
  

  

Abstract— This paper utilizes a new nonlinear observer 

design technique for estimation of slip angle in automotive 

applications. Inexpensive sensors that measure yaw rate and 

lateral acceleration and are normally available for yaw stability 

control systems are used. The observer design approach utilizes 

the mean value theorem to express the nonlinear error 

dynamics as a convex combination of known matrices with time 

varying coefficients.  A modified form of the mean value 

theorem for vector nonlinear systems is presented.  The 

observer gains are then obtained by solving linear matrix 

inequalities (LMIs). The developed approach also can enable 

observer design for a large class of differentiable nonlinear 

systems with a globally (or locally) bounded Jacobian. The 

developed nonlinear observer is evaluated through 

experimental tests on a Volvo XC90 sport utility vehicle.  

Detailed experimental results show that the developed 

nonlinear observer can reliably estimate slip angle for a variety 

of test maneuvers on road surfaces with different friction 

coefficients. 

I. INTRODUCTION 

lectronic stability control (ESC) systems that prevent 

vehicles from spinning, drifting out, and rolling over 

have been developed and recently commercialized by 

several automotive manufacturers [1],[2],[3]. Many 

electronic stability control systems focus on yaw rate 

feedback for enhancing stability performance. In such cases, 

the control system attempts to ensure that the actual yaw rate 

of the vehicle tracks a desired yaw rate determined by the 

driver’s steering input [1]. However, in situations on low-

friction road surfaces, it is also beneficial to control the 

vehicle slip angle and prevent it from becoming too large, in 

addition to controlling yaw rate [1],[2],[3]. Slip angle control 

is necessary because too high a slip angle can reduce the 

ability of the tires to generate lateral forces and can 

significantly compromise the performance of the vehicle 

control system. Hence, both yaw rate and slip angle are 

variables needed for vehicle stability control. 

This paper focuses on slip angle estimation using a 

nonlinear observer design technique. To begin with, let us 

review the formal definition of slip angle. The slip angle of a 

vehicle � is the angle its velocity vector at the center of 

gravity (c.g.) makes with the longitudinal axis of the vehicle. 

The slip angle of a tire � is the angle of the velocity vector at 

the tire with the orientation of the tire [1]. Both of these 
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definitions are illustrated in Figure 1. 

 
Figure 1 Vehicle and tire slip angles. 

II. REVIEW OF SLIP ANGLE ESTIMATION METHODS 

A. Slip Angle Measurement Sensors 

A one-antenna GPS system can measure the global 

orientation of the velocity vector of the vehicle, but cannot 

measure slip angle, since orientation of the vehicle itself 

cannot be measured. However, several researchers have 

developed systems for slip angle measurement based on the 

use of an inertial measurement unit together with a one-

antenna GPS system [4]. The major problem with this 

integration approach is that bias errors in the acceleration 

measurements will cause drift in the velocity estimates. 

Another disadvantage of GPS-based systems in general is 

that they are unreliable in urban environments where tall 

buildings and urban canyons can prevent access to GPS 

satellite signals. A two-antenna GPS system can be used to 

obtain absolute orientation of the vehicle [5], [6] and to 

correct for bias errors [5]. However, two-antenna GPS 

systems are likely to cost at least $600 and will be 

considered expensive for passenger sedans by automotive 

manufacturers. 

Noncontact optical sensors for slip angle measurement 

have been developed by Corrsys–Datron [7] and others. 

These sensors use optical means to capture planar road 

texture and evaluate the motion of the vehicle by measuring 

the direction and magnitude of change with respect to the 

road texture. Such optical sensors can provide very accurate 

slip angle measurements. However, they are very expensive. 

