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Abstract— It is known that the optimal driving strategy
for a train takes the form of a power-speedhold-coast-brake
strategy unless the track contains steep grades. In such cases
the predominant speedhold mode must be interrupted by phases
of power on steep uphill sections and phases of coast on steep
downhill sections. The Freightmiser device is used by Pacific Na-
tional to provide on-board advice to train drivers about energy-
efficient driving strategies. Freightmiser uses a fast and efficient
numerical algorithm to solve a key local energy minimization
problem and hence find the optimal switching points. Although
the numerical algorithm converges to a feasible solution there is
no direct proof that the solution is unique. We explain the basic
ideas behind the local energy minimization principle and use
an extended perturbation analysis to derive various equivalent
forms of the necessary conditions.

I. BACKGROUND

A. Review of optimal train control

In a recent paper Howlett et al [13] summarize the
development of the modern theory of optimal train control
[1], [4], [5], [6], [7], [8], [10], [15], [17]. The problem
is to minimise the energy required to drive a train from
one station to the next within a given time interval. The
optimal strategy is essentially a power–speedhold–coast–
brake strategy except that the speedhold mode must be
interrupted by a power phase for each steep uphill section
and by a coast phase for each steep downhill section. Thus
the optimal strategy is a switching strategy. Howlett et al
[13] have recently shown that the precise switching points
in a globally optimal strategy can be determined for each
steep section by solving a special local optimization problem.
Specialized control algorithms developed by the Scheduling
and Control Group at the University of South Australia for
TTG Transportation Technology have been used to develop
the Freightmiser system which provides on-board advice to
freight train drivers about energy-efficient driving strategies.
Freightmiser is currently used by Pacific National, Australia’s
largest interstate rail freight operator, on all mainline freight
services. General methods of computational control could
also be used to compute optimal driving strategies but our
specialized methods are more accurate and more efficient.

B. Computational methods for optimal control

If the Hamiltonian is linear in the control variables and the
control variables have simple bounds then the optimal control
is a combination of bang–bang control and singular arcs. In
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such cases the computational problem is reduced to one of
finding optimal switching points efficiently and accurately.
More generally one may approximate the optimal control by
a switching sequence using only a limited number of well-
defined control regimes.

For instance Lee et al [16] use the Control Parametrization
Enhancing Technique to show that certain optimal discrete-
valued control problems are equivalent to optimal control
problems involving a new control function with pre-fixed
switching points. The transformed problems are essentially
combinatorial optimization problems involving optimal pa-
rameter selection. Bengea and DeCarlo [2] find optimal con-
trols by a dense embedding into a larger family of systems
where bang–bang-type solutions of the larger problem are
also solutions to the original problem. Xu and Antsaklis
[19] formulate control problems for both continuous-time
and discrete-time as a two stage optimization. Kaya and
Noakes [14] use time-optimal switching to find a feasible
control by shooting from an initial point to a target point
with a given number of switches. An optimal control is
found by minimizing the sum of arc times. Maurer et al
[18] consider second-order sufficient conditions which are
particularly suited for numerical verification. See [13] for an
expanded summary. In train control problems Howlett and
Leizarowitz [12] show that optimal continuous controls can
be realized by chattering on {0, 1} or approximated by a
finite sequence of alternating {0, 1} controls. In problems
involving solar-powered racing cars a similar theory of
optimal control has been developed [3], [9].

In principle the globally optimal strategy [10], [15], [17]
is a speedhold strategy that must be interrupted by switching
to maximum power to traverse steep uphill sections and by
switching to coast to traverse steep downhill sections. We
propose an efficient computational algorithm to determine
optimal switching points. In this paper we show how to
calculate the optimal control for an isolated steep gradient,
where the hold speed cannot be maintained using either
maximum power or coasting. Similar calculations can be
used for arbitrary sequences of steep gradients. In practice
we use a shooting method to find the optimal location at
which to leave a holding phase prior to any sequence of steep
track sections [11]. The sequence of controls and switching
locations are determined by evolution of an adjoint variable,
and depend on the sequence of steep gradients. For any
candidate initial switching location, the adjoint profile will
prescribe a control sequence that causes the speed to drop to
zero before the end of the journey or a control sequence that
maintains a non-zero speed beyond the end of the journey or
a control that allows a switch to the next speedhold phase.
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The novelty of our method is that we use a local opti-
mization for each steep section to find the precise switching
points for the globally optimal strategy.

