing Lyapunov function.

Remark 1: The algorithm has two important properties:

• The convex optimization problem (5) with additional

constraint (13) is an SDP, if the degrees of all polyno-

mial variables are predetermined. In addition, feasibility

for i = 1 recursively guarantees feasibility for all i > 1.

• For every xi, the solution to the optimization problem

(5) minimizes the upper bound Vi(xi) on the cost

functional (3).

Remark 2: Because of condition (5d) in Theorem 1, the

invariant sets and feedback laws depend on the initial con-

dition and thus on the set of points chosen in the offline

portion of the algorithm. Hence, the selection of points has

an influence on the performance of the approach.

Obviously, Theorem 2 can be applied to polynomial systems

directly without using the parameter-varying representation.

In that case nθ = 1 and the conditions in Theorem 1 do not

depend on θ. Theorem 1 is then identical to Theorem 1 in [6],

and Theorem 2 is the corresponding off-line formulation.

Accordingly, using Theorem 1 and the online formulation

of [6], we can easily achieve an online NMPC approach for

PPV systems.

V. NUMERICAL EXAMPLE

As an illustration of the applicability and effectiveness of the

presented approach, a numerical example is considered:

ẋ1 = x2
2 + u, (14a)

ẋ2 = − tan(x1) + x2. (14b)

When this continuous system is discretized using Euler

method with step size 1, it results in the system presented

in [33]. In [30] a systematic and powerful method is pre-

sented to find a polynomial parameter-varying representation

which extends the well-known sector-nonlinearity approach.

This way, the following exact representation of (15) in the

domain D := {x ∈ R
2 | − π

4 ≤ x1 ≤ π
4 } can be found

A1(x) =

[

0 x2

−1 − 0.443x2
1 1

]

,

A2(x) =

[

0 x2

−1 − 1
3x2

1 1

]

, Z(x) = x (15)

B1(x) =

[

1
0

]

, B2(x) = B1(x),

with the state-dependent parameters

θ1(x) =
3 tan(x1) − 3x1 − x3

1

3x3
1(0.443 − 1

3 )
, θ2(x) = 1 − θ1(x),

where θ(x) evolves in the standard 1-simplex for all x ∈ D.

The state constraints are |x1| ≤ π
4 , |x2| ≤ π

4 , and the input

is bounded by |u| ≤ 2. The lookup-table for the offline

approach is constructed by using ten states along the x1-axis

between x1 = 0.5 and x1 = 0.05, where the weighting

matrices are chosen to be Q = 100I2 and R = 1. Further,

the maximal degree of all polynomial variables (including

slack variables) is set to two. Finally, the initial condition

for the simulation run is x(0) =
[

−0.55 −0.05
]T

.

To show the effectiveness of the NMPC approach in contrast

to just using Theorem 1, the system states and control inputs

are compared in Figure 1. The NMPC approach leads to

much faster convergence, and the value of the cost functional

is reduced by roughly 30%.

VI. CONCLUSION

This paper presents an offline NMPC approach for

continuous-time nonlinear systems. The class of systems

to which the controller can be applied is enlarged from

polynomial systems to general nonlinear systems which can

be represented by PPV systems. Since no online optimization
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Fig. 1. (a) State trajectories x1 for Theorem 2 (black, solid) and Theorem 1
(gray, dashed). (b) State trajectories x2. (c) Control inputs u.

is necessary, the presented offline NMPC approach reduces

online computational effort significantly compared to an

online approach which was presented in [6], while sacrificing

optimality. The derived control law guarantees stability and

constraint satisfaction. Both applicability and effectiveness

of the presented results have been shown through numerical

simulation of an example system for which the NMPC

approach reduced the cost significantly compared to the use

of a time-invariant feedback matrix.
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Heidelberg, 2009, vol. 384, pp. 491–499.

[11] P. A. Parillo, “Structured Semidefinite Programs and Semialgebraic
Geometry Methods in Robustness and Optimization,” Ph.D. disserta-
tion, California Institute of Technology, 2000.

[12] S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[13] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones,” Optimization Methods and Software, vol. 11,
no. 1, pp. 625–653, 1999.
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