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Abstract— This article deals with the cost optimal commit-
ment of power systems. System stability is often only considered
after solving the commitment problem. We show by example
that a cost optimization may result in a mode of operation
that, while economically optimal, is unstable or has otherwise
unacceptable dynamics. As a remedy, we propose to use the
so-called normal vector method, which has been developed for
the optimization of nonlinear dynamical systems with stability
boundaries and uncertain parameters. We apply the method
to a small sample power grid, where the optimization goal is
to minimize the energy production costs for a given power
consumption.

I. INTRODUCTION

Cost-optimization of power system operation is usually

performed without consideration of stability of the underly-

ing dynamical system [1], [2]. On the other hand it is well-

known that power plants stability and grid stability are not

trivial [3], [4], [5]. We present an optimization method based

on nonlinear programming and bifurcation theory that takes

stability boundaries into account during the optimization

process. The method, which is usually referred to as the

normal vector method, has originally been developed for

the steady state optimization of continuous-time nonlinear

dynamical systems with stability boundaries and uncertain

parameters [6], [7]. It has recently been extended to the

steady state optimization of discrete-time systems and the

certain types of transient optimizations of continuous-time

systems [8]. In the present paper the method is used to

state stability constraints in mixed-integer (or mixed-logic)

nonlinear programs for the first time to the knowledge of the

authors. Formally, the system class reads

ẋ = f (x,α,s), (1)

where x ∈ R
nx , α ∈ R

nα , and s ∈ {0,1} denote state vari-

ables, system parameters, and logic variables, respectively.

Furthermore, f is assumed to be sufficiently smooth.

The paper is organized as follows. In Sect. II we introduce

the small sample grid and the optimization task. Section III

explains the normal vector method, which is applied to the

sample grid in Sect. IV. Conclusions are given in Sect. V.

II. DYNAMIC MODEL OF A SIMPLE SAMPLE

POWER SYSTEM

Consider the simple grid shown in Fig. 1, which is adopted

from [9]. The sample island grid consists of three power

plants and three power consumers that are connected in a

ring structure. Power plant 1 is fueled by coal, plant 2 is a
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river hydro station, and plant 3 is driven by a gas turbine.

All power plants can be deenergized in the model by opening

the respective grid breaker si. Whenever the grid breaker si

is opened, power plant i does not contribute to the operating

cost of the grid. Power is assumed to be distributed symmet-

rically to the three phases, which implies that the grid can be

reduced to a one wire representation. Transmission lines are

modeled as constant impedances (z4, . . . ,z9). The three loads

are also modeled by impedances (za,zb,zc) that represent

the apparent power S of the current consumption. Two

scenarios with different loads are examined. These scenarios

are summarized in Tab. III in the appendix. Transformer and
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Fig. 1. Circuit diagram of the sample grid

generator reactances of each generator node are represented

by impedances z1, z2, and z3. The optimization task is to

minimize the energy production cost. We assume a propor-

tional relationship between the mechanical shaft power and

the energy production cost of each power plant. Taking the

grid breaker positions si, i = 1, . . . ,3 into account, the cost

function reads

C(P0,s) = ∑
i

si · ci ·P0i in
EUR

h
. (2)

We note that a more elaborate cost function would have to

take load-dependent efficiencies and fuel-independent costs

into account. Here we prefer a simple cost function, however,

because it results in a more transparent exposition of the

proposed robust optimization method. The costs coefficients

c1 = 33 EUR
MWh

, c2 = 15 EUR
MWh

, and c3 = 108 EUR
MWh

are adopted

from [10].
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The dynamic model of the grid is based on the equilibrium

of electrical active power and the mechanical shaft power of

each generator, where the classic equations of motion are

applied [9], [11], [12]. The model equations read

dxi

dt
= x3+i − siω0, (3a)

dx3+i

dt
=

Sn

Θi · x3+i

[Pmi −Pei] , (3b)

where index i=1,. . . ,3, x1,x2,x3 are the rotor angles of the

generators, x4,x5,x6 are the angular velocities of the rotors,

ω0 is the nominal grid frequency, Θi is the inertia of the i-th

drive shaft, Pmi is the i-th mechanical turbine power, and Pei

is the active power of the i-th generator. If damping of the

damper windings is to be taken into account, each of the

last three equations in (3) must be extended by a damping

power term Pdi(x4,x5,x6). The electrical active powers can

be calculated from

Pei = |ui|2 ·ℜ(Y ⋆
ii (s))+

ng

∑
k=1, k 6=i

|ui| · |uk|

·
[

ℑ(Y ⋆
ik(s)) · sin(xi − xk)+ℜ(Y⋆

ik(s)) · cos(xi − xk)
]

