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Abstract— A fastest consensus problem of topology fixed
networks has been formulated as an optimal linear iteration
problem and efficiently solved by Xiao and Boyd [1]. Con-
sidering a kind of predictive mechanism, we show that the
consensus evolution can be further accelerated while physically
maintaining the network topology. The underlaying mechanism
is that an effective prediction is able to convert the network
status along temporal dimension to that in spatial dimension
and hence induce a network with a virtually denser topology.
With this topology, an even faster consensus is expected to
occur. The result is motivated by the predictive mechanism
widely existing in biological swarms, flocks, and synchronization
networks.

Index Terms— Multi-agent systems, synchronization, consen-
sus, prediction

I. INTRODUCTION

The collective motion of autonomous individuals is cur-

rently a subject of intensive research that has potential

applications in biology, physics, and engineering. One of

the most remarkable characteristics of collective behaviors

such as flocks of birds, schools of fish, or swarms of locusts,

is the emergence of an ordered collective behaviors of the

whole group [2], [3], [4]. One essential problem is called

consensus problem [5], [6], [7], where a group of self-

propelled agents agree upon certain quantities of interest

such as attitude, position, temperature, voltage, etc. The

consensus theory of multi-agent systems has emerged as

a challenging new area of research in recent years. This

is mainly due to its broad applications in sensor network

data fusion, load balancing, swarms/flocks, unmanned air

vehicles (UAVs), attitude alignment of satellite clusters,

congestion control of communication networks, multi-agent

system (MAS) control, etc. [8], [9], [10].

Convergence rate or speed is an important performance

index in the analysis of consensus problems. Among the

early works on consensus problems, Tsitsiklis [11] proposed

a decentralized method to eliminate the disagreement within

the group and hence derived the conditions for asymptotic

agreement of all agents’ decisions. In [5], Olfati-Saber and

Murray presented a theoretical framework for consensus

problems that the second smallest interactive eigenvalue of

the interaction graph Laplacian matrix, namely algebraic
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connectivity [12], quantifies the convergent rate to consensus.

To improve the convergence rate towards consensus, they

further proposed a method based on the addition of a few

long links to a regular lattice, thus transforming it into a

small-world network [13], [14]. In [15], consensus results

were derived for several moving direction alignment models

such as the famous Vicsek model [2]. Specifically, a weak

joint-connectivity condition of the agents on some time

intervals was proved to be sufficient for moving direction

consensus. In [6], [7], the joint-connectivity condition guar-

anteeing consensus [5] was further relaxed into the existence

of a rooted directed spanning tree over time. The most recent

research includes that the existence of consensus behavior

for a class of MASs was systematically addressed in [16],

a finite-time consensus protocol based on Lyapunov method

was given in [17] to improve the consensus speed, and a

class of constrained consensus and optimization problem was

studied in [18].

In summary, the aforementioned works focused on choos-

ing proper interaction graphs possessing sufficiently strong

algebraic connectivity to guarantee consensus, but not on

finding optimal protocols to maximize the convergence rate

for a fixed network topology. The convergence rate opti-

mization problem was studied in [1], [19], [20], [21], etc.

In particular, it was claimed by Xiao and Boyd [1] that,

when the network topology is symmetric, the problem of

finding the fastest converging linear iteration can be cast

as a semidefinite programming problem, and thus can be

efficiently and globally solved. Along this research line, we

conjecture that Xiao and Boyd’s fastest consensus evolution

can be further accelerated while physically maintaining the

network topology provided that a predictive mechanism

is included. Specifically, an effective prediction is able to

convert the network status along temporal dimension to that

in spatial dimension, which corresponds to adding more

virtual connections into the network and hence substantially

intensify its algebraic connectivity. With this “denser links"

topology, a faster consensus is expected to occur. The con-

tribution of this observation is two-folds. First, it allows us

to reveal the roles of prediction mechanisms during temporal

evolution of flocking/swarming behaviors, which universally

exist in natural bio-groups. Secondly, from an industrial

application point of view, it may be applicable in some

relevant prevailing engineering areas such as autonomous

robot formations, sensor networks, and UAVs [8], [9], [10].

