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Abstract— In this paper, we propose a triangular formation
control law based on inter-agent distance information for a
group of three single-integrator modeled agents on the plane.
Although most of existing distance-based formation control laws
have been designed by using the gradient of artificial potential
functions, the proposed control law is derived from the time
derivative of the Euclidean distance matrix associated with the
realization of the agent group. Consequently, if the initial and
desired formations are not collinear and the information graph
of the group is complete, then the desired formation of the group
is globally asymptotically stable with all squared inter-agent
distance errors exponentially converging to zero. Furthermore,
the proposed control law has a coordination property in the
sense that the dynamics of all inter-agent distances are fully
decoupled. Simulation results support the effectiveness of the
proposed control law, demonstrating the coordination property.

I. INTRODUCTION

Recently, a considerable amount of resources has been
focused on stabilizing the formation of mobile agents based
on local information [1]–[15]. In such works, depending
on available local information for agents, researchers have
primarily employed displacement- and distance-based ap-
proaches, with the key difference between such approaches
in the availability of a common directional sense for agents
[15]. Although several effective displacement-based control
laws have been proposed [1]–[4], various issues, especially
in stability analysis, remain unresolved within the realm
of distance-based formation control, due to the complicacy
arising from the absence of an available common directional
sense. A noticeable work in distance-based formation control
has been developed by Krick et al. In [5], [6], they have
proven the local asymptotic stability of the desired formation
of a general single-integrator modeled agent group with
a gradient-based control law. Their approach, however, is
difficult to be applied to global stability analysis of the
desired formation since they have exploited center manifold
theory.

As attempts for global stability analysis, researchers have
addressed triangular formation control of three-agent group
based on inter-agent distance information. For instance, Cao
et al. have analyzed the exponential stability of triangular
formation of a three-agent group by applying Lyapunov’s
direct method to the edge dynamics of the group [13], [14].
Dörfler and Francis have introduced the link dynamics of

†School of Mechatronics, Gwangju Institute of Science and
Technology (GIST), 261 Cheomdan-gwagiro, Buk-gu, Gwangju,
500-712 Korea. E-mail: {kkoh, hyosung}@gist.ac.kr

−6 −4 −2 0 2 4 6
−4

−2

0

2

4

6

8

x [m]

y
[m

]
 

 

1

2 3

initial formation

desired formation

Fig. 1: The formation trajectory of three-agent group by an
existing control law proposed in [5]–[8].

a three-agent group and proposed a differential geometric
approach for stability analysis [7].

In the meanwhile, the majority of existing distance-based
formation control laws are simply expressed as the sum of
efforts of agents used to adjust distances to adjacent agents
to given desired values. For instance, the control law ui of
agent i, proposed in [5]–[14], is given by

ui =
∑
j∈Ni

uij , (1)

where Ni and uij denote the set of agents adjacent to agent i
and a function of the relative displacement to agent j from i,
respectively. The function uij is the effort of agent i required
to adjust the distance to agent j to a desired value. It should
be noted here that conflicts may exist among control efforts,
and that the control law of the form (1) is not capable of
coordinating such conflicts. Subsequently, the trajectories of
three agents with the control law in [5], [6] are depicted as
Fig. 1; that is, the distance between agents 2 and 3, although
already adjusted to the desired value, varied unnecessarily
by the control law.

In this paper, motivated by such observations, we attempt
to achieve the desired formation of a group of three single-
integrator modeled agents in the plane, based on the direct
control of inter-agent distances. We consider the control of
the Euclidean distance matrix of the group and then derive a
control law from the time-derivative of the matrix. Although
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most of existing distance-based control laws have been de-
signed based on the gradient of artificial potential functions,
we provide a novel way to design a control law by directly
controlling inter-agent distances of the group. Consequently,
the proposed control law has a coordination capability in the
sense that all inter-agent distances are controlled in a fully
decoupled way. Furthermore, since all squared inter-agent
distance errors exponentially converge to zero, the stability
analysis of the triangular desired formation with the proposed
control law is straightforward. Accordingly, the triangular
desired formation of the group is globally asymptotically
stable if the connectivity among the agents are complete and
the positions of the three agents are not collinear in the initial
and desired formations.

The outline of the remainder of this paper is as follows.
The mathematical background, problem formulation, and the
control strategy are provided in Section II. In Section III, an
Euclidean distance dynamics matrix of a three-agent group
is designed and the proposed control law is derived from
the matrix. The proof of global asymptotic stability of the
desired formation is presented in Section IV, and simulation
results are provided in Section V. Concluding remarks are
presented in Section VI.