, (4)

where ui denotes the generator node voltages, ng is the

number of generators (here ng = 3), and Y ⋆
ik denotes the i-

th row and the k-th column of the reduced grid admittance

matrix Y ⋆ of the grid shown in Fig. 1. The matrix Y ⋆ is

defined in Eq. (5) below. It depends on the state of the

switches s = (s1,s2,s3)
T , si ∈ {0,1}.

For the case with three switches treated here, there exist

23 = 8 different admittance matrices. Note that the number

of admittance matrices grows exponentially in the number of

switches. The admittance matrix of the grid, which depends

on s, reads

Y (s) =















s1y1 0 0 −s1y1 0
0 s2y2 0 0 0
0 0 s3y3 0 0

−s1y1 0 0 s1y1 + y7 + y8 −y8

0 0 0 −y8 y8 + y9 + ya

0 0 0 −y7 0
0 −s2y2 0 0 −y9

0 0 0 0 0
0 0 −s3y3 0 0

0 0 0 0
0 −s2y2 0 0
0 0 0 −s3y3

−y7 0 0 0
0 −y9 0 0

y6 + y7 + yb 0 0 −y6

0 s2y2 + y4 + y9 −y4 0
0 −y4 y4 + y5 + yc −y5

−y6 0 −y5 s3y3 + y5 + y6















=

[
Y11 Y12

Y21 Y22

]

,

where the block matrix stated in the last equations is

introduced for ease of reference. Admittances y j = 1/z j,

where j ∈ {1, . . . ,9} ∪ {a,b,c}, can be obtained from the

impedances z j given in Tab. III. The dynamic model uses an

admittance matrix

Y ⋆ = Y11 −Y12Y
−1
22 Y21 (5)

that is reduced to the generator nodes. The effect of the

grid breakers si on the grid admittances is illustrated by two

examples. If all breakers are closed, i.e. s = (1,1,1), the

reduced admittance matrix for load case 1 reads

Y ⋆ =

[
0.2875−2.991 j 0.4533+1.471 j 0.3286+0.967 j
0.4533+1.471 j 0.9691−4.226 j 0.6869+1.658 j
0.3286+0.967 j 0.6869+1.658 j 0.6607−3.499 j

]

.

In contrast, Y ⋆ = diag(1.4396−2.5652 j,0,0) if only the coal

power plant is delivering energy.

The grid must include a frequency controller for stabi-

lization. We assume that frequency control is performed

by one of the power plants. We do not choose this power

plant a priori, however, but the task of frequency control is

assigned to one of the plants by the optimization problem.

Frequency control is achieved by delivering more or less

energy by increasing respectively decreasing the mechanical

shaft power Pmi:

Pmi = P0i +

[

KR(ω0 −ωi)+KI

∫

(ω0 −ωi)dt

]

︸ ︷︷ ︸

controller equation (PI)

·sci, (6)

where the rotor speed is denoted by ωi = xng+i, the propor-

tional controller gain is KR and the integral controller gain

is KI .

We introduce a Boolean variable sci ∈ {0,1} to model the

choice of the frequency controller, where sci = 1 and sc j = 0

for j 6= i, if the frequency control is assigned to the i-th

power plant. Specifically, we choose the values stated in Tab.

I, which are assumed to be given by the network operator.

Table I can equivalently be stated as the logic constraints

TABLE I

CHOICE OF THE SPEED CONTROLLING POWER PLANT

s1 s2 s3 sc1 sc2 sc3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 0

s1 s2 s3 sc1 sc2 sc3

1 0 0 1 0 0
1 0 1 0 0 1
1 1 0 0 1 0
1 1 1 0 1 0

sc1 = s1s2s3, sc2 = s2, sc3 = s2s3. (7)

Two optimization scenarios are considered that differ with

respect to the power consumption. In the first scenario the

consumption is so high that all power plants are forced to

be run to satisfy the demands. In the second scenario less

power is consumed. Therefore, there exists the possibility to

provide the power by the operation of only two of the three

power plants. The power consumption is stated in Tab. II for

the two scenarios.