Each agent typically has limited communication energy or

links, and thus a predictive mechanism can used to accelerate

the emergence of coordinated motions without increasing the

communication capacity.
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As a matter of fact, the prediction mechanism is well

accepted in the biology literature that individuals typically

possess some predictive intelligence allowing them to predict

the future movements of their neighbors using the past obser-

vations [22], [23], [24], [25]. All these natural evidences have

inspired and motivated engineers to extract the underlying

mechanism of predictive intelligence to improve consensus

performance in engineering design. For instance, a predictive

mechanism was proposed by Ferrari-Trecate et al. [26], in

which decentralized model predictive control schemes were

designed by taking into account the constraints on the agents’

input to guarantee consensus under mild assumptions. This

paper provides another application instance of the prediction

mechanism in the problem of fast consensus.

The rest of this paper is organized as follows. The

main problem is formulated in Section II. The consensus

analysis for networks with general multi-integrator dynamics,

together with the predictive protocol, is given in Section III.

Specifically, the consensus evolution can be significantly

accelerated by minimizing the spectral radius through the

predictive protocol. Numerical simulation is studied in Sec-

tion IV to illustrate the effectiveness of the protocol proposed

in this paper. Finally, some conclusions are drawn in Sec-

tion V. In this paper, we let Ia ∈ R
a×a (the subscript a may

be omitted for notation concise when no confusion is caused)

be an identity matrix and 1 ∈ R
n a vector with all elements

one. The symbol ⊗ is the Kronecker product operator.

II. PROBLEM DESCRIPTION

The main objective of this paper is to find a predictive

algorithm to improve the convergence speed towards con-

sensus. The network to be studied here consists of multiple

agents with an interconnected structure represented by a

weighted directed graph (called digraph for short). In this

representation of network, the n nodes of the digraph rep-

resent the n agents of the network and a weighted edge aij

indicates the existence of a communication link from agent j
to agent i in the network. Specifically, let ξi ∈ R be the state

of the i−th agent, which is governed by an s-order dynamics

as follows

ξ
(s)
i = −

n
∑

j=1

aijps(ξi − ξj), i = 1, · · · , n, s ≥ 1 (1)

where ps(ξ) := γoξ+γ1ξ̇+· · ·+γs−1ξ
(s−1), γi ∈ R. Without

loss of generality, we let γo = 1 by assuming γo is absorbed

by aij . For the network (1), the matrix A ∈ R
n×n with

aij being its (i, j)-entry is called the associated weighted

adjacency matrix. This matrix has the following properties:

(i) its entries are nonnegative, i.e., aij ≥ 0, where aij = 0
means no communication link exists from j to i; (ii) there is

no self-cycle, i.e., aii = 0, ∀i = 1, . . . , n. With a state vector

ξ := [ξ1, · · · , ξn]T, the system (1) can be put in a compact

form of

ξ(s) = −Lps(ξ), L = {lij} ∈ R
n×n,

lii =

n
∑

l=1

ail, lij = −aij ,∀i 6= j (2)

where L is called the graph Laplacian matrix. Obviously, L
has an eigenvector 1 corresponding to an eigenvalue 0, i.e.,

L1 = 0.

In this paper, we will consider the system (2) in the

discrete-time domain with a sampling period ǫ. Using the

following Euler’s approximation ξ̇(t) = [ξ(t + ǫ) − ξ(t)]/ǫ,

· · ·, ξ(s)(t) = [ξ(s−1)(t + ǫ) − ξ(s−1)(t)]/ǫ, and denoting

x(k) := ξ(kǫ), we have

x(k + s) = f(z(k)), z(0) = zo

z(k) := [xT(k), xT(k + 1), · · · , xT(k + s − 1)]T ∈ R
ns, (3)

where

f(z(k)) := −ΦT

sz(k) − L

s−1
∑

i=0

ǫ(s−i)γiΦ
T

iz(k),

Φi = φi ⊗ I, i = 1, · · · , s. (4)

The vector φi ∈ R
s, i = 1, · · · , s, is a constant vector

representing the coefficients1 of a polynomial of (a − 1)i,

i.e.,

(a − 1)i ≡
[

1 a · · · as−1
]

φi, i = 0, · · · , s − 1,

(a − 1)s ≡
[

1 a · · · as−1
]

φs + as.

For a causal system (3), at the current instant (k+s−1)ǫ,

the next state x(k+s) is determined by the past/current state

z(k). In this paper, we will investigate an extra control algo-

rithm to improve the network performance in the following

setting:

x(k + s) = f(z(k)) + v(k + s − 1) (5)

where v(k + s − 1) is the additional input at the instant

(k + s − 1)ǫ.

The design of v(k + s − 1) naturally depends on the

past/current state z(k). However, it is conjectured that the

network performance can be further improved if a certain

predictive information of the future evolution can be utilized.