C. Mathematical basis

Howlett and Pudney [6] have shown that the motion of
a train with distributed mass can be reduced to the motion
of a point-mass train. Let x ∈ [0, X] denote the position of
the train on the track where x = 0 is the initial position and
x = X is the final position. The equation of motion for a
point-mass train can be written as

vv ′ =
p

v
− q − r(v) + g (1)

where v = v(x) is the speed of the train and v′ = v′(x)
denotes the derivative of v with respect to x, p = p(x) ∈
[0, P ] is the controlled power per unit mass where P is the
maximum power, q = q(x) ∈ [0, Q] is the controlled braking
force per unit mass where Q is the maximum braking force,
r(v) is the resistance force per unit mass and g = g(x) is
the component of gravitational acceleration due to the track
gradient. The equations are naturally formulated with x as
the independent variable because the track gradient depends
on position. The elapsed time t = t(x) ∈ [0, T ], where T is
the total time taken for the journey, satisfies the differential
equation

t ′ =
1

v
(2)

where v = v(x) is the solution to the equation of motion
and where t′ = t′(x) denotes the derivative with respect to
x. The cost of the strategy is

J =

∫ X

0

p

v
dx (3)

which is the energy required to drive the train.
The optimal control problem is formulated as follows.
Problem: Let T ≥ Tmin where Tmin is the minimum

possible journey time. Find controls p : [0, X] → [0, P ]
and q : [0, X] → [0, Q] and a corresponding speed profile
v : [0, X] → [0,∞) and time function t : [0, X] → [0, T ]
satisfying the differential constraints (1) and (2) and the
additional speed constraints v(0) = v(X) = 0 and time
constraints t(0) = 0 and t(X) = T so that the cost (3) is
minimized.

The function r : [0,∞) → [0,∞) is the frictional resis-
tance per unit mass. Define related functions ϕ(v) = v · r(v)
and ψ(v) = v2 · r ′(v). The value ϕ(v) is the power per unit
mass required to travel at constant speed v on a level track.
The following property is important.

Property 1: The function ϕ is non-negative and strictly
convex with ϕ(0) = 0 and ϕ(v)/v →∞ as v →∞.

Howlett and Cheng [8] show that if Property 1 holds then
the function ψ is strictly increasing. In this case there are
only four possible optimal driving modes power, speedhold,
coast, brake and only one holding speed v = V for each
optimal strategy. In an optimal strategy the speedhold phase
must be interrupted by segments of power on steep uphill
segments and by phases of coast on steep downhill segments.

A section of track is said to be steep uphill at speed V and
position x if

P

v
− r(v) + g(x) < 0

for all v ≥ V . Hence the train is unable to maintain speed
v ≥ V under maximum power with p = P and q = 0. A
section of track is said to be steep downhill at speed V and
position x if

−r(v) + g(x) > 0

for all v ≤ V . Therefore the train is unable to maintain
speed v ≤ V when coasting with p = 0 and q = 0. For a
steep uphill section [b, c] it is known [10] that a necessary
condition for optimal switching can be written as∫ d

a

ψ(v)− ψ(V )

v3
I dx = 0 (4)

where v is the speed profile for a power phase on an interval
(a, d) ⊃ [b, c] with v(a) = v(d) = V and where

I(x) =

∫ x

a

P + ψ(v(ξ))

v(ξ)
3 dξ. (5)

In a recent paper Howlett et al [13] have shown that the
condition (4) can be rewritten in the form∫ d

a

E ′(v)δv dx = 0 (6)

where E : (0,∞)→ (0,∞) is defined by the formula

E(v) =
ψ(V )

v
+ r(v) (7)

and where δv : [0, X] → [0,∞) is an infinitesimal per-
turbation of the speed profile. Hence they deduced that
the necessary conditions for optimal switching were also
necessary conditions for a minimum of the locally defined
functional