The optimization task amounts to finding an energy mix

P0i, i = 1,2,3, that results in minimum electricity production

costs. Since the Boolean variables si, i = 1,2,3, are free

variables of the optimization, the optimization algorithm

may choose to deenergize some power plants by setting

some si to zero. Stability and robustness are enforced in the

optimization as explained in the subsequent section.
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III. STEADY STATE OPTIMIZATION WITH CONSTRAINTS

FOR ROBUST LOCAL ASYMPTOTIC STABILITY

This section introduces the so-called normal vector method

and normal vector constraints. These constraints can, among

other applications, be used to enforce local asymptotic stabil-

ity of optimal solutions of nonlinear steady state optimization

problems. Moreover, the normal vector constraints ensure

robustness in the sense that the optimized nonlinear system

remains locally asymptotically stable in a finite (non-local)

vicinity of the optimal point. This second property of the

method can conveniently be used in the optimization of

systems with uncertain design or operating parameters as

detailed below. Originally, the normal vector method has

been developed for the systems with continuous parameters

[6], [7], [8], [13]. In the present paper the normal vector

method is applied to a dynamical system with Boolean

variables (si ∈ {0,1}) for the first time to the knowledge

of the authors.

We introduce the proposed method for robust optimization

in three steps for ease of presentation: (1) optimization

without normal vector constraints and fixed grid structure,

(2) optimization with normal vector constraints and fixed grid

structure, and (3) optimization with normal vector constraints

and free grid structure. In cases (1) and (2) the grid structure

is fixed by preassigning the values of si ∈ {0,1}, i = 1,2,3.

In case (3), in contrast, the si are subject to optimization and

thus are chosen by the optimization algorithm. We stress

that steps (1) and (2) are only introduced to simplify the

exposition of case (3), which is the problem type we are

actually interested in.

a) Optimization without normal vector constraints and

fixed grid structure: Assume that the positions of the

switches shown in Fig. 1 are fixed. For example, all switches

si may be closed to enforce operation of all plants, i.e.

s = (1,1,1)T . In such a case, optimizing the steady state

operating cost of the grid amounts to solving a constrained

nonlinear program (NLP) of the form

min
P
(0)
0

C(P
(0)
0 ,s)

s.t. 0 = f (x(0),P
(0)
0 ,s), (8a)

0 ≤ Pi,max −P
(0)
0i for i = 1,2,3, (8b)

0 =
3

∑
i=1

P
(0)
0i − ∑

i=a,b,c

ℜ(yi), (8c)

where C(P
(0)
m ,s) is the cost function (2). The set of equations

(8a) restricts solutions to steady states of model (3). Note that

the frequency control for s = (1,1,1)T is performed by the

hydro power plant and sc = (0,1,0)T is substituted in (6).

Constraints (8b) bound P0i, i = 1,2,3 from above. The last

constraint (8c) ensures that the total generated power equals

the total consumed power.

It is well-known that naively solving the NLP (8) may

result in a steady state that is cost optimal but unstable [6].

The normal vector constraints introduced in the next section

can be used to restrict the optimization to stable steady states.

stable and 
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infeasible
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01
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P

feasibility 
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boundaries

infeasible

optimal 
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Fig. 2. Critical boundaries of system (3) where s = (1,1,1)T . Powers
are given in per unit values, where 1unit = 100MW. The optimal point is
discussed in Sect. IV.

b) Optimization with normal vector constraints and

fixed grid structure: In order to ensure the stability of the

optimal solution (x(0),P
(0)
0 ,s) of the NLP (8), additional

constraints are necessary that guarantee the real parts of

all eigenvalues λ j of the Jacobian fx(x
(0),P

(0)
0 ,s) to be

negative. Since finding explicit expressions for eigenvalues

λ j of the Jacobian of a nonlinear system is tedious if not

impossible, we use implicit constraints that are based on

ideas from applied bifurcation theory. Due to their geometric

interpretation discussed below, these constraints are referred

to as normal vector constraints [6] (see [14] for the original

idea of the normal vector to bifurcation boundaries).