B. Dynamic Model-Based Estimation 

A more cost-effective solution compared with optical 

sensors and GPS-based systems is to estimate slip angle 

from typical on-board sensors already available for use by 

the vehicle stability control system. For example, 

accelerometers, a gyroscope, and a steering angle sensor are 

typically used by all stability control systems.  Several 
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researchers have proposed different slip angle estimation 

methodologies based on use of the above stability control 

system sensors. Most methods can be categorized in two 

groups: kinematics-based methods [2], [3], [8] and vehicle-

model-based methods [9], [10], [11]. The kinematics-based 

methods (or integration methods) are robust against vehicle 

parameters, changes in tire-road conditions, and changes in 

driving maneuvers. However, such methods are very 

sensitive to sensor error, especially sensor bias error which 

causes a drift. The model-based methods, on the other hand, 

are relatively robust against sensor errors. However, they 

depend heavily on the accuracy of the vehicle and tire 

parameters and knowledge of road conditions. Most slip 

angle estimation methods rely on a linear vehicle model that 

can work effectively only under nominal vehicle operating 

conditions. When the vehicle is skidding and the slip angle 

becomes large, these estimation methods no longer work 

reliably.  

 In this paper, we present a method of estimating vehicle 

slip angle based on a nonlinear vehicle model. The method is 

suitable for a large range of operating conditions. The 

developed estimation algorithm was validated with 

experimental measurements on a test vehicle. It was verified 

that this slip angle estimation provides reliable slip angle 

under varying road conditions.  

III. NONLINEAR OBSERVER DESIGN 

3.1 Problem Statement 

This section presents an efficient methodology for 

designing observers for the class of nonlinear systems 

described by �� � �� � ���� � ��	�
�	 � �� � ����  (1) 

where � � �� is the state vector, 
 � �� is the input vector, 

and 	 � �� is the output measurement vector. � � ���� 

and � � ���� are appropriate matrices. The 

functions	����
�� � ��, ����
�� � ��, and ��	�
�
�� � �� � �� are nonlinear. In addition, ���� and 

���� are assumed to be differentiable. 

The observer will be assumed to be of the form �
� � ��
 � ���
� � ��	�
� � ��	 
 	
�	
 � ��
 � ���
��  (2) 

The estimation error dynamics are then seen to be given by ��� � �� 
 ����� � �� 
 ���  (3) 

where �� � � 
 �
, �� � ���� 
 ���
�, and �� � ���� 


���
�. 
Let the Lyapunov function candidate for observer design 

be defined as � � ������ where � � � and � � ����. Then, 

its derivative is �� � ������ 
 ����� � ��� 
 ������
					������� � ������ 
 ������� 
 �� �������  (4) 

3.2 Mean Value Theorem for Bounded Jacobian Systems 

In this section, we present a mathematical tool which is 

used subsequently to develop the observer gain in the next 

section. First, we present the scalar mean value theorem and 

the mean value theorem for vector functions. Then, we 

define the canonical basis for writing a vector function with 

a composition form. Lastly, we present a new modified form 

of the mean value theorem for vector functions. 

Lemma 1: Scalar Mean Value Theorem 

Let ����
� � � be a function continuous on ��� �� � � 

and differentiable on ��� ��. For ��� 	�� � ��� ��, there exists � � ��� ��  such that ����� 
 ����� � ��	
�

�

��

� ��� 
 ����   (5) 

The equation (5) can also be rewritten as ����� 
 ����� � ��� ��	�
�
���
� �� ��	�
�
���

� ��� 
 ������� �� � �� �� � �� � ��

  (6) 

where ��� �� � ��� �� and ��and �� are parameters that vary 

with the value of �� and ��. The proof of this lemma is 

available in [12]. 

Lemma 2: Mean Value Theorem for a Vector Function, [13] 

Let ����
�� � �� be a function continuous on ��� �� ��� and differentiable on a convex hull of the set ��� �� with 

a Lipschitz continuous gradient ��. For ��� �� � ��� ��, there 

exists � � ��� �� such that ����� 
 ����� � �������� 
 ���� (7) 

However, we cannot directly use the mean value theorem of 

equation (7), since � is a varying parameter that 

continuously changes with the values of 	��	���	��. Thus 

����� is an unknown and changing matrix. We need to 

modify the mean value theorem before it can be utilized. 

