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Abstract— We study the stability of an interconnected system
of Euler-Bernoulli beam and heat equation with boundary
coupling, where the boundary temperature of the heat equation
is fed as the boundary moment of the Euler-Bernoulli beam and,
in turn, the boundary angular velocity of the Euler-Bernoulli
beam is fed into the boundary heat flux of the heat equation.
We show that the spectrum of the closed-loop system consists
only of two branches: one along the real axis and the another
along two parabolas symmetric to the real axis and open to the
imaginary axis. The asymptotic expressions of both eigenvalues
and eigenfunctions are obtained. With a careful estimate for the
resolvent operator, the completeness of the root subspaces of
the system is verified. The Riesz basis property and exponential
stability of the system are then proved. Finally we show that
the semigroup, generated by the system operator, is of Gevrey
class δ > 2.

I. INTRODUCTION

Engineering applications give rise to fluid-structure inter-
actions, composite laminates in smart materials and struc-
tures, structural-acoustic systems, and other interactive phys-
ical process, which are modeled by partial differential equa-
tion (PDE) cascades or interconnected PDEs. Control design
and stability analysis for such systems have become active
over the past decades, see [5], [6], [8], [18], [19], [21], [22]
and the references therein.

The stability and controllability analysis for a heat-wave
system, arising from the fluid-structure interaction, were
treated in [21], [22]. Feedback controllers for several classes
of coupled PDEs and structural-acoustic models were intro-
duced in [8]. The stability and Riesz basis property of the
composite laminates and the sandwich beam with boundary
controls were analyzed in [18], [19].

We consider Euler-Bernoulli beam and heat equation (see
Figure 1) governed by the equations:

wtt(x, t) + wxxxx(x, t) = 0, 0 < x < 1, t > 0,
w(0, t) = w(1, t) = 0, t ≥ 0,
wxx(1, t) = 0, t ≥ 0,
wxx(0, t) = f1(t), t ≥ 0,
y1(t) = −wxt(0, t), t ≥ 0,
w(x, 0) = w0(x), 0 ≤ x ≤ 1,
wt(x, 0) = w1(x), 0 ≤ x ≤ 1,

(1)

The research of the second author was supported by the National Natural
Science Foundation of China and the Program for New Century Excellent
Talents in University of China

Miroslav Krstic is with the Department of Mechanical and Aerospace
Engineering, University of California at San Diego La Jolla, CA 92093-
0411, USA krstic@ucsd.edu

Jun-Min Wang is with the Department of Mathematics, Beijing Institute
of Technology, Beijing 100081, China wangjc@graduate.hku.hk

- -Euler-Bernoulli beam

Heat equation

f1 y1

��
f2y2

Fig. 1. Euler-Bernoulli beam (1) and heat equation (2)

and
ut(x, t)− uxx(x, t) = 0, 0 < x < 1, t > 0,
u(1, t) = 0, t ≥ 0,
ux(0, t) = f2(t), t ≥ 0,
y2(t) = −u(0, t), t ≥ 0,
u(x, 0) = u0(x), 0 ≤ x ≤ 1,

(2)

where the Euler-Bernoulli beam is hinged at the right hand,
the right side of the heat equation is kept at zero temperature,
f1(t) and f2(t) are the boundary controls applied at the left
ends of the beam and the heat respectively, y1(t) and y2(t)
are the observations, and (w0(x), w1(x)) and u0(x) are the
initial conditions. We denote the two dynamic systems with
the mappings

E : f1 7→ y1

and
H : f2 7→ y2.

It is well known that the feedback law

f1(t) = −y1(t) (3)

achieves exponential stability of the Euler-Bernoulli beam
system, as well as that the feedback law

f2(t) = −y2(t) (4)

guarantees exponential stability of the heat equation. In this
paper we study the case where the two subsystems are
interconnected via the feedback laws (see Figure 2)

f1(t) = −y2(t) (5)

and
f2(t) = y1(t). (6)

The interconnection (5), (6) can be interpreted in three
ways. The first interpretation of (5), (6) is as

f1(t) = (−Hy1)(t),
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Fig. 2. Block diagram for the closed-loop system (7)

namely, as replacing the unit-gain static feedback (3) of the
Euler-Bernoulli beam by a dynamic feedback law governed
by the heat equation. The second interpretation of (5), (6) is
as

f2(t) = (E(−y2)) (t),

namely, as replacing the unity-gain static feedback (4) of the
heat equation by a dynamic feedback law governed by the
Euler-Bernoulli beam. The third interpretation of (5), (6) is
simply as a coupled PDE system given in Figure 2.

