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Abstract— A reduced order Dynamic Programming (DP)
method that efficiently computes the optimal policy and value
function for a class of controlled Markov chains is developed.
We assume that the Markov chains exhibit the property that a
subset of the states have a single (default) control action asso-
ciated with them. Furthermore, we assume that the transition
probabilities between the remaining (decision) states can be
derived from the original Markov chain specification. Under
these assumptions, the suggested reduced order DP method
yields significant savings in computation time and also leads to
faster convergence to the optimal solution. Most importantly,
the reduced order DP has been shown analytically to give the
exact same solution that one would obtain via performing DP
on the original full state space Markov chain. The method is
illustrated via a multi UAV perimeter patrol stochastic optimal
control problem.

I. INTRODUCTION

The Dynamic Programming (DP) [1] approach to solving

infinite horizon Markov decision problems (MDPs) has a

long and illustrious history. However the curse of dimension-

ality has rendered it impossible to use exact DP to obtain op-

timal solutions for large scale problems. This has motivated

the development of several approximate techniques that give

tractable sub-optimal solutions instead [2], [3]. In particular,

for the UAV perimeter patrol problem discussed herein, state

aggregation based techniques have been employed to derive

sub-optimal solutions [4], [5]. When using approximate DP

methods, optimality is compromised for tractability. If the

problem exhibits a certain structure, one can exploit this and

perhaps still obtain optimal solutions in reasonable time. This

paper exploits a feature common to many Markov chains

derived from continuous time models, i.e., a reasonably

large sized subset of the states have only a single (default)

control action associated with them (henceforth called the

non-decision states). If this is the case and if one can readily

obtain the transition probabilities between the remaining

decision states, then the proposed reduced order DP method
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can be used to efficiently compute the optimal value function

and policy.

II. UAV PERIMETER ALERT PATROL

The perimeter patrol problem arose out of the Cooperative

Operations in Urban Terrain (COUNTER) project at the Air

Force Research Laboratory (AFRL) [6]. In this scenario,

there is a closed perimeter which must be monitored by a

team of UAVs (we will consider only 2 here). Along the

perimeter are m Unattended Ground Sensors (UGSs) and

for the sake of simplicity, incursions into the perimeter can

only occur in the vicinity of the UGS. The UGS flags an

alert when there is an incursion. A UAV then investigates the

alert by flying to the alert site, loitering there (we refer to this

time as the dwell time) and taking video of the vicinity of the

site. This video is transmitted to a remotely located operator.

The operator, upon receiving and examining the transmitted

video, will make the call as to whether the alert is a nuisance

or a real threat. For the transmitted video to be relevant, the

UAVs must service an alert within a certain response time. So

it is imperative to develop control policies that minimize the

response time. Previous efforts were focused on computing

optimal policies for a single UAV perimeter patrol problem

[7]. In this paper, we solve a multi-UAV perimeter patrol

problem via the proposed reduced order DP method since

traditional DP methods are rendered intractable.

A. Model Description

The patrolled perimeter is a simple closed curve with

N(≥ m) nodes which are uniformly distributed, of which

m correspond to the UGS/alert stations. At time instant

k, xj(k) is the position of the jth UAV on the perimeter

(xj ∈ {0, . . . , N − 1}), dj(k) is the dwell time (number of

loiters completed if at an alert site). Ai(k) is a binary variable

indicating the status of the alert at the ith station and Ỹi(k)
is another binary, but random variable indicating the arrival

of an alert at the ith station. We assume that the statistics

associated with the random variable Ỹi(k) are known and that

Ỹi, i = 1, . . . , m are independent. We model the arrival of

alerts as follows: Each station has an independent Poisson

arrival stream of alerts at a rate of α alerts per unit time.

Once a station has an alert waiting, no new alerts can

arrive there until the current one is serviced. Hence, there

are 2m possibilities for the configuration of the vector of

alerts y(k) = [Ỹ1(k) · · · Ỹm(k)] ranging from the binary

equivalent of 0 to 2m − 1. The control decision for the jth

UAV is indicated by the binary variable uj . If uj = 0, then

the UAV moves to the next node and if uj = 0, the UAV

2011 American Control Conference
on O'Farrell Street, San Francisco, CA, USA
June 29 - July 01, 2011

978-1-4577-0079-8/11/$26.00 ©2011 AACC 462



dwells at the current alert station. We assume that a UAV

moves by one unit every time step if uj = 0. Also, we

assume that the time to complete one loiter is equal to the

time step. Let the m distinct station locations be indicated by

the node numbers X1, . . . , Xm (where Xi ∈ {0, . . . , N−1}).