II. PRELIMINARIES

In this section, mathematical background on Euclidean
distance matrices is summarized and a formation problem
is formulated. The control strategy in this paper is also
presented. Details on Euclidean distance matrices are found
in [16]–[18].

A. Euclidean Distance Matrices

A matrix D = [dij ] ∈ RN×N is a Euclidean distance
matrix (EDM) if there exist points p1, . . . , pN in Rn such
that

dij , ‖pi − pj‖2, i, j = 1, . . . , N, (2)

where ‖ · ‖ : Rn × Rn → R denotes the n-dimensional Eu-
clidean norm. By the definition in (2), EDMs have following
properties:

dii =0, (3)
dij ≥0, (4)
dij =dji, (5)√
dij ≤

√
dik +

√
dkj (6)

for all distinct i, j and k in {1, . . . , N}. Note that the
properties in (3)-(6) are generally necessary conditions for
EDMs, not sufficient conditions, though they are necessary
and sufficient conditions for EDMs if the number of points
is less than or equal to three. Conditions for EDMs are found
in [16].

For an EDM D, the dimension n of the affine span of
the set of points p1, . . . , pN that generates the matrix D is
called the embedding dimension of D, and the matrix p =
[pT1 . . . p

T
N ]T ∈ RnN is called a realization of D. Although

the embedding dimension of an EDM is unique, EDMs

are invariant under linear rigid motions of its realizations.
Hence, if p ∈ RnN is a realization of D, then any matrix
[(Qp1 + b)T . . . (QpN + b)T ]T ∈ RnN is also a realization
of D, where Q ∈ Rn×n is an orthogonal matrix denoting
a rotation or reflection operator and b ∈ Rn is a vector
denoting translation.

B. Problem Formulation

In decentralized control schemes, though a group of agents
has its overall goal to achieve, every agent of the group
attempts to attain only its local goals or subtasks because
of the lack of information and/or capability. Hence, subtasks
should be properly assigned to agents to achieve the overall
goal. In such sense, formation control of a group of agents
consists of the assignment of subtasks to every agent and
the design of control laws to stabilize agents as noted in
[15]. In distance-based formation control problems, such
subtasks are given by inter-agent distance constraints for each
agent; attainment of all subtasks should be sufficient for the
achievement of the overall goal.

We model an agent group by an undirected graph G =
(V, E), where V and E denote the set of agents of the group
and connectivity among agents. We refer to the graph as the
information graph of the group. Consider a group of three
agents with an information graph G = (V, E). Each agent i
of the group is modeled by a single-integrator of the form

ṗi = ui, i ∈ V, (7)

where pi and ui denote the position and control input of
agent i, respectively, in R2. Each agent i has a capability of
sensing the relative displacements to its neighbors. That is,
the measurements agent i are given by

dji = ‖pj − pi‖2, j ∈ Ni, i ∈ V, (8)

where Ni denotes the set of neighbors of agent i. It should
be noted that the measurement set contains only relative
displacements because agents of the group have noniden-
tical coordinate systems due to the absence of an available
common directional sense for agents.

Then the overall goal of the group is the stabilization of
its realization p = [pT1 p

T
2 p

T
3 ]

T ∈ R6 to be congruent to a
given realization of p∗ = [p∗T1 p∗T2 p∗T3 ]T ∈ R6. Thus, for
the given realization p∗, the desired formation of the group
is defined by a set,

F ∗ , {(G, p) | ‖pi − pj‖ = ‖p∗i − p∗j‖, ∀i, j ∈ V}. (9)

Since there is no centralized control agent, the overall goal
is divided into subtasks for agents. For instance, the subtask
of agent i is the stabilization of its position pi such that the
following condition holds:

dji = ‖p∗j − p∗i ‖2, ∀j ∈ Ni, i ∈ V. (10)

The attainment of all such subtasks in (10) should be
sufficient to achieve the overall goal of the group in (9). Since
we address three-agent groups, the desired formation of the
groups will be achievable if all inter-agent distances are
adjusted to the desired values because a triangular is uniquely
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determined up to congruence by assigning lengths to its three
sides. Accordingly, we assume that the information graph G
is complete. For a general group of agents, such consistency
between the overall goal of the group and the subtasks
of agents can be guaranteed by the rigidity of information
graphs.

