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Abstract—This paper develops a real-time capacitance ratio 

estimation system for a novel MEMS tactile sensor that can 

provide elasticity measurement of a variety of target objects. 

The tactile sensor is developed by this team for in-vivo tissue 

elasticity measurements and can be installed on a hand-held 

probe or on minimally invasive surgical instruments. The sensor 

readout consists of two channels of capacitance values and the 

ratio of these capacitance values needs to be reliably estimated 

in real-time. The proposed estimation algorithm utilizes a 

recursive least squares method with adaptive forgetting factors, 

which provides reliable elasticity measurement of polymer 

specimens and quickly detects changes in elasticity.  Extensive 

experimental results are presented. 

I. INTRODUCTION 

LASTICTY MEASUREMENT is important in 

biomedical sensing, robotics, and various industrial 

applications. For instance, in robotic manipulations, 

knowledge of elasticity of the targeted object would enable 

better control of the contact force in a precision grasp [1].  In 

biomedical applications, in-vivo measurement of tissue 

elasticity can facilitate doctors to reach a reliable palpation 

diagnosis [2], to evaluate the health of tissue [3], and to 

provide tactile perception during a minimally invasive 

surgery (MIS) [4] . 

Although in-vivo measurement of tissue elasticity is 

essential in physical examination, very few examples of 

elasticity sensors have been previously developed. A 

commonly used approach for elasticity measurement is to 

measure the force-displacement response of the tissue under 

examination. However, this type of device always includes an 

actuating element to provide a controlled deformation or 

force on the tissue, which becomes an obstacle for 

miniaturization of the device and also increases the 

fabrication complexity.  This approach would become even 

more challenging in applications within a confined space (e.g. 

MIS). 

A novel tactile sensor has been developed by this team for 

elasticity measurement [5-7]. This novel approach enables 

elasticity measurement based on the relative deflection of two 

sensing diaphragms. These two diaphragms are designed to 

have different stiffness values. Neither displacement nor 

applied load needs to be measured during the contact. Further, 
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prototypes of sensors have been fabricated through both a 

surface micromachining process [5, 6] and a polymer MEMS 

process [7]. The sizes of the prototype sensors can be 

fabricated to be of the order of 1mm x1mm.  

The prototype sensors are designed to generate capacitance 

signals for the two sensing elements. The ratio of these two 

capacitance signals is used to calculate the elasticity property 

of the targeted object. As a tactile sensor operating in a 

hand-held mode, however, interference from hand vibration 

would increase the noise level of the readouts. The real-time 

identification of the capacitance ratio therefore can be very 

challenging. In order to provide a reliable estimation of the 

capacitance ratio, a recursive least square algorithm is 

developed in this paper to process the two capacitance 

signals. Further, an adaptive algorithm for choosing 

forgetting factors is also employed to achieve fast detection of 

elasticity change, which is an important property during 

in-vivo tissue characterization. This paper will discuss the 

design and fabrication of a low cost prototype sensor, design 

of the identification algorithm, and experimental 

characterization of the estimation system by measurements 

on a variety of rubber specimens. 

II.  SENSOR DESIGN AND FABRICATION 

The tactile sensor is composed of two sensing bumps with 

different stiffness values. As shown in Fig. 1, one of the 

bumps of the sensor is designed to be harder than the other. 

Both the bumps are integrated on a solid substrate. During the 

contact with the targeted object with a stiffness of ko, the 

softer bump (ks) deforms more than its harder counterpart 

(kh). Meanwhile, the contact area of the targeted object also 

undergoes some deflection due to the contact force.  

 

 
 

Fig.1. Schematic diagram of the sensing concept. 
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Since both sensing elements share a solid substrate, the 

compatibility condition of the contact can be derived as 

shown below. 
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where δx1 and δx2 represent the overall displacement of  the 

senor, whereas F1 and F2 are contact forces distributed on the 

two sensing bumps.  The stiffness of the targeted object can 

be therefore calculated from (2)  
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where rF represents the ratio of the contact force applied on 

the two bumps (F1/F2), while kh and ks represent stiffness 

values of the two bumps, respectively. To precisely measure 

the contact force on each bump, two force gauges with 

capacitance readouts are integrated underneath the bumps. 

The ratio of capacitance readouts            can therefore 

be used to replace the force ratio in (2). Furthermore, a more 

precise model has been discussed in our previous work [6]. In 

that model, the targeted object can be roughly modeled as a 

semi-infinite space when the dimensions of the sensing 

bumps are much smaller than the object. In this contact 

scenario, the capacitance ratio rC can be used as a direct 

measurement of elasticity (instead of stiffness) of the object. 

This parameter rC will be identified using the developed 

estimation algorithm as described in the next section.  