Lemma 3: Canonical Basis, [14] 

Let the canonical basis of the vectorial space �
 for all � � � be defined by:  
 � !�"
�#�|"
�#� � ��� � � ������ � ����� # � �� � � �%� (8) 

Let a vector function be defined by ����
�� � �� � Then, ���� � &������ � � �����'� where �����
�� � � is the ith 

component of ���� and � � ��. The vectorial space �� is 

generated by the canonical basis  �. Therefore, ���� can be 

written as: ���� � ∑ "��#�������
��� �  (9) 

Now, we are ready to state and prove a modified form of the 

mean value theorem for a vector function. 

Theorem 1: Modified Mean Value Theorem for a Vector 

Function 

Let ����
�� � �� be a function continuous on ��� �� ��� and differentiable on convex hull of the set ��� ��. For ��� �� � ��� ��, there exist �����
 and �������for # � �� � �) and * � �� � �) such that: ������ ����� � ��∑ ���
���	��������

���	� 
� �∑ ���
���	��������

���	� 
���� � ����  	������	����� � �� 	����� � 	����� � � (10) 

where 1) ���
��
 � +��,-�� -��⁄ / and ���

��� � +#),-�� -��⁄ / 
2) 0��

��
 � "��#�"���*����
��
and 0��

��� � "��#�"���*����
���. 

The proof of theorem 1 is in the appendix. 

 

Illustrative Example for Theorem 1 

The following is a 2 dimensional example of the 
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application of the mean value theorem for a higher-

dimensional function. Let ����
�� � �� be define by: ���� � ������ ������� (11) 

If we set �� � ����� ����� and �� � ����� �����, then ����� 
 ����� � �������� 
 ��� � 

��
���
���
���
�� ���� �	
�	��� �

� �

� 
�����
� ���� �	
�	��� �

� �

� 
�����
�

� �� ��� �	
�	���
� �

� 
�����
� �� ��� �	
�	���

� �

� 
�����

� � � ���� �	
�	��� �
� 
�����

� � � ���� �	
�	��� �
� 
�����

� �� �

� ��� �	
�	����
�����
� �� �

� ��� �	
�	���� 
�������
���
���
���
��

� ���������� ��������� 
(12) 

or 

������ ����� � �



� ���

���	����� � ���
���	������

����
���	����� � ���

���	�����

����
���	����� � ���

���	�����

����
���	����� � ���

���	��������
��
	 ���������� ��������� �

	������	����� � �� 	����� � 	����� � �

 (13) 

where 0��
��
 � "��#�"���*����

��
, 0��
��� � "��#�"���*����

���, 

and ���
��
 � +��,-�� -��⁄ / and ���

��� � +#),-�� -��⁄ /. 
3.3 Nonlinear Observer 

Theorem 2: Bounded Jacobian Observer for General 
Problem 

For the class of systems and observer forms described in 
equations (1) and (2), if an observer gain matrix � can be 
chosen such that ��� � ����

����
� �� � ����
����

� � �� � �̅��

���

�
� � ���� � �̅��
���
 
 ���� � ����

����
� �� �����
����

� � �� � �̅��

���

�
� � ���� � �̅��
���
 
 ���� � ����

����
� �� � ����
����

� � �� � �̅��

���

�
� � ���� � �̅��
���
 
 ���� �����

����
� �� �����
����

� � �� � �̅��

���

�
� � ���� � �̅��
���
 
 �

 

� � � (14) 

�# � �� � �)	� �* � �� � �)	���	�1 � �� � �+, 
where 

1) ���
��
 � +��,-�� -��⁄ / and ���

��� � +#),-�� -��⁄ /, 
2) 0��

��
 � "��#�"���*����
��
 and 0��

��� � "��#�"���*����
���, 

3) 2� � ) � )	��	 !"	� � "	�#�$��%	&�# '(, ) being dimension   
    of the state vector, 

4) 03����
 � 2�0��
��
 and 03����� � 2�0��

���, 

5) ���
��
 � +��,-�� -��⁄ / and  ���

��� � +#),-�� -��⁄ /, 
6) 4��

��
 � "��1�"���*����
��
and 4��

��� � "��1�"���*����
���, 

7) 2� � + � )	��	 !"	') *) 	�#�$��%	&�# '(, + being   
    dimension of the output vector,  

8) 4̅��
��
 � 2�4��

��
 and 4̅��
��� � 2�4��

���, 

then this choice of � leads to asymptotically stable estimates 
by the observer (2) for the system (1). 