Under the feedback laws (5), (6), the interconnected
system of Euler-Bernoulli beam and heat equation is:

wtt(x, t) + wxxxx(x, t) = 0, 0 < x < 1, t > 0,
ut(x, t)− uxx(x, t) = 0, 0 < x < 1, t > 0,
w(1, t) = wxx(1, t) = 0, t ≥ 0,
u(1, t) = 0, t ≥ 0,
w(0, t) = 0, t ≥ 0,
u(0, t) = wxx(0, t), t ≥ 0,
ux(0, t) = −wxt(0, t), t ≥ 0,
w(x, 0) = w0(x), 0 ≤ x ≤ 1,
wt(x, 0) = w1(x), 0 ≤ x ≤ 1,
u(x, 0) = u0(x), 0 ≤ x ≤ 1.

(7)

The energy function for (7) is given by

E(t) =
1

2

∫ 1

0

[
w2

t (x, t) + w2
xx(x, t) + u2(x, t)

]
dx. (8)

Then we have

d

dt
E(t) = −

∫ 1

0

u2
x(x, t)dx ≤ 0

and E(t) is non-increasing.
We provide a detailed spectral analysis for the system

(7). We show that there are two branches of eigenvalues
of (7): one is along the real axis, and another is along the
two parabolas symmetric to the real axis and open to the
imaginary axis. The latter branch of eigenvalues generated
by the beam is very similar to the case studied in [4],
where the well-posedness and exponential stability of an
Euler-Bernoulli beam with non-monotone boundary feedback
wxxx(0, t) = −kwxt(0, t), proposed early in [11], were
considered for the feedback gain k > 0 with k ̸= 1. Later
on, its Gevrey regularity was treated in [1], [14].

In this paper, the asymptotic expressions of the eigenvalues
and eigenfunctions, the Riesz basis property and exponential
stability of (7) are studied. Moreover, we show that the C0-
semigroup, generated by the system operator, is of Gevrey
class δ > 2. (Gevrey regularity is described in terms
of the bounds on all derivatives of the semigroups. The
differentiability of the Gevrey semigroup is slightly weaker
than that of an analytic semigroup [1], [14], [17].)

We proceed as follows. In Section 2 we formulate the
problem as an evolution equation in Hilbert energy space.
The C0-semigroup approach is used to prove the well-
posedness of the system. Section 3 is devoted to the spectral
analysis and the asymptotic expressions of eigenvalues and
eigenfunctions are presented. The Riesz basis property and
exponential stability are established in Section 4. Finally,
Gevrey regularity of the semigroup is obtained in Section 5.

II. WELL-POSEDNESS OF THE SYSTEM (7)

We consider the system (7) in the energy space

H = H2
L(0, 1)× L2(0, 1)× L2(0, 1)

where H2
L(0, 1) = {f | f ∈ H2(0, 1), f(0) = f(1) = 0} and

the norm in H is induced by the following inner product

⟨X1, X2⟩ =
∫ 1

0

[
f ′′
1 f

′′
2 + g1g2 + h1h2

]
dx, (9)

where Xi = (fi, gi, hi) ∈ H, i = 1, 2. Define the system
operator by

A(f, g, h) = (g,−f (4), h′′), (f, g, h) ∈ D(A),

D(A) =

 (f, g, h) ∈ (H4 ×H2
L ×H2) ∩H

h(1) = f ′′(1) = 0,
g′(0) = −h′(0), f ′′(0) = h(0)

(10)

Then (7) can be written as an evolution equation in H:{
dX(t)

dt
= AX(t), t > 0,

X(0) = X0.
(11)

where X(t) = (w(·, t), wt(·, t), u(·, t)) and X0 = (w0, w1,
u0). We have the following result directly.

Theorem 1: Let A be given by (10). Then A−1 exists
and is compact. Hence, σ(A), the spectrum of A, consists
of isolated eigenvalues of finite algebraic multiplicity only.
Moreover A is dissipative in H and A generates a C0-
semigroup eAt of contractions in H.