To this end, we predict the future states of the network which

evolutes from the past/current state z(k) through the nominal

dynamics (3), i.e.,

x̃(k + s − 1 + i) = f([x(k − 1 + i), · · · , x(k + s − 1),

x̃(k + s), · · · , x̃(k + s − 2 + i)), i = 1, · · · , h

where h is the prediction horizon. It is noted that the

states x̃(k + s), · · · , x̃(k + s + h − 1) calculated above

are not necessarily the real network evolution trajectory,

nevertheless, they supply valuable information for the design

of v(k + s − 1). Now, it is ready to give the structure of

v(k + s − 1) as follows:

v(k + s − 1)

= L

[

s
∑

i=1

αix(k + i − 1) +

s+h
∑

i=s+1

αix̃(k + i − 1)

]

(6)

where α = [α1, · · · , αs+h]T ∈ R
s+h represents the gains to

be determined.

1See Pascal’s triangle for such coefficients.
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Fig. 1. Schematic diagram of the network (5) with the input (6) for h = 2. At the instant t = (k + s − 1)ǫ, the network state is z(k). The prediction
x̃(k + s) is computed based on [xT(k), xT(k + 1), · · · , xT(k + s − 1)]T, and x̃(k + s + 1) based on [xT(k + 1), · · · , xT(k + s − 1), x̃T(k + s)]T. After
h(= 2) predictive steps, v(k + s − 1) can be computed. The computation is conducted between t = (k + s − 1)ǫ and t = (k + s)ǫ. As a result, the
network state is updated to z(k + 1) at the instant t = (k + s)ǫ.

Remark 2.1: An important feature of the controller (6)

is that the digraph of the network is maintained because

of the matrix L multiplying from left. To implement the

controller (6), each agent predicts the state x̃(k + s) at the

instant (k+s−1)ǫ and propagates it through the digraph, and

then predicts and propagates the next state x̃(k+s+1), until

x̃(k+s+h−1). After the h steps of predictions are complete,

the network has the sufficient information to implement the

controller (6). The schematic diagram of the network (5) with

the input (6) is given in Fig. 1 for h = 2.

The network performance to be investigated in this paper

is the speed of the network’s consensus, i.e., how fast all

agents achieve a state agreement. The precise definition is

given below.

Definition 2.1: The multi-agent network (5) is said to

reach consensus if

lim
k→∞

x(k) − ℘(k, zo)1 = 0

for a trajectory ℘(k, zo) depending on the initial state zo,

which is called the group decision trajectory.

To close this section, we list our main objective as follows.

Consensus Acceleration Problem: To find an effective

controller v(k + s − 1) in the form of (6) such that, if the

nominal network (5) with v(k+s−1) = 0 reaches consensus,

so does the network (5) with the controller v(k + s − 1).
Moreover, the group decision trajectories ℘(k, zo) for both

networks are identical and the consensus is accelerated by

the controller v(k + s − 1).

III. MAIN RESULT

To analyze the consensus performance of the network (5),

we can rewrite it in the form of

z(k + 1) = Pǫz(k) + Bv(k + s − 1) (7)

where

Pǫ =

[
[

0 I
]

−ΦT

s − L
∑s−1

i=0 ǫ(s−i)γiΦ
T

i

]

, B =

[

0(s−1)n×n

I

]

.

The following lemma will be used.

Lemma 3.1: Consider the system z(k + 1) = Pz(k),
z(0) = zo, z ∈ R

ns where the matrix P satisfies the

following condition.

C1: There exist a nonsingular matrix T ∈ R
s×s and a

block diagonal matrix J ∈ R
s×s with each block being

Jordan block corresponding to the eigenvalue 1, such

that

PR = RJ, R := T ⊗ 1 ∈ R
ns×s. (8)

If all the remaining s(n − 1) eigenvalues of P are inside

the unit circle, then,

lim
k→∞

z(k) − ℘a(zo, k) ⊗ 1 = 0 (9)

for a family of trajectories ℘a(zo, k) ∈ R
s depending on the

initial state zo.

Proof: Consider the Jordan normal form of the matrix P and

there exists a matrix N ∈ R
ns×(ns−s) such that PN = NJ̄

where J̄ ∈ R
(ns−s)×(ns−s) is a block diagonal matrix with

each block being Jordan block corresponding to the s(n−1)
eigenvalues inside the unit circle. Since the columns of R
are linearly independent, we can find a nonsingular matrix

M = [R, N ]. As a result,

P = M

[

J 0
0 J̄

]

M−1

and hence

0 = lim
k→∞

P k − M

[

Jk 0
0 J̄k

]

M−1

= lim
k→∞

P k − M

[

Jk 0
0 0

]

M−1 = lim
k→∞

P k − RJkR†
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where R† is the upper s rows of M−1, which obviously

satisfies

R†R = Is, R†P = JR†.

