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Abstract— We propose a formation control law based on
inter-agent distances for a general group of single-integrator
modeled agents on the plane. By attempting to directly control
the Euclidean distance matrix of the group, we derive the
proposed control law from the time-derivative of the matrix.
Accordingly, if the initial and desired formations of the group
are generically rigid, then the desired formation of the group
is locally asymptotically stable. The stability analysis, in which
Lyapunov direct method is applied to the distance dynamics of
the group, is straightforward. Simulation results demonstrates
comparable effectiveness of the control law to an existing law.

I. INTRODUCTION

Distance-based formation control, in which agents are sta-
bilized based on inter-agent distance information without any
available common directional sense, have recently attracted
a significant amount of interest [1]-[6].

Stability analysis in the realm of distance-based formation
control is, due to the absence of an available common
directional sense for agents, complicate in general. Such
complicacies principally arise from the non-compactness of
the equilibrium set and the presence of the undesired equi-
librium subset. To counter such complicacies, researchers
have utilized several schemes. For instance, Krick et al.
have applied center manifold theory to demonstrate the local
asymptotic stability of the desired formation of a general
agent group [1]. In [2], Dorfler and Francis have introduced
link dynamics, which is similar to edge dynamics exploited
in [4], [5], and proposed a differential geometric approach
for stability analysis of the desired formation of agents. Cao
et al. have applied Lyapunov’s direct method to the edge
dynamics of three agent groups, proving globally exponential
stability of the desired triangular formation of three agents
with a directed information graph [4], [5].

In the meanwhile, though most existing distance-based
formation control laws have been designed by the gradient
of artificial potential functions, Oh and Ahn have attempted
to achieve the desired formation of a three-agent group by
the direct control of the Euclidean distance dynamics of
associated the realization of the group in [6].

In this paper, attempting to extend the results in [6] to
a general group of agents, we propose a formation con-
trol law for a group of single-integrator modeled agents
on the plane, based on the direct control of inter-agent
distances. Accordingly, contributions of this paper are as
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follows. First, we consider the direct control of the Euclidean
distance matrix of a general group of agents. Then, the
proposed control law is derived from the time-derivative of
the matrix, which is a new strategy to design a formation
control law. Second, by utilizing distance dynamics, we can
overcome complicacies arising from the non-compactness of
the equilibrium sets, similar to [2], [4], [5]. Consequently,
the stability analysis presented in this paper is relatively
straightforward. Finally, we provide a partial result on the
equilibrium sets by exploiting the properties of gradient
systems; that is, a neighborhood exists such that any point
in the desired equilibrium set is isolated from the undesired
equilibrium set in the neighborhood.

The outline of this paper is as follows. The mathematical
background, problem formulation, and the control strategy
are provided in Section II. In Section III, the proposed control
law is derived. Local asymptotic stability of the group desired
formation by the control law is analyzed in Section IV, and
simulation results are presented in Section V. Conclusion is
then discussed in Section VI.

II. PRELIMINARIES

The mathematical background, problem formulation, and
the control strategy in this paper are presented in this section.
Details on graph rigidity and Euclidean distance matrices are
found in [7]-[9] and [10]-[12], respectively.

A. Mathematical background

For an undirected graph G = (V,€) where V and & are
sets of IV vertices and e edges, respectively, a realization
of G in R™ is a function p that maps the vertices of G to
points in R™. The realization p is represented by a stacked
vector [pT ... pL]T € R™N. The pair (G, p) is a framework
of G in R™. Ordering the e edges of G in some way, an
edge function fg : R"™N — R¢ of the framework (G,p)
is defined by fg(p1,...,pn) =[...|lpi — pj|*...]", where
| - || denotes the Euclidean norm in R™ for all (i,5) € &.
Then, two frameworks (G,p) and (G,q) are equivalent if
fo(p) = fo(a): (G.p) and (G.q) are congruent if [|p(i) —
p)I = llg@) — q(§)|| for all 4,5 € V. Two realizations
p and q are congruent if ||p(i) — p(j)l| = lla(i) — a(j)]
for all ¢, € V. The framework (G,p) is rigid in R™ if a
neighborhood U of p in R™Y exits such that fic ™ (fic(p)) N
U = f¢ "(fo(p)) NU, where K is the complete graph with
N vertices. The framework (G,p) is globally rigid in R™
it fic (fie(p) = fo (fo(p)). and a framework (G, p) is
generic if rank[V fg(p)] = max{rank[V fg(q)] : ¢ € R"V}.
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Here, the rigidity matrix Rg(p) of (G,p) is defined by
1/2V fg(p).