III. SPECTRAL ANALYSIS

Let us now consider the eigenvalue problem of A. AX =
λX , where X = (f, g, h) ∈ D(A), if and only if g(x) =
λf(x), and f, h satisfy the following eigenvalue problem:

f (4)(x) + λ2f(x) = 0,
h′′(x)− λh(x) = 0,
f(0) = f(1) = f ′′(1) = h(1) = 0,
f ′′(0) = h(0),
λf ′(0) = −h′(0).

(12)

A direct computation yields the following lemma.
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Lemma 1: Let A be defined by (10). Then for each λ ∈
σ(A), we have Reλ < 0.

Due to Lemma 1 and the fact that the eigenvalues are
symmetric about the real axis, we consider only those λ
which are located in the second quadrant of the complex
plane:

λ := iρ2, ρ ∈ S :=
{
ρ ∈ C | 0 ≤ arg ρ ≤ π

4

}
. (13)

Note that for any ρ ∈ S , we have

Re(−ρ) ≤ Re(iρ) ≤ Re(−iρ) ≤ Re(ρ), (14)

and {
Re(−ρ) = −|ρ| cos(arg ρ) ≤ −

√
2
2 |ρ| < 0,

Re(iρ) = −|ρ| sin(arg ρ) ≤ 0.
(15)

Moreover, if we denote S = S1 ∪ S2 with{
S1 := {ρ ∈ C | π

8 < arg ρ ≤ π
4 },

S2 := {ρ ∈ C | 0 ≤ arg ρ ≤ π
8 },

(16)

then we have{
Re(iρ) ≤ −|ρ| sin

(
1
8π

)
< 0, ∀ρ ∈ S1,

Re(−
√
iρ) ≤ −|ρ| cos

(
3
8π

)
< 0, ∀ρ ∈ S2.

(17)

Now substituting λ = iρ2 into (12), we have the eigenvalue
system of (7) in ρ:

f (4)(x)− ρ4f(x) = 0,
h′′(x)− iρ2h(x) = 0,
f(0) = f(1) = f ′′(1) = h(1) = 0,
f ′′(0) = h(0),
iρ2f ′(0) = −h′(0).

(18)

Let{
f(x) = c1e

ρx + c2e
−ρx + c3e

iρx + c4e
−iρx,

h(x) = d1e
√
iρx + d2e

−
√
iρx,

(19)

where cs, s = 1, 2, 3, 4 and d1, d2 are constants. Substituting
these into the boundary conditions of (18), we have

c1 + c2 + c3 + c4 = 0,

c1e
ρ + c2e

−ρ + c3e
iρ + c4e

−iρ = 0,

c1ρ
2eρ + c2ρ

2e−ρ − c3ρ
2eiρ − c4ρ

2e−iρ = 0,

d1e
√
iρ + d2e

−
√
iρ = 0,

c1ρ
2 + c2ρ

2 − c3ρ
2 − c4ρ

2 − d1 − d2 = 0,

c1iρ
3 − c2iρ

3 − c3ρ
3 + c4ρ

3

+d1
√
iρ− d2

√
iρ = 0.

(20)

Then (18) has the nontrivial solution if and only if the

characteristic determinant det∆(ρ) = 0, where ∆(ρ) =

1 1 1 1 0 0

eρ e−ρ eiρ e−iρ 0 0

ρ2eρ ρ2e−ρ −ρ2eiρ −ρ2e−iρ 0 0

0 0 0 0 e
√
iρ e−

√
iρ

ρ2 ρ2 −ρ2 −ρ2 −1 −1

iρ3 −iρ3 −ρ3 ρ3
√
iρ −

√
iρ


.

(21)

Lemma 2: Let λ = iρ2 with ρ ∈ S and let ∆(ρ) be given
by (21). Then the following asymptotic expansion holds:

−2−1ρ−5e−ρ det∆(ρ) = a1e
iρe

√
iρ + a2e

iρe−
√
iρ

+a3e
−iρe

√
iρ + a4e

−iρe−
√
iρ +O(e−|ρ|),

(22)

where 
a1 = 1 +

√
2 + i(1 +

√
2),

a2 =
√
2− 1 + i(

√
2− 1),

a3 = 1−
√
2− i(1 +

√
2),

a4 = −1−
√
2− i(

√
2− 1).