Then, the formation control problem to be addressed in
this paper can be formulated as follows:

Problem 2.1: For a group of three agents with the com-
plete information graph G = (V, E), we assume that each
agent is modeled by a single-integrator (7) and has measure-
ments (8). Then, assuming that the subtask (10) is assigned
to all agents for the desired formation (9), design a control
law of each agent to achieve its assigned subtask.

C. Control Strategy

Consider a group of N single-integrator modeled agents on
the plane. If every agent of the group smoothly moves in the
plane, then its position is given by a differentiable function
of time. Then, since the realization p = [pT1 . . . p

T
N ]T of the

group is differentiable with respect to time, any inter-agent
distance dij = ‖pi−pj‖2 for all i, j = 1, . . . , N is also given
by a differentiable function of time. For the EDM D = [dij ]
associated with the realization p, the time derivative of D
can be defined as element-wise time derivative of D; that is,
Ḋ = [ḋij ]. Subsequently, elements of Ḋ are given by

ḋij =
∂dij
∂t

∂pi
∂t

+
∂dij
∂t

∂pj
∂t

=2‖pi − pj‖
(pi − pj)T
‖pi − pj‖

(ṗi − ṗj)

=2(pi − pj)T (ṗi − ṗj), (11)

for all i, j = 1, . . . , N .
Roughly speaking, our strategy is to control the formation

of the group by the direct control of the time-derivative of D.
That is, we aim to design a control law such that the inter-
agent distance dij is stabilized in a desired fashion so that
dij converges to d∗ij for all (i, j) ∈ E . To this aim, we need
to specify a proper desired inter-agent distance dynamics,
which is linked to the properties of the Ḋ. Hence, we define
Euclidean distance dynamics matrices as follows:

Definition 2.1 (Euclidean Distance Dynamics Matrix):
For an N × N EDM D0 embeddable in n-dimensional
Euclidean space, a function S : [0,∞) → RN×N is a
Euclidean distance dynamics matrix (EDDM) of D0 if and
only if D : [0,∞)→ RN×N that is defined as

D(t) , D0 +

∫ t

0

S(τ)dτ, ∀t ≥ 0,

where integration of S is defined as element-wise integration,
is an EDM embeddable in n-dimensional Euclidean space for
all t ≥ 0.

Thus, in the following section, we design an EDDM of a
group of three agents and then derive a control law from the
EDDM.

III. FORMATION CONTROL VIA EDDM
A. EDDM Design

First, we consider how to design an EDDM for a group
of three agents under the assumptions of Problem 2.1.
According to [17], the convex combination of any two EDMs
is also an EDM. Moreover, any realization of three points is
definitely embeddable in R2.

Motivated by such facts, we design an EDDM of the group
as follows. Let D0 and D∗ be EDMs associated with the
initial and desired formations of the group. Then, an EDDM
candidate of the group can be chosen as

S(t) =− ks(D(t)−D∗), (12)

where D denotes the EDM of the group1 at any instant t ≥ 0
and ks is a design parameter. Since the elements of S in (12)
are given as

ḋij = ks(d
∗
ij − dij), ∀(i, j) ∈ E , (13)

each inter-agent distance can be expressed as

dij = d∗ij − (d∗ij − d0ij)e−kst, ∀(i, j) ∈ E , (14)

which implies that there exists a constant α such that D =
αD∗ − (1− α)D0, where 0 ≤ α ≤ 1 for any instant t ≥ 0.
Since D is the convex combination of two EDMs and any
realization of three points is embeddable in R2, D is also an
EDM embeddable in R2 for all t ≥ 0. Consequently, S in
(12) is an EDDM of a three-agent group.

B. Control Law Design via EDDM

Next, we consider how to derive control laws from the
EDDM in (12). By using (11) and (13), the constraint for
the dynamics of agents incident to any edge (i, j) is given
by

2(pi − pj)T (ṗi − ṗj) = ks(d
∗
ij − dij), ∀(i, j) ∈ E , (15)

which associates inter-agent distance dynamics with agent
dynamics. Since every agent is modeled by a single integra-
tor, the constraint in (15) can be written as

2(pi − pj)T (ui − uj) = ksd̃ij , ∀(i, j) ∈ E , (16)

where d̃ij = dij − d∗ij .
Then, among various possible choices, constraints for the

control inputs of agents i and j can be chosen as

(pj − pi)Tui =
ks
4
d̃ji, (17)

(pi − pj)Tuj =
ks
4
d̃ij , . (18)

For any agent i of a three-agent group, the constraints for
its control law are then given as,

(pj − pi)Tui =
ks
4
d̃ji, ∀j ∈ Ni, ∀i ∈ V. (19)

If the dynamics of every agent of the group satisfies the
constraints given in (19), then the dynamics of inter-agent

1For brevity, we refer the EDM associate with the realization of a group
to the EDM of the group.
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distances will be maintained as specified in (13) and even-
tually the desired formation will be achieved.