Figure 2 shows critical boundaries in the parameter space

(P01,P02) for the system (3) for s = (1,1,1)T . Two feasibility

boundaries and one stability boundary are shown that sepa-

rate feasible from infeasible and stable from unstable regions,

respectively. The linear feasibility boundary results from the

constraint on the maximal size of the hydro turbine P02 ≤
200MW (see Tab. IV). The nonlinear feasibility boundary

originates form the upper bound on the difference in rotor

angles (90◦) of the generators. The region that results due to

the existence of feasibility and stability boundaries is shaded

in Fig. 2. Critical boundaries like those in Fig. 2 can be

obtained, for example, with the freely available MATLAB

toolbox MATCONT [15]. The results obtained from this

toolbox can be also used for initialization of the optimal

problems discussed below.

We are interested in identifying the optimal steady state of

operation in the desired stable and feasible region. Beyond

guaranteeing stability of the optimal point we ensure robust-

ness by, loosely speaking, putting a safety region around the

optimal point. This is illustrated in Fig. 3. The square in

Fig. 3 corresponds to the robustness region

P
(0)
0i ∈ [P

(0)
0i −∆P0i,P

(0)
0i +∆P0i] for i = {1,2}, (9)

or equivalently,

P
(0)
0i

∆P0i

∈ [
P
(0)
0i

∆P0i

− 1,
P
(0)
0i

∆P0i

+ 1] for i = {1,2}, (10)
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Fig. 3. Critical boundaries of system (3) where s = (1,1,1)T in the scaled
parameter space (∆P01 = ∆P02 = 0.25).

where the scaled parameters P̄
(0)
0i := P

(0)
0i /∆P0i and P̄

(c)
0i :=

P
(c)
0i /∆P0i are introduced merely for convenience. The es-

sential idea of the normal vector method is to force this

robustness region into the feasible and stable area as sketched

in Fig. 3. In doing so we guarantee that there exists a locally

asymptotically stable steady state of the nonlinear system for

any value of P0i, i = 1,2 within the robustness region. In this

sense stability can be guaranteed, even though some or all

system parameters are uncertain.

The constraint for robust stability sketched in Fig. 3 can

be stated formally by imposing the additional constraints

P̄
(0)
0 = P̄

(c)
0 + d

NV

‖NV‖ , d ≥ dmin, (11)

where ‖ · ‖ denotes Euclidean norm and the normal vector

NV defines the ray that passes through the candidate optimal

point and that is normal to the closest point on the critical

(stability or feasibility) boundary. In Fig. 3 the value of dmin

must be set to

dmin = rrob :=
√

2, (12)

where rrob denotes the radius of the circle which encloses the

uncertainty box (10) of side length 2. While the idea of the

normal vector constraint is illustrated in two dimensions, it

applies to the general case of nα uncertain parameters. In this

case Eq. (10) is replaced by an nα -dimensional hypersquare

that is enclosed by an nα -dimensional ball of radius rrob =√
nα .

Augmenting the NLP (8) by the normal vector constraints

results in the following NLP, in which we still assume s to

be fixed.

min
P
(0)
0

C(P
(0)
0 ,s)

s.t. Constraints (8a) – (8c), (13a)

0 = Gk(x̄
(c)
k , x̃

(c)
k , P̄

(c)
0,k ,NVk,s) ∀k ∈ K, (13b)

0 = P̄
(c)
0,k − P̄

(0)
0 + dk

NVk

‖NVk‖
∀k ∈ K, (13c)

0 ≤ dk − rrob ∀k ∈ K. (13d)

The first part of NLP (13) is the same as NLP (8). The set of

equations (13b) describes the critical boundary k ∈ K and its

normal vector NVk to it, where we assume that K such critical

boundaries have to be taken into account. Furthermore,

x̃k denotes auxiliary variables, and P̄
(c)
0,k is the point on

the critical boundary k that is connected to the candidate

optimal point P̄0. For the full mathematical representation

and derivation of set Gk we refer the reader to [6]. The

last two constraints(13c) and (13d) assure that the resulting

optimal point is far enough from the critical boundary k,

i.e. distance dk is larger or equal to radius rrob =
√

2. If this

inequality constraints becomes active, i.e. dk = rrob, the circle

around the uncertainty region touches the critical boundary

k. This situation is shown in Fig. 3.