The proof of theorem 2 is in the journal version of this 
paper [17].  

Corollary to Theorem 2: Bounded Jacobian Observer for 
Specified Problem 

For the class of systems and observer forms described in 
equations (1) and (2), if an observer gain matrix � can be 
chosen such that 

���� �������
��� ��� �������

��	� � �� � �̅
�
����	!	�� �!�� � �̅
�

���� � ���� ��������
��� ��� �������

��	�� �� � �̅
�
����	!	�� �!�� � �̅
�

���� � ���� ��������
��� ��� �������

��	�� �� � �̅
�
����	!	�� �!�� � �̅
�

���� � ����� �������
��� ��� �������

��	� � �� � �̅
�
����	!	�� �!�� � �̅
�

���� � �

 

� � � (15) 

�# � �� � �)	� �* � �� � �)	���	�1 � �� � �+, 
where 

1) ���
��
 � +��,-�� -��⁄ / and ���

��� � +#),-�� -��⁄ /, 
2) 0��

��
 � "��#�"���*����
��
 and 0��

��� � "��#�"���*����
���, 

3) 2̅� � ) � ) 
 6� 	��	 !"	� � "	�#�$��%	&�# '(, ) being 
dimension of the state vector, 6�  being the number of terms 

in -�� -��⁄  that equals zero, 

4) 03����
 � 2�̅0��
��
 and 03����� � 2�̅0��

���, 

5) ���
��
 � +��,-�� -��⁄ / and  ���

��� � +#),-�� -��⁄ /, 
6) 4��

��
 � "��1�"���*����
��
and 4��

��� � "��1�"���*����
���, 

7)	2�̅ � + � ) 
 6� 	��	 !"	') *) 	�#�$��%	&�# '(, + being 
dimension of the output vector, 6�  being the number of 

terms in -�� -��⁄  that equals zero,  

8) 4̅��
��
 � 2�̅4��

��
  and 4̅��
��� � 2�̅4��

���, 

then this choice of � leads to asymptotically stable estimates 
by the observer (2) for the system (1). 
A proof of the Corollary to Theorem 2 is in the appendix. 

IV. MATHEMATIC FORMULATION OF SLIP ANGLE 

ESTIMATION PROBLEM 

4.1 Vehicle Lateral Dynamics 

Consider the two-degrees-of –freedom (2-DOF) model 
used to represent the vehicle lateral dynamics as shown in 
Figure 2. The 2 DOF are the lateral translation of the vehicle 	 and the yaw rate 7 of the vehicle. The nonlinear vehicle 
lateral dynamics when the steering angle is assumed to be 
small can be formulated as +�� � +�	8 � 7

� � 9�	 � 9�� (16) :�7� � �9�	 
 �9�� (17) 

where 9�	 and 9�� are the lateral tire forces of the front and 

rear wheels respectively, 

 is longitudinal velocity and � 
and � are the distances of the front and rear tires respectively 
from the c.g. of the vehicle. 

 
Figure 2 Single track model for vehicle lateral dynamics 

It should be noted that in the presence of road bank angle, 
the lateral translational equation (16) is modified to +�	8 � 7

� � 9�	 � 9�� 
+��#)�;��, where ;� is the 

road bank angle.  Since the measured lateral acceleration 
includes the influence of the gravity component due to the 
road bank angle, the lateral acceleration measurement is 

given by �� � 	8 � 7

 � ��#)�;��.  Hence, the equation +�� � 9�	 � 9�� holds even in the presence of road bank 

angle.  Road bank angle also does not affect equation (17). 