(23)

Moreover, when ρ ∈ S1 and ρ ∈ S2, det∆(ρ) has more
accurate asymptotic expansions respectively: for ρ ∈ S1,

−1

2
ρ−5e−ρeiρ det∆(ρ) = a3e

√
iρ + a4e

−
√
iρ +O(e−c1|ρ|)

(24)
and for ρ ∈ S2,

−1

2
ρ−5e−ρe−

√
iρ det∆(ρ) = a1e

iρ + a3e
−iρ +O(e−c2|ρ|)

(25)
where c1 and c2 are positive constants.

Proof: Due to the space limitation, we omit the details
of the proof here.

Theorem 2: Let A be defined by (10). The spectrum σ(A)
has two families:

σ(A) = {λ1n, n ∈ N} ∪ {λ2n, λ2n, n ∈ N}, (26)

where λ1n and λ2n have the following asymptotic expan-
sions:

λ1n = −
[
nπ + 1

2θ1
]2

+O(e−c1n),

λ2n =
[
nπ + 1

2θ2
]
ln r

+1
4

[
(2nπ + θ2)

2 − (ln r)2
]
i+O(e−c2n),

(27)

and  θ1 = π − arctan 2
√
2, θ2 = arctan

√
2
2 ,

r =
√
3

1+
√
2
< 1, ln r < 0.

(28)

Therefore,

Reλ1n,Reλ2n → −∞, as n → ∞. (29)
Proof: Since this is a direct computation, for the space

limitation, we omit the details here.
We now get the asymptotic behavior of the eigenfunctions

of A and A∗ respectively.
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Theorem 3: Let A be defined by (10), let σ(A) =
{λ1n, n ∈ N} ∪ {λ2n, λ2n, n ∈ N} be the spectrum of
A. Then there are two families of approximate normalized
eigenfunctions of A:

(i) One family {Φ1n = (f1n, λ1nf1n, h1n), n ∈ N}, where
Φ1n is the eigenfunction of A with respect to the eigenvalue
λ1n, has the following asymptotic expression: f ′′

1n(x)
λ1nf1n(x)
h1n(x)

 =


−2

√
i
[
φ1n1(x) + φ1n1(x)

]
2
√
i
[
φ1n1(x)− φ1n1(x)

]
a3φ1n2(x) + a4φ1n2(x)

 (30)

where φ1n1(x), φ1n2(x) have the following forms:{
φ1n1(x) = ei

√
i[nπ+ 1

2 θ1]x +O(e−c1n),

φ1n2(x) = ei[nπ+
1
2 θ1]x +O(e−c1n),

(31)

and a3, a4, θ1 are constants given by (23) and (28) respec-
tively;

(ii) The another family {Φ2n = (f2n, λ2nf2n, h2n),Φ2n =
(f2n, λ2nf2n, h2n), n ∈ N}, where Φ2n and Φ2n are the
eigenfunctions of A with respect to the complex conjugate
eigenvalue pairs λ2n and λ2n respectively, has the following
asymptotic expression:

 f ′′
2n

λ2nf2n
h2n

 =



φ2n1 − φ2n2

+[r
1
2 e

1
2 iθ2 − r−

1
2 e−

1
2 iθ2 ]φ2n3

iφ2n2 − iφ2n1

+i[r
1
2 e

1
2 iθ2 − r−

1
2 e−

1
2 iθ2 ]φ2n3[

r
1
2 e

1
2 iθ2 − r−

1
2 e−

1
2 iθ2

]
φ2n4


(32)

where φ2nj(x), j = 1, 2, 3, 4, are given by
φ2n1(x) = e

1
2 [ln r+(2nπ+θ2)i](1−x) +O (e−c2n) ,

φ2n2(x) = e−
1
2 [ln r+(2nπ+θ2)i](1−x) +O (e−c2n) ,

φ2n3(x) = e
1
2 [i ln r−(2nπ+θ2)]x +O (e−c2n) ,

φ2n4(x) = e
1
2

√
i[i ln r−(2nπ+θ2)]x +O (e−c2n)

(33)
and θ2, r are constants given by (28).

Since A∗, the adjoint operator of A, has the following
form:

A∗(f, g, h) = (−g, f (4), h′′), ∀(f, g, h) ∈ D(A)

D(A∗) =

 (f, g, h) ∈ (H4 ×H2
L ×H2) ∩H

h(1) = f ′′(1) = 0,
g′(0) = h′(0), f ′′(0) = h(0),

(34)
A∗ is a discrete operator ([2], p.2354), and A∗ has the
same eigenvalues as A ([10], p.26) with the same algebraic
multiplicity for the conjugate eigenvalues ([2], p.2354 or [3],
p.10). Moreover the eigenfunctions of A∗ can be deducted
as the following result..