In order to understand how the capacitance readouts are 

generated, a schematic diagram of the sensor structure is 

shown in Fig. 2. The capacitors are constituted by a top 

electrode layer as a common electrode and two separated 

electrodes on the bottom. An insulator layer is sandwiched 

between two electrodes as the dielectric. Two bumps are 

mounted on top of the capacitors serving as the contact 

interface.  The two bumps are designed to have different 

stiffness values. 

 
Fig. 2.Schematic diagram of sensor structure. 

 

A brief description of the fabrication process is shown in 

Fig. 3.  As can be seen, the fabrication of the top electrode 

starts by patterning the copper layer on a polyimide substrate 

(DuPont
TM

 Pyralux
®

 AC 182500R). To fabricate the bumps, 

an acrylic mold with concaves for bumps is first made by a 

computer-controlled driller. Urethane rubber compound 

(PMC-724, Smooth-On Inc.) is then dripped on the substrate 

to fill the concaves. The hardness values of this rubber 

compound are carefully adjusted to Shore 40A and Shore 6A, 

respectively, thus creating a hard and a soft bump. A blade is 

used to squeegee the substrate surface to remove the extra 

rubber compound. These bumps should then be aligned and 

bonded with the polyimide substrate within half an hour 

before the rubber curing. After the bonding, the bumps are 

left for curing overnight and then peeled off from the mold. 

The final stage is to bond the top and bottom electrode. The 

bottom electrodes are designed and fabricated using a printed 

circuit board (PCB) manufacturer. Rubber compound with 

the hardness of Shore 40A is then poured onto the bottom 

electrode. Finally, the top electrode and the bottom electrode 

are aligned and bonded together to complete the sensor 

fabrication. 

 
Fig. 3. Fabrication of the tactile sensor: (a) top electrode (b) bumps (c) 

bonding of top electrode and bumps (d) bonding of top electrode and bottom 

electrode, completed sensor. 
 

 
Fig. 4. (a) Fabricated tactile sensor (b) tactile sensor attached on a plastic 

probe. 
 

In order to generate the capacitance readouts, a capacitance 

to digital converter (CDC) chip (AD7746, Analog Devices, 

Inc) is integrated on the PCB board together with the tactile 

sensor as shown in Fig. 4(a). The capacitance values are 

converted to digital signals, which are then transmitted to a 

laptop through an interface AD7746 evaluation kit. Further, 

to prevent electromagnetic interference (EMI) caused by 

moving the sensor towards conductors or objects with charge 

(e.g. tissue), a shielding layer is attached on the sensor 
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surface. The shielded sensor is finally attached on a plastic 

probe for operation in a handheld mode as shown in Fig. 4(b).  

III. IDENTIFICATION ALGORITHM DESIGN 

The fabricated tactile sensor is tested by pushing against a 

variety of sorbothane rubber specimens (Part No. 8450K3, 

McMaster-Carr) as shown in Fig. 5. The Young’s moduli of 

the rubber specimens are listed in Table I.  These values of 

Young’s modulus are measured by a rheometer (RMS 800, 

Rheometrics Scientific). As aforementioned, the sensor 

readout is composed of two channels of capacitance values, 

and the ratio (rc) can be used to represent the elasticity of the 

targeted rubber sample. However, due to vibrations of the 

hand holding the sensor probe, a considerable amount of 

interference can be observed at the capacitance signals, and 

therefore results in a non-stable value of capacitance ratio. To 

alleviate this problem, an algorithm using RLS method 

enhanced by adaptive forgetting factors is developed. 

 

 
Fig. 5. Tactile sensor pushing against rubber specimens in a handheld mode. 
 

TABLE I YOUNG’S MODULI OF THE SORBOTHANE RUBBER SPECIMENS FOR 

THE SENSOR TESTS 

Shore scale Young’s Modulus (MPa) 

30 OO 0.143 
40 OO 0.186 

50 OO 0.289 

60 OO 0.405 
70 OO 0.515 

30 A 0.87 

40 A 1.54 

50 A 2.18 

60 A 3.46 

70 A 8.68 

 

A. Recursive Least-Squares (RLS) Identification 

The capacitance readouts can be formulated in an 

identification form shown in (3). 
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where C1(k) and C2(k) represent the capacitance values which 

can be viewed as the output and input data for an dynamic 

identification model. It can also be seen that rc(k) serves as the 

estimated parameter, while e(k) is the identification error. 

 By implementing a RLS algorithm[8-10], the unknown 

parameter rc(k) can be iteratively updated at each sampling 

time. Through this process, the sum of estimation errors can 

be minimized. The procedure of identifying the capacitance 

ratio can be described in the following steps. 

Step 1: Read the sensor readouts, C1(k) and C2(k). 