Since every agent has exactly two neighboring agents in
the group, the constraints for the control law of agent i can
be arranged as

[
(pj − pi)T
(pk − pi)T

]
ui =

ks
4

[
d̃ji
d̃ki

]
, ∀i ∈ V, (20)

where j = i+ 1(mod 3) and k = i+ 2(mod 3). Here, mod
denotes the modulo operator. The constraints for the control
input of agent i can be interpreted as a system of two linear
equations with two free variables. Thus, the control law can
be uniquely determined if the system matrix of the equation
is non-singular. Since the system matrix consists of relative
displacements to two neighbors of agent i, the system matrix
is non-singular if and only if the two relative displacements
are linearly independent, which means pi, pj and pk are not
collinear. Hence, if pi, pj and pk are not collinear, then the
control law of agent i can be uniquely determined from (20)
as

ui =
ks
4

[
(pj − pi)T
(pk − pi)T

]−1 [
d̃ji
d̃ki

]
, ∀i ∈ V, (21)

where j = i+1(mod 3) and k = i+2(mod 3). Note that the
proposed control law (21) cannot be expressed as the linear
sum of control efforts, unlike control laws such as (1).

Remark 3.1: Although the control law is straightforwardly
derived from an EDDM of a three-agent group, such a
strategy is not directly applicable to general agent groups.
First, the convex combination of two EDMs embeddable in
Rn is an EDM embeddable in at most R2n [17]. Hence,
for general agent groups, another way to design an EDDM
is required. Second, even when an EDDM of a general
agent group is designed, derivation of a control law from
the EDDM is not straightforward. That is, if an agent has
more than two neighboring agents, then the constraints for its
control law is given as an over-determined system of linear
equations. Results on such problems can be found in [19].

Remark 3.2: Though we represent the agent position dy-
namics in the global coordinate system for the purpose of
stability analysis, it should be noted that the proposed control
law (21) is implementable in the local coordinate system of
agent i, i ∈ V . That is, the proposed control law (21) depends
only on inter-agent relative-displacements and therefore is
not dependent on the specific coordinate system.

IV. STABILITY ANALYSIS

In this section, we prove that the desired formation of a
group of three agents under the assumptions in Problem 2.1
is globally asymptotically stable by the proposed formation
control law in (21). Moreover, we show that the squared
inter-agent distances exponentially converge to the desired
values.

For a group of three agents under the assumptions in
Problem 2.1, since the control law (21) is well defined if

the formation of the group is not collinear2, we need to
investigate if the control law keeps the formation from being
collinear. The following Lemma 4.1 reveals that if the initial
and desired formations are not collinear, then the control
law (21) preserves the non-collinearity of the formation of
the group.

Lemma 4.1: For a group of three agents under the as-
sumptions of Problem 2.1, if the initial and desired forma-
tions of the group are not collinear, then the control law (21)
preserves the non-collinearity of the formation of the group.

Proof: Since the initial and desired formations of the
group are not collinear, triangular inequality holds for the
elements of EDMs of the initial and desired formation for
all distinct i, j and k in V:√

d0ik <
√
d0ij +

√
d0jk, (22)√

d∗ik <
√
d∗ij +

√
d∗jk. (23)

Furthermore, from (14), dij can be expressed as a convex
combination of d0ij and d∗ij by the control law (21):

dij = αd0ij + (1− α)d∗ij , (i, j) ∈ E , (24)

where 0 ≤ α ≤ 1. By squaring both sides and adding terms
on each side of (22) and (23), we then have

dik < dij + djk + 2(1− α)
√
d0ijd

0
jk + 2α

√
d∗ijd

∗
jk, (25)

based on (24). Furthermore, the inequality (25) and the
inequality,

(1− α)
√
d0ijd

0
jk + α

√
d∗ijd

∗
jk ≤

√
dijdjk,

which is evident from

2
√
d0ijd

∗
jk

√
d∗ijd

0
jk ≤ d0ijd∗jk + d∗ijd

0
jk,

lead to the following inequality,

dik < dij + djk + 2
√
dijdjk. (26)

Hence, an EDM generated by the convex combination of the
two EDMs are also not collinear by (26):√

dik <
√
dij +

√
djk. (27)

Since the initial formation of the group is not collinear, the
control law (21) is initially well defined. Thus, the control
law (21) preserves the non-collinearity of the formation the
group by (27) if the initial and desired formations of the
group are not collinear.