Theorem 4: Let A∗ be defined by (34), let σ(A∗) =
σ(A) = {λ1n, n ∈ N} ∪ {λ2n, λ2n, n ∈ N}. Then there
are two families of approximate normalized eigenfunctions
of A∗:

(i) One family {Ψ1n = (f1n,−λ1nf1n, h1n), n ∈ N},
where Ψ1n is the eigenfunction of A with respect to the
eigenvalue λ1n, has the following asymptotic expression:

 f ′′
1n(x)

−λ1nf1n(x)
h1n(x)

 =


−2

√
i
[
φ1n1(x) + φ1n1(x)

]
−2

√
i
[
φ1n1(x)− φ1n1(x)

]
a3φ1n2(x) + a4φ1n2(x)


(35)

where φ1n1(x), φ1n2(x) are given by (31), and a3, a4 are
constants given by (23);

(ii) The another family {Ψ2n = (f2n,−λ2nf2n, h2n),
Ψ2n = (f2n,−λ2nf2n, h2n), n ∈ N}, where Ψ2n and Ψ2n

are the eigenfunctions of A with respect to the complex
conjugate eigenvalue pairs λ2n and λ2n respectively, has the
following asymptotic expression:

 f ′′
2n

−λ2nf2n
h2n

 =



φ2n1 − φ2n2

+[r
1
2 e

1
2 iθ2 − r−

1
2 e−

1
2 iθ2 ]φ2n3

iφ2n1 − iφ2n2

−i[r
1
2 e

1
2 iθ2 − r−

1
2 e−

1
2 iθ2 ]φ2n3[

r
1
2 e

1
2 iθ2 − r−

1
2 e−

1
2 iθ2

]
φ2n4


(36)

where φ2nj(x), j = 1, 2, 3, 4, are given by (33), and θ2, r
are constants given by (28).

IV. RIESZ BASIS PROPERTY AND EXPONENTIAL
STABILITY

In this section, we show the Riesz basis generation and
exponential stability of the system (11). Before going to show
the Riesz basis property, we first list the following two results
and due to the space limitation, we omit the proofs here.

Proposition 1: Let A be defined by (10). Then all λ ∈
σ(A) with sufficiently large moduli are algebraically simple.

Theorem 5: Let A be defined by (10). Then both the root
subspaces of A and A∗ are complete in H, that is, Sp(A∗) =
Sp(A) = H.

To establish the Riesz basis property of the system (11),
we recall the following two lemmas:

Lemma 3: An approximately normalized sequence
{ei}∞i=1 and its approximately normalized biorthogonal
sequence {e∗i }∞i=1 are Riesz bases for a Hilbert space H if
and only if ([20], pp.27)

a) both {ei}∞i=1 and {e∗i }∞i=1 are complete in H; and
b) both {ei}∞i=1 and {e∗i }∞i=1 are Bessel sequences

in H , that is, for any x ∈ H , two sequences
{⟨x, ei⟩}∞i=1, {⟨x, e∗i ⟩}∞i=1 belong to ℓ2.

Lemma 4: ([16, Lemma 3.2]) Suppose that a sequence
{µn} satisfies supn≥1 Reµn < ∞ and has asymptotics

µn = α(n+ iβ lnn)+O(1), α ̸= 0, n = 1, 2, 3, · · · (37)

where β is a real number. Then the sequence {eµnx}∞n=1 is
a Bessel sequence in L2(0, 1).
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Lemma 5: Let φ1ns(x) and φ2nj(x) s = 1, 2, j =
1, 2, 3, 4 be given by (31) and (33) respectively. Then all
{φ1ns(x)}∞n=1 and {φ2nj(x)}∞n=1, s = 1, 2, j = 1, 2, 3, 4
are Bessel sequences in L2(0, 1).

Proof: By (31), if we take α = i
√
iπ, β = 0 and

α = iπ, β = 0 in φ1n1(x) and φ1n2(x) respectively, then it
follows from Lemma 4 directly that both {φ1n1(x)}∞n=1 and
{φ1n2(x)}∞n=1 are Bessel sequences in L2(0, 1).