A matrix D = [d;;] € RV*YN is called a Euclidean
distance matrix (EDM) if and only if there exist points
p1,...,pN in R™ such that d;; £ ||p; — p;||*. Note that
EDMs are symmetric matrices with zero-diagonal and non-
negative off-diagonal elements. Triangular inequality holds
for elements of EDMs such that \/d;; < v/dii, + /dy; for
all distinct ¢, 7 and k in {1,..., N}. The dimension n of the
affine span of points pi,...,py that generate an EDM D
is the embedding dimension of D, and p = [p ...p%]T €
R™V is a realization of D. If p € R™ is a realization of
D, then any matrix [(Qp; +b)T ... (Qpn +b)T]T € R*N
is also a realization of D, where Q € R™*™ and b € R"
denote an orthogonal matrix and a vector, respectively.

B. Problem Formulation

For a group of N mobile agents, we model the group by an
undirected graph G = (V, £), where V and £ denote the set
of agents and connectivity among agents, respectively. We
refer to the graph G as the information graph of the group.
We assume that every agent is modeled by a single-integrator,

where p; € R? and u; € R? denote the position and control
inputs, respectively, of agent ¢ on the plane. Each agent ¢ has
the following measurements:

dji = |lpj — pill?, jENG, i €V, 2)

where N; is the set of neighbors of agent i. Note, however,
that though we assume that every agent is capable of sensing
relative displacements to all neighbors, it is recognized that
agents have nonidentical local coordinate systems due to the
absence of an available common directional sense for agents.

For a given realization p* = [p;7...pa 17 € R*Y, the
overall goal of the group is to form a realization that is
congruent to the realization. Here, we refer to the set of all
frameworks (G, p), where p is congruent to p*, as the desired
formation of the group:

F*={(G,p) |llpi = p;ll = lpi —pjll, Vi,j € V}. (3)

Thus the overall group goal is the stabilization of p such
that (G, p) € F*. Note that the EDM of any realization p of
(G,p) € F* is identical because EDMs are invariant under
linear motions of its realizations. The subtask of agent ¢ is
the stabilization of p; such that

dij = |lp; —pi|? j e Nii € V. )

The consistency between the overall group goal and the
subtasks is critical in formation control of mobile agents; the
achievement of all subtasks has to lead to the success of the
overall goal. The rigidity of information graphs is related to
such consistency since rigidity guarantees the congruency of
equivalent realizations. In other words, if information graphs
are locally (globally) rigid, then the desired formation (3) is
locally (globally) achievable by attaining all subtasks (4).
Thus, we assume that any framework (G, p) € F* is rigid.

The formation control problem to be addressed in this
paper then can be formulated as follows:

Problem 2.1: For a group of N (N > 3) agents with
an information graph G = (V, ), assume that every agent,
modeled by a single-integrator (1), has the measurements
(2). Then, assuming that subtasks (4) are assigned to all
agents for the desired formation (3), which is a set of rigid
frameworks, design a control law of every agent to achieve
the assigned subtasks.

In general, formation control consists of dividing the
overall goal into subtasks, assigning the subtasks to agents,
and the stabilization of agents achieving the subtasks. In this
paper, we focus on control law design under the assumption
that subtasks are assigned.

C. Control Strategy

For brevity, we refer to the EDM associated with the
realization of a group as the EDM of the group. In addition,
the EDM of the initial or desired formation denotes the
EDM associated with the realization of the initial or desired
formation, respectively. The EDM of the group denotes the
EDM associated with the realization of the current formation.

For the EDM D of a group of agents under the assump-
tions of Problem 2.1, the time-derivative of D is obtainable
element-wisely if the agent positions are differentiable by
time:

YT ot ot ot ot
=2(pi — pj)" (us —uy), (i, j) € E. (5)

We refer to (5) as the overall distance dynamics of the group.

Since d” is a function of the position and control inputs of
agents ¢ and j, we attempt to achieve the desired formation
via direct EDM control. However, it is generally not possible
to independently control every element of the EDM while
maintaining the embeddability of the EDM in R? [12]
because arbitrary adjustment of elements causes the EDM
to be unrealizable in R2. Thus, we define Euclidean distance
dynamics matrices as Definition 2.1 [6].