From the following calculation,

0 = lim
k→∞

z(k) − P kzo = lim
k→∞

z(k) − (T ⊗ 1)JkR†zo

= lim
k→∞

z(k) − TJkR†zo ⊗ 1,

we have (9) with ℘a(zo, k) = TJkR†zo.

Remark 3.1: We define ρs(P ) as the (s + 1)-th largest

norm of the ns eigenvalues of P , i.e., ρs(P ) = ‖λs+1‖
where [λ1, · · · , λns]

T is the spectrum of P with ‖λi+1‖ ≤
‖λi‖,∀i = 1, · · · , ns− 1. Obviously, in the above lemma, P
has s eigenvalues of 1 and s(n − 1) eigenvalues inside the

unit circle, then ρs(P ) is the largest norm of the s(n − 1)
eigenvalues. In other words, ρs(P ) is the spectral radius of

J̄ , which characterizes the convergence speed of J̄k → 0 as

k → ∞ and hence that of z(k) → ℘a(zo, k).

The above lemma implies a general consensus result as

follows.

Theorem 3.1: [Consensus] Consider the system z(k +
1) = Pǫz(k) as described in (7) with v(k + s − 1) = 0. If

the matrix Pǫ has s(n−1) eigenvalues inside the unit circle,

then the system achieves consensus, i.e.,

lim
k→∞

x(k) − ℘(zo, k) ⊗ 1 = 0 (10)

for a trajectory ℘(zo, k) ∈ R depending on the initial state

zo.

Proof: We define a constant matrix Q ∈ R
s×s:

Q =

[ [

0 Is−1

]

−φT

s

]

.

The following calculation

|λI − Q| = λs + [1 λ · · ·λs−1]φs = (λ − 1)s

shows that Q has an eigenvalue λ = 1 with algebraic

multiplicity s. Then, there exists a nonsingular matrix T ∈
R

s×s and a block diagonal matrix J ∈ R
s×s with each block

being Jordan block corresponding to the eigenvalue 1, such

that QT = TJ .

Next, we have

PǫR =

[
[

0 I
]

−ΦT

s − L
∑s−1

i=0 ǫ(s−i)γiΦ
T

i

]

(T ⊗ 1)

= QT ⊗ 1,

RJ = T ⊗ 1J = TJ ⊗ 1,

where the first equation comes from

[

0 I
]

(T ⊗ 1) =
[

0 Is−1

]

T ⊗ 1

(−ΦT

s − L

s−1
∑

i=0

ǫ(s−i)γiΦ
T

i)(T ⊗ 1)

= −ΦT

s(T ⊗ 1) − L
s−1
∑

i=0

ǫ(s−i)γiΦ
T

i(T ⊗ 1)

= −φT

sT ⊗ 1 − L

s−1
∑

i=0

ǫ(s−i)γiφ
T

iT ⊗ 1

= −φT

sT ⊗ 1 −

s−1
∑

i=0

ǫ(s−i)γiφ
T

iT ⊗ (L1) = −φT

sT ⊗ 1

and the second equation is direct. As a result, PǫR = RJ .

Let ℓ ∈ R
n be the left eigenvector of L corresponding to

the eigenvalue 0 satisfying ℓT
1 = 1, and R† = T−1 ⊗ ℓT. On

one hand, we have R†R = (T−1 ⊗ ℓT)(T ⊗ 1) = Is. On the

other hand, the following calculation

R†Pǫ = T−1 ⊗ ℓT

[
[

0 I
]

−ΦT

s − L
∑s−1

i=0 ǫ(s−i)γiΦ
T

i

]

= (T−1Q) ⊗ ℓT

JR† = J(T−1 ⊗ ℓT) = JT−1 ⊗ ℓT

verifies R†Pǫ = JR†.

Let ℘(zo, k) = [1 0 · · · 0]TJkR†zo =
[1 0 · · · 0]TJkT−1 ⊗ ℓTzo = [1 0 · · · 0]Qk ⊗ ℓTzo. From

Lemma 3.1, we have limk→∞ x(k)−℘(zo, k)⊗ 1 = 0. The

proof is thus complete.