One may write the discrete-time state update equations for

the jth UAV as follows:

xj(k + 1) = (xj(k) + 1 − uj(k)) mod N

dj(k + 1) = (dj(k) + 1)uj(k). (1)

The alert status flag at station i, (i = 1, . . . , m) is updated

according to,

Ai(k + 1) =

2
∏

j=1

(1 − δ(xj(k) − Xi)uj(k))

max{Ai(k), Ỹi(k)}, (2)

i.e., any alert at station i is cleared when a UAV decides to

loiter there. In the above equation, δ denotes the Kronecker

delta function. Also we have the constraints,

uj(k) ≤
m

∑

i=1

δ(xj(k) − Xi), j = 1, 2, (3)

i.e., UAVs can only loiter at alert stations and

dj(k) ≤ D,

dj(k) = D ⇒ uj(k) = 0. (4)

This constraint imposes a maximum (to keep the state space

finite) on the number of allowed loiter orbits. If at any time

k, dj(k) = D, then UAV j is forced to leave the station it

is loitering at. Now we (arbitrarily) order the states of the

system and set up a one-to-one correspondence with the set

S = {1, 2, . . . , |S|}. If we denote s ∈ S to denote the sth

state of the system, we may then express the state evolution

equations (1), (2), (3) and (4) compactly as,

s(k + 1) = f(s(k), u(k), y(k)), (5)

where,

u(k) = [u1(k) u2(k)] and (6)

y(k) = [Ỹ1(k) Ỹ2(k) · · · Ỹm(k)].

We denote the 2m possible values (from the m digit binary

representation of 0 to 2m − 1) that y(k) can take by the

row vector ỹj ∈ R
m, j = 1, . . . , 2m. Given that the alert

arrival process is Poisson with parameter α, the probability

that there is no alert in a unit time interval, p = e−α and

hence, the probability that y(k) takes any one of 2m possible

values is given by,

pj := Prob{y(k) = ỹj} = p(m−nj)(1 − p)nj , (7)

for j ∈ {1, . . . , 2m}, where nj =
∑m

i=1 ỹj(i) denotes the

number of stations with alerts for the alert arrival configura-

tion indicated by ỹj . We model the reward (stage cost) Ru(s)
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Fig. 1. Value of Information gained vs Dwell Time

to be a function of the current dwell state d, alert status A

and control action u, i.e.,

Ru(s) =















∑2
j=1 [I(dj + 1) − I(dj)] uj

−β
∑m

i=1 Ai, x1 6= x2,
[

I(dj̄ + 1) − I(dj̄)
]

uj̄ − β
∑m

i=1 Ai,

x1 = x2, j̄ = arg maxj dj ,

(8)

where I is the information gain function (see Fig. 1) based

on an operator error model [7]. The parameter β > 0, is a

constant weighing the incremental information gained upon

loitering once more against the number of stations with active

alerts. Note that if both UAVs were to loiter at the same

location, we only reward the UAV that got there first (i.e.,

the one with maxj dj(k)). This is to prevent multiple UAVs

from servicing the same alert site (based on the notion that

collecting multiple streams of video from the same site is

redundant). With the reward structure defined as above, one

can pose the perimeter alert patrol problem as a Markov

Decision Problem (MDP) with the goal of maximizing the

expected infinite horizon discounted reward at every state.

However, the large number of MDP states,

|S| =

m
∑

i=0

(

m

i

)

(N + (m − i)D)q, (9)

for the q UAV scenario, makes the problem intractable.

Upon inspecting the expression for the number of states

(9), one immediately ponders: is there a way to eliminate

all those states that do not have a decision associated with

them? Clearly this would significantly reduce the size of the

state space thereby reducing the computational burden. From

the problem description (for the 2 UAV scenario), this is

equivalent to eliminating all the states wherein both UAVs

are at nodes/locations that are not alert stations. Even if one

UAV were to be at a station, a decision whether or not it

should loiter or move on has to be made. If this elimination

were possible, then we would end up with only the decision
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states (states where a decision has to be made for at least

one UAV). The number of such decision states,

|D| =

m
∑

i=0

(

m

i

)

{(N + (m − i)D)q − (N − m)q} . (10)

Notice that for q = 2, |D| is linear in N compared to

the original problem size |S|, which is quadratic in N . So,

given the advantage in eliminating the non-decision states,

the next logical question is: how does one solve for the

optimal value function without involving the value function

entries associated with the non-decision states. To answer this

question, we first set up a stochastic optimal control problem

(for a generic MDP) that has a natural partitioning of the

state space into decision and non-decision states and derive

a reduced order DP method for the same. We then illustrate

a particular instance of the reduced order DP method that

solves the perimeter alert patrol optimization problem.