Definition 2.1 (Euclidean Distance Dynamics Matrix [6]):
For an N x N EDM D° embeddable in n-dimensional
Euclidean space, a function S : [0,00) — RN*N js a
Euclidean distance dynamics matrix (EDDM) of D° if and
only if D :[0,00) — RY¥*N that is defined as

D(t) £ D% + /t S(r)dr,
0

where integration of S is defined as element-wise integration,
is an EDM embeddable in n-dimensional Euclidean space for
all ¢t > 0.

Hence, the control law design consists of the design of an
EDDM and the derivation of a control law from the EDDM.

III. CONTROL LAW DESIGN ViA EDDM

According to [6], for a group of three agents under the
assumptions of Problem 2.1, an EDDM of the group can be
designed as

S(t) = — ky(D(t) — D*), ks > 0, 6)
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Column space of 4;

Fig. 1: Projection of %dbz- onto the column space of A;.

where D? and D* are the EDMs of the initial and desired
formations of the group, respectively. Moreover, the control
law of agent 7 can be derived from the constraints

ko -
(pj — i) ws ?d (7
ke ~
(pi = pj)"uy =7 dij, ®)
where d;; = dij — di;, for all (i,7) € €. Note that (7) and

(8) are derived from (5) and (6). Consequently, since the
constraints for the control input of agent ¢ is a system of
two linear equations, the control input u; can be designed as

ks )
up = ZAZ. Yy, VieV, )
where
T
A = (pj _pi) :| , 10
{ (pe —pi)T (10)
bi = [dji dyi)", j = i+ 1(mod 3) and k = i + 2(mod 3),

under the condition that A; is nonsingular.

Although S in (6) is an EDDM of a three-agent group, it
cannot be considered an EDDM of N (NN > 3) agent group
in general because the convex combination of two EDMs
embeddable in n-dimensional space is embeddable in at most
2n-dimensional space by the following Theorem 3.1.

Theorem 3.1: [11] The set of all N x N EDMs is
convex in N x N zero-diagonal matrix space. Furthermore,
the convex combination of two N x N EDMs embeddable
in k- and [-dimensional Euclidean spaces, respectively, is
embeddable in at most (k + [)-dimensional Euclidean space.

According to Theorem 3.1, if D! and D? are N x N
EDMs embeddable in R2, then the convex combination
D = aD' + (1 — a)D? € RN where 0 < o < 1
is also an EDM embeddable in at most R*. As a special
case of the theorem, if NV = 3, then the convex combination
D = aD' + (1 — a)D? € R**3 is an EDM embeddable in
R? because every realization of three points is definitely em-
beddable in R2. However, if N > 3, then such an argument
cannot be applicable. For example, Fig. 1 shows that agent
¢ with three neighbors has relative-distance constraints that
are incompatible in R2. Such situations inevitably occur if
an agent has more than three neighbors. To resolve such
situations and design an EDDM for a general group of
agents, we find a solution u; such that A;u; becomes the

projection of (k;/4)b; onto the column space of A; as
depicted in the figure.

We now design a control law for a group of N-agents
under the assumptions of Problem 2.1. From (7) and (8), the
constraints for the control input of agent ¢ lead to a possibly
over-determined system of linear equations,

ks, .
Aju; = Zb“ S V, (11D
where
(Piy —Pi)T
A= 7 (12)
(piu\/” _pl)T
Jili
bi = ~’ : )
di\N’i\i
and 71 -0 T e N;.

Since the projection of kdb onto the column space of
Aj is equivalent to solving argmin,, || A;ju; — (ks/4)bi|, the
control input of agent ¢ can be derived from (11) as

k

u; = ZS(AZTAi)‘lAini, Viey, (13)

where (A7 A;)™! is the pseudo-inverse of A; in (11), if
AT A; is nonsingular. Notice that a [d;;] € R™*™ is an
EDDM of the group, if u; and u; are designed as (13).

IV. STABILITY ANALYSIS

First, let us consider the properties of A? A;, which are
arranged as,

AT A =" (p

- Pz‘)(Pj - Pz‘)T

JEN;
= { % N xz)Q (5 —2i)(y; —vi)
= Yi — Y1) (v; —vi) ’
(14)
where p; = (z;,y;)7 € R? and p; = (zj,y;)7 € R2 The

matrix A; then has the following properties.