We stress that the location of the critical boundaries need

not be known before solving the NLP (13), but can be

detected automatically [7].

c) Optimization with normal vector constraints and free

grid structure: Finally, we assume that the structure of the

grid is not known a priori, i.e., the si are no longer fixed, but

become optimization variables. Consequently, the NLPs (8)

and (13) become nonlinear programs with integer, or binary,

variables. The NLP (8) is replaced by

min
P
(0)
0 ,s(0)

C(P
(0)
0 ,s(0))

s.t. 0 = f (x(0),P
(0)
0 ,s(0)), (14a)

Logic constraints (7), (14b)

0 ≤ Pi,max −P
(0)
0i for i = 1,2,3, (14c)

0 =
3

∑
i=1

P
(0)
0i − ∑

i=a,b,c

ℜ(yi), (14d)

Similarly, the NLP (13) is replaced by

min
P
(0)
0 ,s(0)

C(P
(0)
0 ,s(0))

s.t. Constraints (14a) – (14d) , (15a)

0 = Gk(x̄
(c)
k , x̃

(c)
k , P̄

(c)
0,k ,NVk,s

(0)) ∀k ∈ K,(15b)

0 = P̄
(c)
0,k − P̄

(0)
0 + dk

NVk

‖NVk‖
∀k ∈ K, (15c)

0 ≤ dk − rrob ∀k ∈ K. (15d)

We solve problems of the form (14) and (15) with the

commercial solver SBB in GAMS [16].

IV. ROBUST OPTIMIZATION

In this section we optimize the two scenarios introduced

in Sect. II by applying the method from Sect. III. The goal

is to find optimal steady states that are stable and robust

by solving problems of the form (15) with normal vector

constraints. We also solve optimization problems without

normal vector constraints of the form (14), however. The

latter results are calculated for reference. In particular, these

reference results show that the normal vector constraints are

necessary as will become clear further below.
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Fig. 5. Optimal point obtained with the normal vector constraints and free
grid structure for the first scenario.

d) Optimization of scenario 1: Figure 2 shows the opti-

mal point that results from solving (15), i.e. the optimization

without constraints on dynamics and free grid structure. At

this optimal point all switches are closed (s= (1,1,1)T ). The

plants are running at

P
(0)
01 = 312MW, P

(0)
02 = 200MW, P

(0)
03 = 90MW, (16)

and the cost function (2) evaluates to 230.16 EUR
MWh

at this

point. Figure 2 shows that the optimal point (16) is critically

feasible, since it lies on the intersection of two feasibility

boundaries. Any increase of P01 or P02 into the infeasible

region therefore results in a loss of synchronization. If the

power delivered by the turbine of G1 is increased by 10%,

for example, no steady state of operation exists anymore.

This is illustrated in Fig. 4 (a). Clearly, the departure from

ω1 = 50Hz shown in this figure is inacceptable and must be

avoided to guarantee stable plant and grid operation.

In the remainder of this section we use the normal vector

method to find a robust optimal point. We assume that

P0i, i = 1,2 may vary by 10% around the reference values

(18) and require all steady states that may result within

this uncertainty to be feasible and locally asymptotically

stable. Specifically, we solve the optimization problem (15)

with normal vector constraints to both feasibility boundaries

depicted in Fig. 2 and the uncertainties ∆P01 = 31.2MW

and ∆P02 = 20MW. Figure 5 shows the resulting optimal

point which corresponds to the grid structure s = (1,1,1)T

stable and feasible

02
P

optimal 

point

optimal pointstable and feasible

02
P

[ ]

uncertainty interval

(a)

(b)

Fig. 6. Optimal point obtained without (top Fig. (a)) and with (bottom
Fig. (b)) normal vector method with free grid structure for the second
scenario.

with generated powers P
(0)
01 = 266MW, P

(0)
02 = 172MW, and

P
(0)
03 = 164MW. The cost function (2) evaluates to 290.7 EUR

MWh

at this point. This value is about 25% larger than the cost at

the critically feasible point (16). Essentially, this increase in

cost is the price to be paid for robust operation.

Figure 4 (b) illustrates the robustness of the optimal point

obtained with the normal vector constraints. In contrast to the

unacceptable behavior shown in Fig. 4 (a), the step response

remains well below 1Hz deviation for the robust optimal

point.

e) Optimization of scenario 2: For the second scenario

we proceed in the same way as for scenario 1. The op-

timization without constraints on the dynamics, which is

again carried out for reference, results in an optimal point

of operation that is not robust. More precisely, solving the

optimization problem (14) without constraints on dynamics

and free grid structure results in the optimal point s =
(1,1,0)T with

P
(0)
01 = 107MW, P

(0)
02 = 200MW, (17)

4 where the cost function evaluates to 65.31 EUR
MWh

. As op-

posed to the result for scenario 1 switch s3 is open in this

case, thus the gas turbine is not operating (P
(0)
03 = 0MW).