	 

� 

� 

9
� 

9�� 

�� 7 

� 

� 

9�	 

9
	 

�	 
� � 
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 The lateral tire force for each of the front and rear tires is 
computed from a lateral tire model for parabolic normal 
pressure distribution [1]: 9� � <9�	�+=� 
 +=�����)��� � =�����	 = �

�������

����
 (18) 

where < is tire-road friction coefficient, 9� is the vertical 
force on the tire, �� is half-length of contact patch, �� is 
half-width of contact patch, and 1 is isotropic stiffness of 
tire elements per unit area of the belt surface. Assume that 
the variables <�9��	and = are known and that they change 
slowly. This is a reasonable assumption.  The variable = is 
indeed a constant dependent only on tire parameters.  While 
the variable 9� does change somewhat with longitudinal 
acceleration and deceleration, this change is slow and can be 
estimated quite easily.  The friction coefficient <  can be 
estimated from the longitudinal dynamics of the vehicle [1], 
[16]. The equation (18) can then be simplified as 9� � ��� 
 ������)��� � ����� (19) 

Note: It is also possible to use other nonlinear lateral tire 
models for the problem, such as the Pacejka Magic Formula 
tire model [1]. 

The slip angles at the front and rear tires can be related to 
the body slip angle and the yaw rate using the following 
linear approximations: �	 � � 
	>� �

��

��
? � �� �

��

��

 �  (20) 

where �	 and �� are slip angles of the front and rear wheels 

respectively and � is vehicle body slip angle.  Including the 

tire model, the vehicle dynamic model can be written as +�� � +�	8 � 7

� � ��	�	 � ����� � 	@,�	/ � @����:�7� � ���	�	 
 ������ � �@,�	/ 
 �@����
 (21) 

where @,�	/ � 
��	�	���)��	� � ��	�	� and @���� �


�����
���)���� � �����

�� 
We need to rewrite equation (21) in the standard system 

dynamics format described by equation (1). It is possible to 

choose � and 7 as the state vector and write equation (21) in 

the form of equation (1). However, the nonlinearities of the 

system will become too complicated, if these state variables 

are chosen. To overcome this problem, we choose the slip 

angles at the front and rear tires  �	  and �� as the states. 

Then, the system equations can be written as 

������ 
 � �



��! "�# � $ �

#�%��&�"�
' ( "�# � $ �

#$%�
&�"�
)

� ( "�# � $ �
#$%��&�"�

) ! "�# � $ �
$�%�
&�"�

'���
�� ����


�

� �


�� "�# � $� � �

�"�� "�# � $� � �
�"���

�� * 		�#�

+ � �



�� #�&�"�

,���
 � #$&�"�
,��



�
#$&�"�

,���
 � $�&�"�
,��
����

��
�

 (22) 

 For the output, we can measure �� using an accelerometer 

and 7 by a gyroscope. Also, we know the steering input, �� 
and the steering rate input, ��. These are known inputs. Then, 

the output equation can be written as 

�-�-�
� � ./ � � ��

���
� 	#�

0 � *� � ��

���
� � ��

���
�

���
�

���
�

+ ����

� � . �

�����

�
�

�����

�

0�  (23) 

Then, the slip angle of the vehicle can be computed from the 

slips angles of the front and rear tires as 

� � � 
	>�	 �
��

��
? or � �

��

��

 �� � (24) 

It is desired to use a nonlinear observer based on the above 

nonlinear vehicle model to estimate slip angle.  We use the 

observer results developed in section 3 to design the 

nonlinear observer. 

4.2 Observer Design for Slip Angle Estimation 

For the dynamic equations, the scaling factor 2�̅ is 4. 
(2�̅ � ) � ) 
 6� � , � , 
 � � -��	The term ���� is 

���� � A
 ��

����
@,.	/ �

��

����
@����

�
��

����
@,.	/ 


��

����
@����B  (25) 

where @,�	/ � 
��	�	���)��	� � ��	�	� and @���� �


�����
���)���� � �����

�� 
The jacobian of the nonlinear function ���� is computed 

to find 03��
��
  and 03��

���. 

For the measurement equation, the scaling factor 2�̅  is 2.  

Since ����� � �, the scaling factor 2�̅ is less than + � ). 