Step 2: Calculate the identification error, e(k), which is the 

difference between C1(k) at this sample and the estimated 

C1(k), which is the product of C2(k) and the estimated ratio in 

previous sample rc(k-1), i.e. 
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Step 3: Calculate the update gain vector, K(k), as 
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and calculate the covariance matrix, P(k), using  
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Step 4: Update the estimated parameter, rc(k), as 
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The parameter, λ, in the above equations is known as the 

forgetting factor. By properly adjusting λ, the influence of old 

data, which may no longer be relevant to the model, can be 

suppressed. The use of the forgetting factor not only prevents 

a covariance wind-up problem, but also allows a fast tracking 

of the changes in process. A typical value of the forgetting 

factor is suggested to be in the interval 0.9 to 1 [8]. It can also 

be intuitively understood that the RLS algorithm utilizes a 

batch of          λ) samples to update the current 

estimation. When λ = 1, all the previous data collected will be 

used.  A smaller λ value usually results in a faster 

convergence of estimates. However, a reduced value of λ 

increases the sensitivity of estimation to measurement noise, 

which may cause oscillatory estimation. Therefore a tradeoff 

between the fast-tracking capability and high immunity to 

noise should be considered in the system design, which will 

be addressed next. 

B. Fast Convergence Rate versus Immunity to Noise 

To illustrate how the size of the forgetting factor can 

influence the performance of the ordinary RLS algorithm, the 

estimation is conducted during sensor touch on two rubber 

samples, 30OO and 30A, respectively, as shown in Fig. 6. 

As can be seen, with a relatively large forgetting factor (λ = 

0.995), the estimation of parameter is considerably stable 

without observable oscillations after it converges, which is 

appealing for good parameter estimation. On the other hand, a 

smaller forgetting factor (λ=0.9) results in a faster 

convergence at the cost of larger oscillations at steady state. 
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Fig. 6. Sensor readouts on sample 30OO,  estimation using ordinary RLS : (a) 
λ = 0.995 (b) λ = 0.9. 

 

C. RLS with Adaptive Forgetting Factors 

As discussed in the previous sub-section, it would be 

beneficial to implement an adaptive algorithm for the 

forgetting factor to achieve both the favorable properties of 

fast-tracking and immunity to measurement noise. Hence a 

change detection algorithm is necessary to differentiate 

between transient states and the steady state. For instance, in 

[8], a change detection algorithm was used to detect the 

abrupt change of friction coefficient between the automobile 

tire and a snow covered road. This algorithm was used to 

trigger the amplification of the covariance matrix (gain 

matrix) to adaptively control the convergence rate. Similarly, 

in our case, a change detection of capacitance ratio would 

facilitate the adjustment of forgetting factors. The CUSUM 

[11, 12] change detection algorithm is chosen for its 

simplicity. The identification error e(k) is monitored 

throughout the period of contact. An alarm is signaled if the 

identification error has been larger than a threshold for a 

certain amount of time. The recursive formula of this method 

is shown below. 
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As can be seen, given the identification error   calculated 

in an ordinary RLS as the input, an output alarm signal can be 

generated. If the alarm value      , a smaller forgetting 

factor will be chosen in the RLS. Here, the threshold value h 

is used to determine when the forgetting factor should be 

adjusted in the condition that for how long an alarm signal has 

been on. The other threshold value d in the above equation is 

used to judge when to turn on the alarm. This makes the 

process ignore errors smaller than d. If the estimation system 

can swiftly track any abrupt change in capacitance ratio, the 

identification error will drop below a certain level, thus 

resulting in a zero value of the alarm signal. At this stage, the 

alarm is turned back off and a larger forgetting factor is 

chosen for its high immunity to noise at a steady-state. 

 

 

 

 
Fig. 7. Sensor readouts on sample 70OO: (a) esimation of capacitance ratio 

using RLS with adaptive forgetting factors (b) identification error and alarm 

signal (c) comparison of estimation results of ordinary RLS with λ = 0.995, λ 
= 0.9, and adaptive forgetting factors. 

 

 To demonstrate this algorithm, an experimental test on 

touching sample 70OO is conducted and the results are 
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illustrated in Fig. 7. As shown in Fig. 7(a), capacitance values 

of the hard and soft elements are plotted and the estimation is 

performed by using RLS with adaptive forgetting factors. It 

can be seen that contact occurs at around the 150
th

 sample, 

where the estimation starts. At the beginning the estimation 

error is larger than 0.01, which triggered the alarm signal 

[Fig. 7(b)]. When the alarm signal is on for a while, a 

relatively small forgetting factor (λ=0.9) is chosen. After the 

identification error drops to a certain level, the alarm signal is 

turned off, and a larger forgetting factor (λ=0.995) is then 

applied throughout the rest of estimation process. To illustrate 

the benefit of this adaptive algorithm, estimation results of 

ordinary RLS with λ = 0.995, λ = 0.9, and adaptive forgetting 

factors are shown in Fig. 7(c). As shown in the figure, the 

etimation results generated by λ=0.9 show the favarable 

propety of fast-tracking of changes. However, it is susceptible 

to measurement noise, which makes it difficult to identify the 

true value of the capacitance ratio. The alogrithm of using 

adaptive forgetting factor inherits the desirable property of 

fast convergence to a true value at the beginning stage, and 

then trends to the curve of  λ=0.995, which holds a relatively 

constant value at the steady state. 