Remark 3.2: The condition that the matrix Pǫ has s(n−
1) eigenvalues inside the unit circle has been examined for

some special cases. For example, when s = 1 or s = 2, we

have

Pǫ = I − ǫL or Pǫ =

[

0 I
−I − ǫ2L + ǫγ1L 2I − ǫγ1L

]

,

respectively. These single- and double-integrator networks

have been examined in [5], [7].

In what follows, we will discuss the influence caused by

the controller (6). To this end, we will rewrite (6) in a more

compact form. We note that

z̃(k + 1) = Pǫz(k)

z̃(k + i) = Pǫz̃(k + i − 1), i = 2, · · · , h

for z̃(k + i) := [xT(k + i), · · · , xT(k + s − 1), x̃T(k +
s), · · · , x̃T(k + s + i − 1)]T, i = 1, · · · , h, and hence

x̃(k + s + i − 1) = BTP i
ǫz(k), i = 1, · · · , h,

where B is given after (7). As a result, the system (7)

becomes

z(k + 1) = (Pǫ + P̄ (α))z(k) (11)

where

P̄ (α) = BL
[

ᾱT ⊗ I + BT[Pǫ, · · · , P
h
ǫ ](α̃ ⊗ I)

]

,

α := [ᾱT, α̃T]T, ᾱ := [α1, · · · , αs]
T, α̃ := [αs+1, · · · , αs+h]T.
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From the definition of P̄ , it is clear that P̄ (0) = 0. Then,

we aim to find a parameter vector α∗ as follows:

α∗ = min
α∈Rs+h

ρs(Pǫ + P̄ (α)) (12)

with which the main result on consensus acceleration is given

below.

Theorem 3.2: [Consensus Acceleration] Consider the

system (11) where the matrix Pǫ has s(n − 1) eigenvalues

inside the unit circle. Then, both the nominal system with

α = 0 and the controlled system with α = α∗ as in (12)

achieve consensus, i.e.,

lim
k→∞

x(k) − ℘(zo, k) ⊗ 1 = 0 (13)

for the same group decision trajectory ℘(zo, k) ∈ R. More-

over, the consensus is accelerated in the sense of

ρs(Pǫ + P̄ (α∗)) ≤ ρs(Pǫ)

where the equality holds only when α∗ = 0.

Proof: Because α∗ is given according to (12), it is obvious

that ρs(Pǫ + P̄ (α∗)) ≤ ρs(Pǫ) < 1. Let R and R† be

those defined in the proof of Theorem 3.1. By Lemma 3.1,

it suffices to show that PR = RJ and R†P = JR† to

prove the achievement of consensus to an identical group

decision trajectory, for P = Pǫ + P̄ (α∗). We have shown

that PǫR = RJ and R†Pǫ = JR†, so what left is to show

P̄ (α)R = 0 and R†P̄ (α) = 0. In fact, they are true from

the following calculation:

P̄ (α)R

= BL
[

ᾱT ⊗ IR + BT[Pǫ, · · · , P
h
ǫ ](α̃ ⊗ I)R

]

= BL
[

(ᾱT ⊗ I)(T ⊗ 1) + BT[Pǫ, · · · , P
h
ǫ ](α̃ ⊗ I)R

]

= BL
[

(ᾱTT ) ⊗ 1 + BT[PǫR, · · · , Ph
ǫ R](α̃ ⊗ I)

]

= BL
[

(ᾱTT ) ⊗ 1 + BT(T ⊗ 1)[J, · · · , Jh](α̃ ⊗ I)
]

= BL[(ᾱTT ) ⊗ 1 + ([0, · · · , 0, 1]T )

⊗1[J, · · · , Jh](α̃ ⊗ I)] = 0

R†P̄ (α) = (T−1 ⊗ ℓT)

BL
[

ᾱT ⊗ I + BT[Pǫ, · · · , P
h
ǫ ](α̃ ⊗ I)

]

= 0

where we note that L1 = 0 and ℓTL = 0.

Generally, it is difficult to find an analytical solution to

the optimization problem (12). Because an optimal α∗ is

found off-line and the dimension of α, i.e., s + h is usually

a small number, we can pick a set A of a reasonable size

containing the origin, and exhaustively search for the optimal

α∗ ∈ A ⊂ R
s+h. Nevertheless, for some special cases, there

exists a more effective search algorithm. For instance, we

consider the case of s = 1 as studied in [1]. Let λi 6= 0 be

the eigenvalue of L and ℓi the corresponding left eigenvector,

i.e., ℓiL = λiℓi for i = 1, · · · , n − 1. With s = 1, we have

P̄ (α) = L[P 0
ǫ , P 1

ǫ , · · · , Ph
ǫ ](α ⊗ I) and Pǫ = I − ǫL. As a

result,

ℓi[Pǫ + P̄ (α)]

= ℓi[(1 − ǫλi) + λi[1, (1 − ǫλi), · · · , ((1 − ǫλi))
h]α].