(2�̅ � 	, � , 
 , � ,�� The nonlinear function ���� is 

���� � C� � !�"

�
�

�#!�$

�
D� �  (26) 

The jacobian of the nonlinear function ���� is computed 

to find 4̅��
��
  and 4̅��

���. 

Next, we solve equations (15) for the observer gain.  

Using the LMI toolbox in Matlab, the example of observer 

gain for high friction surface is found to be � �C
-��/,,- ��01-2

--�23-� ,�2/+1
D. (Note: The LMI toolbox in Matlab 

provides only one gain, though theoretically many solutions 

can exist to the LMI (15).  If a faster convergence rate is 

desired, the RHS in equation (15) could be replaced by a 

negative definite matrix instead of zero.) 

V. EXPERIMENTAL SET UP 

The test vehicle used for the experimental evaluation is a 

Volvo XC90 sport utility vehicle. Vehicle testing was 

conducted at the Eaton Proving Ground in Marshall, 

Michigan. A MicroAutoBox from dSPACE was used for 

real-time data acquisition. A real-time GPS system, RT3000, 

from Oxford Technical Solutions was used for these tests to 

accurately measure the vehicle slip angle for comparison 

with the performance of the slip angle estimation algorithm. 

The specification of slip angle estimates from this system 

according to the manufacturer is 0.15 degrees [15]. The GPS 

outputs were connected to the MicroAutoBox via CAN 

communication at the baud rate of 0.5 Mbits/sec. To obtain 

objective test results, the vehicle was instrumented to record 

the relevant values from both CAN network and GPS. The 

sampling time is set at 2 milliseconds.  A photograph of the 

test vehicle is shown in Figure 3. 

The signals required by the observer (2) are the lateral 

acceleration, longitudinal velocity, yaw rate, steering angle 

and steering rate. The steering angle was obtained over the 

CAN network bus of the Volvo XC90. The steering rate was 

obtained by differentiating the steering angle. The other 
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variables were obtained from the RT3000 system. While the 

RT3000 system is an expensive 6 axis inertial system 

combined with GPS, the observer developed in this paper 

utilized only raw lateral acceleration, longitudinal velocity 

and yaw rate signals. 

 
Figure 3 The Volvo XC90 test vehicle with GPS system 

VI. EXPERIMENTAL EVALUATION OF SLIP ANGLE 

ESTIMATION 

The estimated slip angle was compared with the slip angle 
measured using the accurate GPS-INS system. Figure 4 
shows the experimental results of a double lane-change 
maneuver on a high friction road with the vehicle speed at 
70 mph. The figure shows that the estimated slip angle is 
able to match the slip angle obtained from the GPS system 
very well. Figure 5 shows the experimental results of a 
random driving maneuver on a high friction road surface. It 
can be seen again that the nonlinear observer provides 
accurate and drift-free estimates of the slip angle. 

 
Figure 4 Slip angle estimation result in double lane change test on high 

friction road surface 

 
Figure 5 Slip angle estimation result in random driving test 

Figures 6 and 7 show the experimental results of a double 
lane-change maneuver on a low friction road surface ( < � ��+3) with the vehicle speed at 35 mph. Figure 6 shows 
the relation between rear slip angle and total lateral force of 
the vehicle. The figure indicates that the total lateral force is 
proportional to the slip angle when the slip angle is small 
(� 4 ���1�. The maximum lateral force is 9000 N. After � � ���1, the lateral fire force saturates. In this case, it 

implies that a linear tire force model cannot be used for this 
problem. If the model is described by a linear tire force 
model, it will cause large errors in the slip angle estimation. 
Figure 7 shows the estimated slip angle on the low friction 
road. 

 
Figure 6 Rear Slip Angle vs. Total Lateral Force �1#�
 result in double 

lane change test on low friction road surface 

 
Figure 7 Slip angle estimation result in double lane change test on low 

friction road surface 

The estimation errors for slip angle in the 3 different 
maneuvers are shown in Table 1. The table shows that the 
RMS errors are less than 0.15 degrees on high friction road 
and approximately 1.4 degrees on icy road.  It should be 
noted that the slip angle values are far higher on the icy road 
and hence the RMS error as a percentage of slip angle range 
is of the same order as on the high friction road. 