J`(v) =

∫ d

a

[E(v)− E(V )] dx (8)

where, once again, v is a solution to the equation of motion
in power mode and where a < b < c < d and a and d
are chosen so that v(a) = v(d) = V . Howlett et al then
show that the cost function in the local minimization can be
rewritten in the form

J`(v) = ψ(V )

{
∆t− ∆x

V

}
+

∫ d

a

[r(v)− r(V )] dx (9)

where ∆x = d−a and ∆t = t(d)− t(a). Hence J`(v) is the
difference between the work done by the proposed strategy
and a hypothetical (infeasible) speedhold strategy at speed V
subject to a weighted penalty term given by the difference
between the time taken for the proposed strategy and the
time taken for the speedhold strategy. This is intuitively
reasonable since the overall objective is to find a strategy
that minimizes energy consumption subject to completion
of the journey within a specified time. Similar arguments
and similar formulae define necessary conditions for a coast
phase on a steep downhill section of an optimal journey.
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Fig. 1. Optimal speed profile on a steep uphill section.

b
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Fig. 2. Optimal speed profile on a steep downhill section.

Figures 1 and 2 show stylized speed profiles for an optimal
power phase on a steep uphill section and an optimal coast
phase on a steep downhill section.

II. AN EXTENDED PERTURBATION ANALYSIS

A. Perturbation of the speed profile

Although Freightmiser uses a fast and efficient numerical
algorithm to solve the local energy minimization problem,
there is no direct proof that the numerical algorithm con-
verges to uniquely determined optimal switching points. We
propose an extended perturbation analysis. Let v denote a
strategy that satisfies the necessary conditions (6) for optimal
switching. For some given δ > 0 let w : [0, X]× (−δ, δ)→
[0,∞) denote the unique perturbed speed profile satisfying
the equation

w
∂w

∂x
=
P

w
− r(w) + g (10)

with w(a, h) = V + h (see Fig. 3).
By differentiating with respect to h and rearranging the

h

v

y =w(x,h)

y =w(x,0)

aa(h)

y

y =V

y =V+h

Fig. 3. The perturbed speed profile near a for h > 0.

order of differentiation on the left-hand side we have
∂

∂x

[
w
∂w

∂h

]
= (−1)

P + ψ(w)

w3

[
w
∂w

∂h

]
(11)

and since ∂w
∂h (a, h) = 1 it follows by separation of variables

and direct integration that

∂w

∂h
=
V + h

w
exp

[
(−1)

∫ x

a

P + ψ(w(ξ))

w(ξ)
3 dξ

]
(12)

and hence, by direct differentiation with respect to h, that

∂2w

∂h2
=

{
1

V + h
− 1

w

∂w

∂h

−
∫ x

a

d

dv

[
P + ψ(v)

v3

]∣∣∣∣
v=w(ξ)

∂w

∂h
(ξ) dξ

}
∂w

∂h
(13)

for all x ∈ [0, X]. There exists a point a(h) near a(0) = a
and a point d(h) near d(0) = d where w(a(h), h) =
w(d(h), h) = V . If v0(x) = w(x, 0) is optimal and we write
δnv0(x) = ∂nw

∂hn (x, 0) then

δv0 =
V

v0
exp

[
(−1)

∫ x

a

P + ψ(v0(ξ))

v0(ξ)3
dξ

]
(14)

and

δ2v0 =

{
1

V
− δv0

v0

−
∫ x

a

d

dv

[
P + ψ(v)

v3

]
v=v0(ξ)

δv0(ξ) dξ

}
δv0 (15)

and we can write

w = v0 + δv0 h+ δ2v0
h2

2!
+O(h3). (16)

In this notation δnv0 is the nth order infinitesimal perturba-
tion.