In other words,

ζi(α) := (1 − ǫλi) + λi[1, (1 − ǫλi), · · · , (1 − ǫλi)
h]α

= [1 j](giα + ξi)

is the eigenvalue of Pǫ + P̄ (α) corresponding to the left

eigenvector ℓi, where

ḡi = ℜ
{

λi[1, (1 − ǫλi), · · · , (1 − ǫλi)
h]

}

,

g̃i = ℑ
{

λi[1, (1 − ǫλi), · · · , (1 − ǫλi)
h]

}

ξ̄i = 1 − ǫℜ{λi}, ξ̃i = −ǫℑ{λi},

gi = [ḡT

i , g̃
T

i ]
T, ξi = [ξ̄i, ξ̃i]

T.

Instead of searching for an α∗ to minimize the second

largest norm of the eigenvalues as in (12), we aim to find

an α∗ to minimize the sum of the norms of all eigenvalues,

i.e.,

α∗ = min
α∈Rs+h

n−1
∑

i=1

‖ζi(α)‖2. (14)

We expect the solution to (14) is an effective replacement for

that to (12). In (14), a globally optimal α∗ can be analytically

found as follows. We note (14) can be rewritten as

α∗ = min
α∈Rs+h

n−1
∑

i=1

‖giα + ξi‖
2 = min

α∈Rs+h

‖Gα + ξ‖2 (15)

where

G = [gT

1, · · · , g
T

n−1]
T, ξ = [ξT

1, · · · , ξ
T

n−1]
T.

Now, it is ready to give the analytical solution α∗ =
−(GTG)−1GTξ.

IV. A NUMERICAL EXAMPLE

In this section, we will consider a network with a fixed

topology and compare the consensus performance of the

network with and without the additional predictive controller

(6). To describe the consensus degree in quantity, we define

a consensus index as follows

ic(k) = ‖[x1(k) − x2(k), · · · , xn−1(k) − xn(k),

xn(k) − x1(k)]‖.

Obviously, limt→∞ ic(k) = 0 as a network reaches consen-

sus.

In particular, we consider the network with 8 agents and

17 edges which is depicted in Fig. 1 of [1]. With the topology

and optimal weights given in [1], the second largest norm of

the eigenvalues is ρ1(Pǫ) = 0.6. The eigenvalues distribution

of Pǫ is given in Fig. 2 (marked as +). Consider the controller

(6) with different predictive horizons, the optimal α∗ to (14)

can be analytically calculated and the corresponding ρ1(Pǫ+
P̄ (α∗)) is listed in Table I. For example, when h = 2, we

have an optimal α∗ = [−0.0033 − 0.4142 − 0.3875]T and

ρ1(Pǫ + P̄ (α∗)) = 0.0783. The eigenvalues distribution of

Pǫ + P̄ (α∗) in also given in Fig. 2 (marked as ◦). With
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Fig. 2. Left: Consensus index (dashed line: the nominal system with v = 0;
solid line: the controlled system with v designed in (6)). Right: Eigenvalue
distribution (+: Pǫ; ◦: Pǫ + P̄ (α∗)).
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Fig. 3. Network trajectories achieving consensus. Top: the nominal system
with v = 0; Bottom: the controlled system with v designed in (6).

s = 1, we note ℘(zo, k) = ℓTx(0) in Theorem 3.1. With the

parameters in the simulation, we have

lim
k→∞

x(k) = ℓTx(0)1 = (4.84)1.

Both systems with and without (6) can achieve consensus

in the sense as shown in Fig. 3 where the system with (6)

achieves consensus more quickly. The consensus acceleration

is demonstrated through the consensus index in Fig. 2.

TABLE I

THE SECOND LARGEST NORM OF THE EIGENVALUES WITH DIFFERENT h

h 0 1 2 3

ρ1(Pǫ + P̄ (α∗)) 0.6000 0.3257 0.0783 0.0396

V. CONCLUSION

In this paper, we have developed a class of predictive

controllers for consensus networks to significantly increase

their convergence speed. The controller does not physically

change the network topology or request more communica-

tion channels. But its effectiveness has been demonstrated

through both theoretical analysis and numerical simulation.
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