Similarly, by (33), if we take α = iπ, β = 0 in φ2n1(x),
α = −iπ, β = 0 in φ2n2(x), α = −π, β = 0 in φ2n3(x), and
α = −

√
iπ, β = 0 in φ2n4(x) respectively, then it follows

from Lemma 4 directly that φ2nj(x), j = 1, 2, 3, 4 are Bessel
sequences in L2(0, 1). The proof is complete.

Now we can establish the Riesz basis property of the
system (11).

Theorem 6: Let A be defined by (10). Then the general-
ized eigenfunctions of A form a Riesz basis for H.

Proof: Let σ(A) = {λ1n, λ2n, λ2n}∞n=1 be the eigen-
values of A. By Theorem 2 and Proposition 1, we have
that each eigenvalue of A with sufficient large modulus is
simple, and hence there exists an integer N > 0 such that
all λ1n, λ2n, λ2n with n ≥ N , are algebraically simple.
For n ≤ N , if the algebraic multiplicity of each λsn is
msn, s = 1, 2, we can find the highest order generalized
eigenfunction Φs,n,1 from

(A− λsn)
msnΦs,n,1 = 0 and (A− λsn)

msn−1Φs,n,1 ̸= 0.

The other lower order linearly independent generalized
eigenfunctions associated with λsn can be found through
Φs,n,j = (A − λsn)

j−1Φs,n,1, j = 2, 3, · · · ,msn. Assume
Φs,n is an eigenfunction of A corresponding to λsn with
n ≥ N . Then{{

{Φs,n,j}msn
j=1

}
n<N

∪ {Φs,n}n≥N

}2

s=1∪{{
{Φ2,n,j}m2n

j=1

}
n<N

∪
{
Φ2,n

}
n≥N

}
are all linearly independent generalized eigenfunctions of A.
Let {{Ψs,n,j}msn

j=1 }n<N ∪ {Ψs,n}n≥N be the bi-orthogonal
sequence of {{Φs,n,j}msn

j=1 }n<N} ∪ {Φs,n}n≥N . Then{{
{Ψs,n,j}msn

j=1

}
n<N

∪ {Ψs,n}n≥N

}2

s=1∪{{
{Ψ2,n,j}m2n

j=1

}
n<N

∪ {Ψ2,n}n≥N

}
are all linearly independent generalized eigenfunctions of
A∗. It is well-known that these two sequences are minimal
in H and from Theorem 5, they are also complete in H.

Hence, in order to prove the Riesz basis of the system, it
suffices to show that both eigenfunctions {Φs,n}n≥N,s=1,2

and {Ψs,n}n≥N,s=1,2 of A and A∗ respectively, are Bessel
sequences in H. Since 1 ≤ ∥Φs,n∥∥Ψs,n∥ ≤ M for
some constant M independent of n (see [20, p.19]),
we may assume without loss of generality that Φs,n =
(fsn, λsnfsn, hsn) and Ψs,n = (fsn,−λsnfsn, hsn) given
by (30), (32) and (35), (36) respectively, for all s = 1, 2, n ≥
N . It then follows from Lemma 5 and the expansions of (30),

(32) and (35), (36) that all of {f ′′
sn}∞n=N , {±λsnfsn}∞n=N

and {hsn}∞n=N , s = 1, 2, are Bessel sequences in L2(0, 1).
Therefore both of

{Φs,n}n≥N,s=1,2, {Ψs,n}n≥N,s=1,2

are also Bessel sequences in H and the result follows.

Theorem 7: Let A be defined by (10). Then the spectrum-
determined growth condition ω(A) = s(A) holds true
for the C0-semigroup eAt generated by A. Moreover, the
system (11) is exponentially stable, that is, there exist two
positive constants M and ω such that the C0-semigroup eAt

generated by A satisfies

∥eAt∥ ≤ Me−ωt. (38)
Proof: The spectrum-determined growth condition fol-

lows from Theorem 6. By Lemma 1, for each λ ∈ σ(A),
we have Reλ < 0. This, together with (26)-(29) and the
spectrum-determined growth condition, shows that eAt is
exponentially stable. The proof is complete.

V. GEVREY REGULARITY

In what follows, we show that the C0-semigroup eAt

generated by A is of a Gevrey class δ with any δ > 2.
We recall the definition.