B. Perturbation of the local energy functional

We can regard J`(w) as a function of h and write

J`(h) =

∫ d(h)

a(h)

[E(w)− E(V )] dx (17)

where a(h) < b < c < d(h) are chosen so that w(a(h), h) =
w(d(h), h) = V . Note that a(0) = a and d(0) = d. If we
differentiate with respect to h and then set h = 0 we obtain

J ′` (0) =

∫ d

a

E ′(v0)δv0 dx = 0 (18)

and

J ′′` (0) =

∫ d

a

[
E ′′(v0)δv0

2 + E ′(v0)δ2v0
]
dx. (19)

Since

J`(h) = J`(0) + J ′` (0)h+
J ′′` (0)

2!
h2 +O(h3) (20)

it follows that the condition J ′′` (0) > 0 would be sufficient to
ensure that J`(h) reaches a minimum at h = 0. If all turning
points for J`(v) are minimum turning points then there can
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only be one turning point on each steep section. Thus the
optimal switching points would be uniquely defined. If this
were true on every steep section then the overall optimal
strategy would be unique. Although this condition appears
to be true in practice where a quadratic resistance r(v) =
r0 + r1v+ r2v

2 is used, a direct proof that J ′′` (0) > 0 is not
yet available.

C. The adjusted adjoint equation

The necessary conditions for an optimal strategy have been
found by applying the Pontryagin principle. The analysis is
outlined in Howlett et al [13] where the adjusted adjoint
variable η : [0, X]→ (−∞,∞) for a segment of maximum
power is defined as the solution to the differential equation

η ′ − P + ψ(v)

v3
η =

ψ(v)− ψ(V )

v3
(21)

with η(a) = 0. In this equation v is the corresponding speed
profile. In the case of an optimal profile Howlett et al [13]
note that η(a) = η(d) = 0. Of course v(a) = v(d) = V
and so it is also clear that dη

dx (a) = dη
dx (d) = 0. In fact, for

an optimal strategy, Howlett [10] has shown that x = a and
x = d are minimum turning points for the solution η.

D. A formula for the perturbed adjusted adjoint variable

The perturbed adjoint variable ζ : [0, X] × (−δ, δ) →
(−∞,∞) is defined as the solution to the differential equa-
tion

∂ζ

∂x
− P + ψ(w)

w3
ζ =

ψ(w)− ψ(V )

w3
(22)

where w is the perturbed speed and ζ(a(h), h) = 0. It follows
from (14) that w ∂w

∂h is an integrating factor for (22) and hence
that

d

dx

[
w
∂w

∂h
ζ

]
= E ′(w)

∂w

∂h
. (23)

Therefore[
w
∂w

∂h
ζ

]∣∣∣∣
x=d(h)

=

∫ d(h)

a(h)

E ′(w)
∂w

∂h
dξ

= J ′` (h). (24)

If we could show that ζ(d(h), h) < 0 when h < 0 and that
ζ(d(h), h) > 0 when h > 0, then the sign pattern for J ′` (h)
would show that J`(h) reaches a minimum at h = 0.

Figures 4 and 5 show corresponding perturbed profiles for
speed w and adjoint ζ on a steep uphill section with a typical
freight train. The calculations were made using Freightmiser
code. On the lower perturbed speed profile where the power
phase starts too late, the control switches from power to coast
when the adjoint variable changes from positive to negative.
On the upper perturbed speed profile where the power starts
too early the control remains set to power because the adjoint
variable remains positive. For the optimal speed profile the
adjoint variable returns to zero at precisely the same point
as the speed returns to the desired holding speed.

Fig. 4. Perturbed speed profiles on a steep uphill section.

Fig. 5. Perturbed adjoint profiles on a steep uphill section.

E. A formula for the perturbed adjusted adjoint variable
when the gradient is continuously differentiable

If g is continuously differentiable then

∂

∂x

[
w
∂w

∂x
ζ

]
=

∂

∂x

[
w
∂w

∂x

]
ζ +

[
w
∂w

∂x

]
∂ζ

∂x

= ζ g ′ + E ′(w)
∂w

∂x

and hence if we integrate from x = a(h) to x = d(h) then
we obtain [

w
∂w

∂x
ζ

]∣∣∣∣
x=d(h)

=

∫ d(h)

x=a(h)

ζ dg. (25)

It follows that the integral on the right-hand side of (25) is
positive if ζ(d(h), h) is positive, and is negative if ζ(d(h), h)
is negative. An earlier equation (24) showed that J`(h) has
a minimum turning point at h = 0 if this condition is true.