Remark 4.1: Non-collinearity of the initial and desired
formations is a general assumption in formation control
based on inter-agent distance information. Since agents do
not share a global coordinate system, if an agent and its
neighbors are collinear, then the motion of the agent will be
restricted to the collinear state. This is why non-collinearity

2For brevity here, if points of the three agents a group lie on a single
straight line, then we call the formation of the three-agent group collinear.
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Fig. 2: The formation trajectory of three-agent group by the
proposed formation law.

for general agent groups has been assumed in most past
researches such as [5]–[14].

Then, the following Theorem 4.1 confirms the global
asymptotic stability of the desired formation of the three-
agent group by the proposed control law (21).

Theorem 4.1 (Main Result): For a group of three agents
under the assumptions of Problem 2.1, if the initial and
desired formations of the group are not collinear, then the
desired formation of the group is globally asymptotically
stable by the control law (21). Furthermore, all squared inter-
agent distances exponentially converge to the desired values.

Proof: Since the initial formation is not collinear, the
control law (21) is well defined by Lemma 4.1. Then, from
(14), the overall distance error dynamics of the group is given
by ˙̃

dij = −ksd̃ij for all (i, j) ∈ E , which means that d̃ij
exponentially converges to zero. That is, the error dynamics
is globally exponentially stable; therefore, the desired forma-
tion of the group is globally asymptotically stable since the
formation of the group is uniquely determined by inter-agent
distances.

Although the control law (21) has a singularity and the
control input approaches infinity whenever the initial forma-
tion is arbitrarily close to the set of collinear formations, the
drawback can be overcome by multiplying the control law
(21) by |det(Ai)| [20].

V. SIMULATION RESULTS

In this section, we present the simulation results of
formation control of a three-agent group, comparing the
proposed control law with an existing control law proposed
in proposed in [5]–[8].

In the first simulation, for the three-agent group under the
assumptions of Problem 2.1, the initial and desired realiza-
tions were assumed to be [(0,

√
75)T (−5, 0)T (5, 0)T ]T and

[(0, 2)T (−5, 0)T (5, 0)T ]T , respectively. Fig. 1 and 2 depict
trajectories of the agents by the existing control law [5],
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(a) By an existing control law proposed in [5]–[8].
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Fig. 3: The formation trajectories of three-agent groups.

[6] and the proposed control law, respectively. Although the
relative distance between agents 2 and 3 varied unnecessarily
by the existing control law, such a phenomenon did not occur
when the proposed control law was applied.

In the second simulation, the initial and desired real-
ization were assumed to be [(0,

√
75)T (−5, 0)T (5, 0)T ]T

and [(2, 2)T (−5, 0)T (5, 0)T ]T , respectively. Fig. 3 and 4
depict trajectories and squared inter-agent distance errors, re-
spectively. Squared inter-agent distance errors exponentially
converged to zero by the proposed control law as depicted
in Fig. 4(b).

VI. CONCLUSION

In this paper, we proposed a triangular formation control
law based on inter-agent distances for a group of three single-
integrator modeled agents in the plane. Accordingly, the
group desired formation is globally asymptotically stable if
the initial and desired formations are not collinear and the
information graph is complete. Moreover, squared inter-agent
distance errors exponentially converge to zero.
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Fig. 4: The squared inter-agent distance errors of three-agent
groups.

Conflicts among control efforts in most of existing control
laws are inevitable. The proposed control law, designed by
an EDDM of the group, has a coordination property in the
sense that inter-agent distances are fully decoupled by the
law. Simulation results not only validated the effectiveness
of the proposed control law but demonstrated its coordination
capability for a group of three agents.

Although we addressed three-agent group in the plane,
the results can be extended to general cases. A control
law for a group of four single-integrator modeled agents in
three-dimensional space can be designed. Furthermore, the
extension of the results in this paper to a general group can
be found in [19].
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