Lemma 4.1: For a group of N agents under the assump-
tions of Problem 2.1, if the formation of the group is generic,
then AZ-TAZ- in (14) and its inverse matrix are positive-definite
for all : € V.

Proof: The first leading principal minor of AT A; is
nonnegative:

> (wk—2:)? >0, VieV. (15)
keN;
The equality in (15) holds if and only if agent 7 and all
its neighbors are collocated. Moreover, the second leading
principal minor of A7 A; is nonnegative by the Cauchy-
Schwarz inequality:
Z (zr — xi)Z Z (yr — yi)Q

keEN; keN;

2
- (Z(u—m)(%—w)) >0,¥iev. (16

kEN;
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The equality in (16) holds if and only if [z;, —x; ... Tipp, —
z;|T and [y;, —vi - .. Yiin, —yi|T, where i1, ..., i|n; €N,
are linearly dependent. Thus, all leading principal minors of
AT A; are positive if the formation of the group is generic. It
follows from Sylvester’s criterion [13] that A?Ai is positive
definite. Furthermore, the matrix (A7 A;)~! is also positive
definite by the positive definiteness of AT A;. [ ]

While the desired equilibrium set of the group are given
by

Eq={p e R*™ ||Ip; — p;| = Ip} — p}ll, ¥(i,j) € €},
17

the equilibrium set F of the group with the control law (13)
is given by

E={pecR¥® |(ATA)'ATp; =0,VieV}. (8)

Clearly, any point p € Ej is also an element of E since
if [lp; — p;ll = llp; — pjll for all (i,j) € &, then b; = 0
for all 7 € V, which means E; C E. In order to employ
Lyapunov’s direct method for the stability analysis of the
desired formation of the group, we need to investigate if the
desired equilibrium set is isolated from undesired equilibrium
points. To analyze the equilibrium set, let us first consider
the following Lojasiewicz’s inequality [14].

Theorem 4.1 (Lojasiewicz’s Inequality [14]): Let f be a
real analytic function on a neighborhood of z in R™. Then,
there exist constants ¢ > 0 and p € [0, 1) such that

IV (@) = ellf(2) = FAI°

in some neighborhood of z.

Then, we have the following Lemma 4.2.

Lemma 4.2: For a group of N agents under the assump-
tions of Problem 2.1, if the desired formation of the group
is generically rigid, then there exists a neighborhood U of
any point in F,; such that [bT A;... 05 An]T # 0 for all
[..dij.. )T #0in U.

Proof: Suppose that a formation control law for the
group is given by

19)

p=[b] A byAN]" (20)
Define a potential function ¢ as
1 * *
o) =5 Y (i —pil* = llpi —25I)% @D
(1,7)€€
The dynamics in (20) then can be expressed as
p=—Vo(p), (22)

and the desired equilibrium set in (17) and the equilibrium
set in (18) can be expressed as

Eq ={p € R* | ¢(p) = 0},
E={peR* | V¢(p) = 0}.

(23)
(24)

Since ¢ in (21) is a real analytic function on a neighbor-
hood of any point p in Ey, there exist constants ¢ > 0 and

p € [0,1) such that

Vo)l Zcllg(p) — (@)1
=clle@)l”

in a neighborhood U of p by Lojasiewicz’s inequality, based
on (23). Then, for any point p in U, if p ¢ Ey, |[Vo(p)|| > 0.
That is, p ¢ E for all p € U, based on (24). It follows
from (20) and (22) that [T A;-- 0L AN]T # O for all
[---(Ljn-]T;«éOinU. ]

Consequently, the following Theorem 4.2 presents the
main result for a group of N agents.

Theorem 4.2 (Main Result): For a group of N agents un-
der the assumptions of Problem 2.1, if the desired formation
of the group is generically rigid, then the desired formation
of the group is locally asymptotically stable by the control
law (13).

Proof: First, the overall distance error dynamics of the
group can be arranged as

: ks _
dij = — —(pj — pi) " (AT A;) T AT b,

(25)

i — pj)T(A}ﬂAj)ilA?bj, (Z,]) cé.

We take a Lyapunov function candidate for the error dynam-
ics as

1ks 5
(i,5)€€

(26)

The derivative of V' along the trajectories of the error
dynamics then can be arranged as

V=Y 2dyd;,
(i,9)€E
=— Z ksdsj [(p; — pi)" (AT Ai)~ AT bi]
(i,5)€€
- Z ksdy; [(ps
(i,5)€€
=—koy > dij(p; —pi) (AT A) 7 AT,
i€V jEN;
=— koY b Ai(AT A)) 1 AT,
%

= ;) (A7 Aj) T AT D]

<0.