The optimal point (17) is illustrated in Fig. 6 (a). Since

only two plants are present, and since the sum of generated

powers is fixed, a one-dimensional figure results. P01 can be

calculated from P
(0)
01 = 307MW−P

(0)
02 −P

(0)
03 , where P

(0)
03 =

0MW. Just as for scenario 1 the optimal point is stable but

critically feasible in that P02 attains a value on the boundary

of the feasible region 14MW ≤ P02 ≤ 200MW.

In order to find a robust optimal point we optimize

the scenario with normal vector constraints. The robustness

region is the trivial interval [P
(0)
02 −∆P02,P

(0)
02 +∆P02] in this

case. Just as in scenario 1 we set ∆P02 to 10% of its value at

the reference optimal point obtained without normal vectors

(17), which gives ∆P02 = 20MW. In this trivial case with

only one uncertain parameter, the normal vector distance

constraint (11) reads

P̄
(0)
02 = P̄

(c)
02 − d, d ≥ 1, (18)

which is equivalent to the simple linear constraint P
(0)
02 ≤

P
(c)
02 −∆P02, i.e. P

(0)
02 ≤ 180MW.
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Figure 6 (b) shows the result of the optimization with

the normal vector constraints (18). The optimal point is

given by P
(0)
01 = 127MW, P

(0)
02 = 180MW, P

(0)
03 = 0MW,

s(0) = (1,1,0)T , and the cost function (2) equals 68.91 EUR
MWh

.

As compared to the result obtained without constraints on

dynamics (17) the cost increased by about 5%. Just as in the

first scenario, this increase can be interpreted as the cost of

robustness.

V. CONCLUSIONS

We considered the cost optimal commitment of power

plants within a given power grid. A simple grid of three

plants and three consumers served an illustrative example

throughout the paper. We demonstrated for this example

that the so-called normal vector method can be used to

guarantee steady state stability of operation in the search for

an optimal point of operation. Moreover, we demonstrated

that parametric uncertainty can be addressed systematically

with the normal vector method. Stability and robustness

constraints proved useful when solving the cost optimal

commitment problem, since a naive optimization resulted

in unstable points of operation for the grid, or points of

operation with otherwise unacceptable dynamical properties.

Having given a proof of concept, the method will be applied

to the commitment problem in more realistic grids in the

future.
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APPENDIX

TABLE II

ACTIVE AND REACTIVE POWER CONSUMPTION OF THE 2 SCENARIOS

First scenario

Pa 192MW Qa +38MVAR
Pb 162MW Qb +27MVAR
Pc 248MW Qc +25MVAR

PΣ 602MW QΣ 90MVAR

Second scenario

Pa 99MW Qa +10MVAR
Pb 83MW Qb +7MVAR
Pc 125MW Qc +6MVAR

PΣ 307MW QΣ 23MVAR

TABLE III

IMPEDANCES z j OF THE GRID FOR THE 2 SCENARIOS

Imp. z j p.u. Imp. z j p.u.

z1 0.20j First scenario
z2 0.05j za 0.50 + 0.10j
z3 0.10j zb 0.60 + 0.10j
z4 0.25j zc 0.40 + 0.04j
z5 0.16j Second scenario
z6 0.17j za 1.00 + 0.10j
z7 0.09j zb 1.20 + 0.10j
z8 0.09j zc 0.80 + 0.04j
z9 0.12j

TABLE IV

PARAMETERS OF THE POWER SYSTEM MODEL

Symbol Meaning Value Unit

KI integral gain (speed contr.) 0.05 -
KR proport. gain (speed contr.) 0.10 -
ng number of synchr. generators 0.10 -
P1,max max. output power of PP 1 350 MW
P2,max max. output power of PP 2 200 MW
P3,max max. output power of PP 3 200 MW
Sn app. power for p.u.-norm 100 MVA
un grid voltage 230 kV

Θ1 inertia of rotor 1 10,000 kgm2

Θ2 inertia of rotor 2 4,000 kgm2

Θ3 inertia of rotor 3 6,000 kgm2

ω0 nominal angular grid freq. 2π ·50 1
s

ωi ang. frequency of PP-rotor #i 2π · fi
1
s
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