Definition 1: ([1], [17]) A C0-semigroup T (t) is of a
Gevrey class δ > 1 for t > t0 if T (t) is infinitely differen-
tiable for t > t0 and for every compact subset K ⊂ (t0,∞)
and each θ > 0, there is a constant C = C(K, θ) such that

∥T (n)(t)∥ ≤ Cθn(n!)δ, ∀t ∈ K, n = 0, 1, 2, . . . .

In order to get the Gevrey regularity of the system (11),
we need the following theorem established by Taylor in [17,
Theorem 4, Chapter 5].

Theorem 8: Let eAt be a C0-semigroup satisfying
∥eAt∥ ≤ Meωt. Suppose that for some µ ≥ ω and α
satisfying 0 < α ≤ 1,

lim
|τ |→∞

sup |τ |α∥R(µ+ iτ,A)∥ = C < ∞, τ ∈ R.

Then eAt is of Gevrey class δ with δ > 1/α for t > 0.
Now we establish the Gevrey regularity of the system (11).

Theorem 9: Let A be defined by (10). Then the semigroup
eAt, generated by A, is of a Gevrey class δ > 2 with t0 = 0.

Proof: From Theorem 7, A generates a exponentially
stable C0-semigroup eAt in H. So, by Theorem 8, we only
need to show

lim
|τ |→∞

∥R(iτ,A)∥2 =
C

|τ |
< ∞, τ ∈ R. (39)

By Theorem 6,{{
{Φs,n,j}msn

j=1

}
n<N

∪ {Φs,n}n≥N

}2

s=1∪{{
{Φ2,n,j}m2n

j=1

}
n<N

∪
{
Φ2,n

}
n≥N

}
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forms a Riesz basis in H. Then for each Y ∈ H, we have

Y =
N−1∑
n=1

2∑
s=1

msn∑
j=1

as,n,jΦs,n,j +
∞∑

n=N

2∑
s=1

as,nΦs,n

+
N−1∑
n=1

m2n∑
j=1

b2,n,jΦ2,n,j +
∞∑

n=N

b2,nΦ2,n, (40)

and

∥Y ∥2 ≍
N−1∑
n=1

2∑
s=1

msn∑
j=1

|as,n,j |2 +
∞∑

n=N

2∑
s=1

|as,n|2

+
N−1∑
n=1

m2n∑
j=1

|b2,n,j |2 +
∞∑

n=N

|b2,n|2. (41)

Let τ ∈ R and τ > 0. Then we have iτ ∈ ρ(A), and, in
addition,

R(iτ,A)Y

=
N−1∑
n=1

2∑
s=1

msn∑
j=1

as,n,jΦs,n,j

iτ − λsn
+

∞∑
n=N

2∑
s=1

as,nΦs,n

iτ − λsn

+
N−1∑
n=1

msn∑
j=1

b2,n,jΦ2,n,j

iτ − λ2n

+
∞∑

n=N

b2,nΦ2,n

iτ − λ2n

+
N−1∑
n=1

2∑
s=1

O
(

1

|iτ − λsn|2

)
+

N−1∑
n=1

O
(

1

|iτ − λ2n|2

)
(42)

and

∥R(iτ,A)Y ∥2

≍
N−1∑
n=1

2∑
s=1

msn∑
j=1

|as,n,j |2

|iτ − λsn|2
+

∞∑
n=N

2∑
s=1

|as,n|2

|iτ − λsn|2

+
N−1∑
n=1

m2n∑
j=1

|b2,n,j |2

|iτ − λ2n|2
+

∞∑
n=N

|b2,n|2

|iτ − λ2n|2
,

(43)

where {λ1n, n ∈ N} and {λ2n, λ2n, n ∈ N}, given by (27),
are eigenvalues of A.

A direct computation yields that there is an M > 0 such
that

lim
τ→∞

∥R(iτ,A)∥2 =
M

|τ |
< ∞. (44)

On the other hand, when τ ∈ R and τ < 0, the same
argument yields

lim
τ→−∞

∥R(iτ,A)∥2 =
M

|τ |
< ∞. (45)

Therefore, this together with (44) yields (39), and by Theo-
rem 8, the semigroup eAt, generated by A, is of a Gevrey
class δ > 2 with t0 = 0. The proof is complete.
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