D. Estimations on Multiple Rubber Samples by Utilizing 

RLS with Adaptive Forgetting Factors 

To further demonstrate the performance of the estimation 

system, experimental tests of touching multiple rubber 

samples consecutively one by one are performed.  As shown 

in Fig. 8, rubber sample 30OO, 70OO, 40A and 70A are 

touched consecutively by the tactile sensor. 

The test results are shown in Fig. 9. A real-time estimation 

of capacitance ratio can be generated by using the developed 

algorithm. For each touch, 250 samples of the data are 

utilized for the estimation right after the contact, so that the 

same estimation time can be applied for all the tests. When 

the estimation is completed, the capacitance ratio is then set 

back to one to maintain the same initial value for all the 

estimations.  As can be seen, the estimated ratio increases as 

the sample under contact becomes harder. The size of alarm 

signal also grows larger for harder samples, which is likely 

due to the larger initial identification error when touching 

harder samples. 

 

 
Fig. 8. Push the tactile sensor towards four rubber specimens on by one 

 

 
Fig. 9. Sensor readouts, estimation of capacitance ratio, and alarm signal 

during the test on four different samples (30OO, 70OO, 40A and 70A, from 

soft to hard). 

 
Fig. 10. Estimated capacitance ratio versus Young’s modulus of the rubber 

sample. Inserts: data plotted in lin-log scale. 
 

IV. CHARACTERIZATION OF TACTILE SENSOR USING 

RUBBER SPECIMENS 

With the developed estimation algorithm, the tactile sensor 

is characterized by touching a variety of rubber specimens. 

Each rubber sample has been touched four times and the 

estimated capacitance ratio for each test has been recorded. 

As shown in Fig. 10, the capacitance ratio shows an overall 

uptrend as the rubber sample becomes harder. It can also be 

observed that some measurements have a considerable 

amount of standard deviation as depicted by error bars on the 

plot. This variation is likely due to oblique contact between 

the sensor and rubber samples as well as the nonlinearity of 

the capacitance response to the applied load on the bump, 

which cannot be solved solely by using the developed 

estimation algorithm. Our tests also show that these variations 

can be significantly reduced by mounting the sensor on a test 

stage and applying constant loads throughout all the tests. 

However, this stage test is not within the scope of this paper, 
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since this paper focuses on developing estimation algorithms 

for a handheld device. 

 

 
Fig. 11. Estimated capacitance ratio for all the rubber samples. 

 

Although the variation in measurement of a handheld 

tactile sensor cannot be completely eliminated by using the 

developed estimation algorithm, the estimation system also 

provides a quantitative criterion to determine the reliability of 

the estimated value. In other words, the estimation system can 

also be used to verify which test provides a more reliable 

value of the capacitance ratio. This decision can be 

accomplished by comparing the covariance (P) of the 

estimation among several tests. It is likely that a smaller 

covariance will represent a more reliable estimation. The 

estimated ratios with the smallest covariance for each set of 

data are plotted in Fig. 11, to compare with the averaged value 

obtained from all four tests. This plot shows a precise 

uptrend, which coincides with the increase of elasticity of the 

rubber samples. Finally, the relation between the Young’s 

moduli of the rubber samples and sensor measurements 

(capacitance ratio) is plotted on Fig. 12. A curve derived from 

(2) is used to fit the measurements. The estimated parameters 

coincide well with the sensor design.  
 

 
Fig. 12. Curve fitting for Young’s moduli of rubber specimens vs. sensor 
measurements. 

 

V. CONCLUSION 

This paper presented an estimation algorithm to identify 

the capacitance ratio from readouts of a novel tactile sensor 

for elasticity measurement. This estimation algorithm utilizes 

the recursive least-squares method enhanced by an adaptive 

forgetting factor algorithm. By using this algorithm, the true 

value of the capacitance ratio not only can be swiftly tracked, 

but also shows high immunity to measurement noise at the 

steady state. This algorithm has been successfully applied in 

the presented tactile sensor and could also be employed by 

other handheld devices to alleviate the noise caused by hand 

vibration. Finally, the characterization of the tactile sensor 

indicates that the covariance of the estimation can serve as a 

quantitative reference for choosing a reliable measurement 

among a set of tests. 
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