Since the desired formation is generically rigid, (A7 4;)~1
is positive definite by Lemma 4.1. Moreover, there ex-
ists a neighborhood U of any point p € FEy such that
TA; - bLAN]T # 0 for all [---di;--+]T # 0in U
by Lemma 4.2. Hence, Vs negative definite if the desired
formation is generically rigid and the initial formation is
in U. Note that the control law (13) is well defined in U
by Lemma 4.1. Thus, it follows from the rigidity of the
information graph that the desired formation of the group
is locally asymptotically stable. [ ]

Furthermore, the argument in the proof of Theorem 4.2
leads to the following Corollary 4.1.
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Fig. 2: The information graph of four-agent groups.

Corollary 4.1: For a group of N agents under the assump-
tions of Problem 2.1, if the desired formation of the group is
generically rigid, then the desired formation of the group is
locally asymptotically stable by the control law of the form

ks :
U; = ZRA'LTb“ VieV,

27
where P; € R?*2 is positive definite.
Proof: For the overall distance error dynamics
* ks

dij =—- Z(Pj - pi)TPiA;rbi

ks
4
of the group, we take a Lyapunov function candidate as
V in (26). Then, the derivative of V along the trajec-
tories of the error dynamics can be arranged as V =
ks Zz‘ev biTAiPiAinl- < 0. By using the argument in the
proof of Theorem 4.2, V is negative definite in a neighbor-
hood U of any p € E,. Therefore, the desired formation of
the group is locally asymptotically stable. [ ]
Although Theorem 4.2 and Corollary 27 confirm the local
asymptotic stability of the desired formation, they does not
imply the convergence of p(t) to a fixed point. The proof of
such a convergence property can be found in [18].

(pi —pj) " PiAT b, (i,§) €€

V. SIMULATION RESULTS

We present the simulation results of formation control for
four and ten agents, comparing the proposed control law
with the existing one proposed in [1]-[3] for agent groups
having undirected information graphs. Since we address only
undirected information graph cases, we do not compare with
the control law in [4], [5].

For a group of four agents under the assumptions of
Problem 2.1, the information graph of the group was given
as Fig. 2. The initial and desired realization of the group
were assumed to be [(0,3)7 (—6,0)T (0, =7)T (4,0)T]T and
[(0,5)T (=5,0)T (0, —5)T (5,0)7], respectively. Fig. 3 and 4
depict trajectories and squared inter-agent distance errors by
the existing and the proposed control laws, respectively. As
opposed to three-agent case [6], the proposed control law did
not demonstrate a coordination property. For instance, the
distance between agents 2 and 4, though initially adjusted to
the desired value, varied even by the proposed control law
as depicted in Fig. 4(b).

Fig. 5 presents the information graph of a ten-agent group
under the assumptions of Problem 2.1. To simulate the group,

* initial formation
O  desired formation
4 ¥ ]
- ~
(TN

N

6

% 4 = 0 2 n s
(b) By the proposed control law.

Fig. 3: The formation trajectories of four-agent groups.

a realization 10 x [(cos(27/10),sin(27/10))7 ... (cos(10 x
2m/10),sin(10 x 27/10))7]T was given as the desired
realization, and the initial realization was assumed to be
perturbed from the desired realization by a random variable
that was uniformly distributed on [—2.5,2.5]. As depicted
in Fig. 6(a) and (b), the proposed control law demonstrated
comparable performance to the existing control law.

VI. CONCLUSION

In this paper, as an extension of the results presented in
[6], we proposed a formation control law for a general group
of agents based on the inter-agent distances. Introducing
distance dynamics, we then presented the local asymptotic
stability. The proposed control law showed comparable per-
formances to an existing control law in [1].

Though several effective displacement-based control laws
have been previously proposed, e.g. in [15]-[17], there have
yet to be satisfactory results on global stability for a general
agent group in distance-based setup. Thus a critical future
work is the global stability analysis of a general group.
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Fig. 4:
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(a) By an existing control law proposed in [1]-[3].
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(b) By the proposed control law.

The squared inter-distance errors of four-agent

groups.
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Fig. 5: The information graph of ten-agent groups.
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