Table 1 Estimation Errors for Experimental Tests 
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VII. CONCLUSION 

This paper developed a new nonlinear observer design 

technique for estimation of slip angle using inexpensive 

sensors normally available for yaw stability control 

applications. The approach utilized is to use the mean value 

theorem to express the nonlinear error dynamics as a convex 

combination of known matrices with time varying 

coefficients. The observer gains are then obtained by solving 

linear matrix inequalities (LMIs). The developed approach 

can enable observer design for a large class of differentiable 

nonlinear systems with a globally (or locally) bounded 
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Jacobian. The developed nonlinear observer for slip angle 

estimation is evaluated through experimental tests on a 

Volvo XC90 sport utility. The experimental results show 

that the developed nonlinear observer can reliably estimate 

slip angle for a variety of test maneuvers.  

APPENDIX 

The Proof of Theorem 1: Lemma 2 shows that ������ ����� � ���%���� � ��� �
23�� 34�⁄ 3�� 34�⁄ � 3�� 34�⁄3�� 34�⁄

�3�� 34�⁄
3�� 34�⁄

�3�� 34�⁄
�

�

�

3�� 34�⁄
�3�� 34�⁄ 6 ���� � �����  (27) 

Lemma 1 shows that each derivative function can be 

replaced with a convex combination of 2 values of the 

derivative of the function. Hence, the derivative function, -����� -��⁄ , can be replaced with 
.	�
.
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.
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.
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  (28) 

where 5 � �5�� 5�� � � 5�� and E � �E�� E�� � � E��. �� 5�� E� � ��� �� 
To satisfy lemma 1, the values of  -���5� -��⁄  and -���E� -��⁄  need to be chosen such that 
���
���

��� � ���
��� � 1#4 (���

���
) � ���� ���

���
�7� � ���

��� � 189 (���
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)�   (29) 

Note: One can easily show that if either ���
��
 4+��,F�� F��⁄ / or ���

��� � +#),F�� F��⁄ / for �� � ��� ��, 
then there are no �����
and ������ that will satisfy equation 

(25) with the constraints �����
 � ������ � � and �����
 ������� � �. 

Then, the equation (28) can be rewritten as 
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where ���
��
 � +��,-�� -��⁄ / and ���

��� � +#),-�� -��⁄ /. 
Note: �����
 � ������ are parameters that vary with the value of �� and ��.  Hence, the equation (27) can be rewritten as 
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Use the canonical basis from lemma 3. Then ����� 
 ����� 

can be written as ������ ����� � ��∑ ���
���	��������

���	� 
� �∑ ���
���	��������

���	� 
���� � ����  	������	����� � �� 	����� � 	����� � � (32) 

where 0��
��
 � "��#�"���*����

��

 and 0��

��� � "��#�"���*����
���. 

The Proof of Corollary to Theorem 2: 
The proof of the Corollary follows along the same lines as 

the proof of theorem 2 in [17], except for the definition of 
the scaling factor 2�̅  and 2�̅. 

In the general problem, if all of terms in -�� -��⁄  are not 

zero, then ∑ ,�����
 �	������/ � ) � ) � 2����
�����  or if all of 

terms in -�� -��⁄  are not zero, then ∑ ,G����
 � G�����/���
����� �+ � ) � 2� . However, if in some problem, there exist -�� -��⁄ � � or -�� -��⁄ � �, then ∑ ,�����
 �	������/���

�����  

is less than 2� or ∑ ,G����
 � G�����/���
�����  is less that 2�. We 

need to define new scaling factors, 2�̅  and 2�̅. ∑ ,�����
 �	������/ � ) � ) 
 6� � 2�̅���
�����   (33) ∑ ,G����
 � G�����/���
����� � + � ) 
 6� � 2̅�   (34) 

where 6�  is number of terms in -�� -��⁄  that equals zero 

and 6�  is number of terms in -�� -��⁄  that equals zero. 

Now, we use 2�̅  and 2�̅ instead of 2� and 2� to complete the 

proof. 
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