F. A formula for the perturbed adjusted adjoint variable
when the gradient is piecewise constant

Consider a journey from x = 0 to x = X on a track with
piecewise constant gradient. Let 0 = x0 < x1 < · · · < xn <
xn+1 = X and suppose the track has gradient γj on the
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interval (xj , xj+1) for each j = 0, 1, . . . , n. Suppose there is
a steep uphill section of track (xr, xs) and that the optimal
strategy is to start power at some point a0 ∈ (xr−1, xr)
and to finish at some point d0 ∈ (xs, xs+1). Consider the
perturbed speed profile w for sufficiently small values of
the perturbation parameter h so that a(h) ∈ (xr−1, xr) and
d(h) ∈ (xs, xs+1). The equation of motion takes the form

w
∂w

∂x
=
P

w
− r(w) + γj

on the interval (xj , xj+1) from which it follows by differ-
entiating both sides that

∂

∂x

[
w
∂w

∂x

]
= (−1)

P + ψ(w)

w3

[
w
∂w

∂x

]
and, if we divide through by w ∂w

∂x , that

∂

∂x

[
loge

(
w
∂w

∂x

)]
= (−1)

P + ψ(w)

w3
.

Therefore, on the interval (xj , xj+1), the function w ∂w
∂x is an

integrating factor for the perturbed adjoint equation. Hence,
if [p, q] ⊂ (xj , xj+1), then

w
∂w

∂x
ζ

∣∣∣∣q
p

=

∫ q

p

E ′(w)
∂w

∂x
dx

= E(w(q))− E(w(p)). (26)

The difficulty with an integration over the entire interval
(a(h), d(h)) is that w ∂w

∂x is not continuous across gradient
changes. Thus the integration must be done separately over
each interval of constant gradient to give(

P

wr
− r(wr) + γr−1

)
ζr = E(wr)− E(V ),

for the first interval (a(h), xr),(
P

wj+1
− r(wj+1) + γj

)
ζj+1 −

(
P

wj
− r(wj) + γj

)
ζj

= E(wj+1)− E(wj)

for each interval (xj , xj+1) from j = r to j = s − 1, and
finally(

P

V
− r(V ) + γs

)
ζ(d(h), h)−

(
P

ws
− r(ws) + γs

)
ζs

= E(V )− E(ws)

for the final interval (xs, d(h)) where we have written wj =
w(xj , h) and ζj = ζ(xj , h) for convenience. By adding these
terms and simplifying we obtain(

P

V
− r(V ) + γs

)
ζ(d(h), h)−

s∑
j=r

ζj(γj − γj−1) = 0

which we can rewrite as[
w
∂w

∂x
ζ

]∣∣∣∣
x=d(h)

=

s∑
j=r

ζj(γj − γj−1). (27)

Note the similarity to the earlier formula (25) when the
gradient is continuously differentiable. If we set h = 0 then
ζ(x, 0) = η(x) and we write ηj = η(xj). Since η(d) = 0
we obtain

s∑
j=r

ηj(γj − γj−1) = 0

which is a known necessary condition for optimality ([13]).
Note that (26) can be rewritten in the form(

P

w
− r(w) + γj

)
ζ(q, h) = E(w)− E(V )− µj

where we write ζ = ζ(q, h) and w = w(q, h) and regard
q ∈ (xj , xj+1) as a variable and p ∈ (xj , xj+1) as a fixed
point and where µj is defined by

E(V ) + µj(h) =

(
P

w(p, h)
− r(w(p, h)) + γj

)
ζ(p, h).

It follows that ζ is given by the formula

ζ =
E(w)− E(V )− µj
P/w − r(w) + γj

(28)

on the interval (xj , xj+1). The initial condition ζ(a(h), h) =
0 means that µr−1 = 0 and the continuity of ζ at x = xj
means that µj = µj−1+(γj−1−γj)ζj for all j = r, . . . , s−1.
When h = 0 we write η(x) = ζ(x, 0), v(x) = w(x, 0) and
λj = µj(0) and the formula becomes

η =
E(v)− E(V )− λj
P/v − r(v) + γj

for x ∈ (xj , xj+1). Once again the initial condition η(a) = 0
means that λr−1 = 0 and the continuity of η at x = xj means
that λj = λj−1+(γj−1−γj)ηj for all j = r, . . . , s−1. Since
η(d) = 0 for an optimal strategy it follows that λs = 0.

G. An alternative integration of the perturbed adjusted ad-
joint equation for piecewise constant gradient

Consider a track with piecewise constant gradient as
described in the previous subsection. For x ∈ (xj , xj+1)
we have

w
∂w

∂x
=
P

w
− r(w) + γj .

If we differentiate with respect to h and reverse the order of
differentiation we obtain

∂

∂x

[
w
∂w

∂h

]
= (−1)

P + ψ(w)

w3

[
w
∂w

∂h

]
for x ∈ (xj , xj+1) whereas if we differentiate with respect
to x we deduce that

∂

∂x

[
w
∂w

∂x

]
= (−1)

P + ψ(w)

w3

[
w
∂w

∂x

]
.

Solution of these two equations shows us that

w
∂w

∂h
= Cjw

∂w

∂x

for some constant Cj and x ∈ (xj , xj+1). We suppose the
magnitude of the perturbation δw = ∂w

∂h on the interval
(a(h), xr) is defined by Cr−1 = h. In general we must
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choose Cj so that wδw is continuous which means we
require

Cj−1 (P/wj − r(wj) + γj−1) = Cj (P/wj − r(wj) + γj)

and so

Cj = h

j∏
i=r

P/wj − r(wj) + γj−1
P/wj − ϕ(wj) + γj

for x ∈ (xj , xj+1) and each j = r, r + 1, . . . , s. It follows
from (23) that[

wδwζ

]∣∣∣∣
x=d(h)

=

∫ d(h)

a(h)

E ′(w)
∂w

∂h
dx

and hence that[
wδwζ

]∣∣∣∣
x=d(h)

= Cr−1

∫ xr

a(h)

E ′(w)
∂w

∂x
dx

+

s−1∑
j=r

Cj

∫ xj+1

xj

E ′(w)
∂w

∂x
dx+ Cs

∫ d(h)

xs

E ′(w)
∂w

∂x
dx

which in turn we can now write as[
wδwζ

]∣∣∣∣
x=d(h)

= Cr−1 {E(wr)− E(V )}

+

s−1∑
j=r

Cj {E(wj+1)− E(wj)}+ Cs {E(V )− E(ws)}

or equivalently as[
wδwζ

]∣∣∣∣
x=d(h)

=

s∑
j=r

[Cj−1 − Cj ]E(wj) + [Cr−1 − Cs]E(V ).

When we set h = 0 this gives an alternative form for the
optimality conditions.

III. CONCLUSIONS AND FUTURE WORK

There are two important issues arising from our discussion
of the new local energy minimization principle. In the
first place, on-board calculations that continually update
the recommended speed profile require very fast and very
accurate algorithms. The performance of general adaptive
Runge-Kutta numerical solution schemes for the relevant
differential equations can be enhanced by using various
analytic expressions throughout the calculation. For instance,
the formula (28) allows us to evaluate the adjoint variable
directly from knowledge of the speed. Without this formula
it would be necessary to use a numerical solution scheme to
solve the adjoint differential equation separately backwards
with respect to position.

In the second place, the various formulae can be used
to give insight into different ways in which the uniqueness
of the solution could be proved. For example we showed
that the sign of the perturbed adjusted adjoint variable at
x = d(h) is the same as the sign of the first derivative
J ′` (h) of the local energy functional. A sufficient condition
for a minimum of the local energy functional would therefore
be that ζ(d(h), h) < 0 when h < 0 and ζ(d(h), h) >
0 when h > 0. Our future work will look at finding
suitable sufficient conditions to enable a direct proof that
the algorithms converge to a unique solution.
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