III. DISCRETE TIME MARKOV DECISION PROBLEM

Consider a discrete-time Markov decision process (MDP)

with a finite state space S = {1, 2, . . . , |S|}. At each state

s ∈ S, there is a finite set As of admissible actions. If the

current state is s and an action u is taken, the agent gains

a reward of Ru(s) and the system transitions to a state s̄

with probability Pu(s, s̄) where the vector Ru ∈ R
|S| and

matrix Pu ∈ R
|S|×|S|. A (deterministic) stationary policy is

a mapping π that assigns an action u to each state s. We

are interested in a policy that maximizes the value (or cost-

to-go) function V π ∈ R
|S| i.e., the expected infinite horizon

discounted cost associated with each state s̄ ∈ S,

V π(s̄) = Eπ

{

∞
∑

k=0

λkRπ(s(k))|s(0) = s̄

}

, (11)

where, with some abuse of notation, Rπ(i) = Rπ(i)(i). In the

above equation, k indicates time and the temporal discount

factor λ ∈ (0, 1). To obtain the optimal policy that maximizes

the value function, we use Bellman’s equation [1]: ∀s ∈ S,

solve for the optimal value function V ∗ ∈ R
|S| given by,

V ∗(s) = max
u∈As

{

Ru(s) + λ
∑

s̄∈S

Pu(s, s̄)V ∗(s̄)

}

. (12)

The optimal policy π∗ is given by,

π∗(s) = arg max
u∈As

{

Ru(s) + λ
∑

s̄∈S

Pu(s, s̄)V ∗(s̄)

}

. (13)

A standard DP method for solving (12), value iteration

[8], generates a sequence Vl converging to V ∗ according to

Vl+1 = T (Vl), where T is the DP operator, defined by

(TV )(s) = max
u∈As

{

Ru(s) + λ
∑

s̄∈S

Pu(s, s̄)V (s̄)

}

, (14)

for all s ∈ S. This sequence converges to V ∗ for any

initialization, V0 ∈ R
|S| (for proof see Sec 7.2 of Bertsekas

[9]). However evaluating (14) has complexity O(|S|2) per

step. This makes the problem intractable when the size of

the state space is unmanageably large.

A. State-space Partitioning into Decision and Non-Decision

States

We assume that the state space can be partitioned as

follows: S = {1, 2, . . . , |D|, |D| + 1, . . . , |S|} where D ⊂ S
is the subset of states that have a decision associated with

them. By definition, for all non-decision states, the control

action is fixed i.e.,

As = {φ}, ∀s ∈ {|D| + 1, . . . , |S|}. (15)

In particular, for the perimeter patrol problem, φ would be

the default action: both UAVs move on → uj = 0, ∀j. Now

for any policy π, we have from (11)

V π = Rπ + λP πV, (16)

where again with some abuse of notation, P π(i, j) =
P π(i)(i, j). We partition the vectors and transition probability

matrix above into decision and (intermediate) non-decision

states consistent with the partitioning of the state space:

V π =

[

V π
d

V π
n

]

, Rπ =

[

Rπ
d

Rn

]

, P π =

[

P π
dd P π

dn

Pnd Pnn

]

,

where the subscript d denotes decision states and n denotes

non-decision (intermediate) states. Notice that by definition,

Rn, Pnd and Pnn are independent of control action u, since

the default action φ is always chosen when the system is in

any of the non-decision states. Then we can write,

V π
n = Rn + λ (PndV

π
d + PnnV π

n ) ,

⇒ V π
n = (I − λPnn)

−1
(Rn + λPndV π

d ) ,

V π
d = Rπ

d + λ (P π
ddV

π
d + P π

dnV π
n ) . (17)

Now substituting for V π
n in (17) we get,

V π
d =

(

Rπ
d + λP π

dn (I − λPnn)−1
Rn

)

+ λ
(

P π
dd + λP π

dn (I − λPnn)
−1

Pnd

)

V π
d . (18)

Since λ < 1 and Pnn is a right stochastic matrix (all rows

consist of nonnegative numbers with each row summing to

1), one can write (I − λPnn)
−1

=
∑∞

j=0 λjP j
nn. Also since

the system cannot indefinitely remain in the set of non-

decision states, there exists a K < ∞ such that PK+1
nn is

the zero matrix. Now for a particular decision state s ∈ D,

we can expand the matrices in (18) and write,

V π
d (s) = Rπ

d (s) +

K
∑

j=0

λj+1

|S\D|
∑

i=1

P π
dn(s, i)

|S\D|
∑

l=1

P j
nn(i, l)Rn(l)

+ λ
∑

s̄∈D



P π
dd(s, s̄) +

K
∑

j=0

λj+1

|S\D|
∑

i=1

P π
dn(s, i)

|S\D|
∑

l=1

P j
nn(i, l)Pnd(l, s̄)



V π
d (s̄). (19)
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Now upon selection of action u = π(s), let the next

possible decision state s̄ the system transitions to from s

be Ts,u time steps away. We note that although the system

is stochastic, Ts,u is a deterministic quantity that depends

only on the current state, s and the action taken, u. If the

system transitions immediately to another decision state, then

Ts,u = 1. Else, if the system transitions to a non-decision

state from s upon taking action u, Ts,u ≥ 2. One can rewrite

(19) in compact form as,

V π
d (s) = R̄π(s) + λTs,u

∑

s̄∈D

P̄ π(s, s̄)V π
d (s̄), (20)

where we define the reduced order reward,

R̄u(s) =

{

Ru
d(s), Ts,u = 1,

Ru
d(s) +

∑Ts,u−2
j=0 λj+1

∑|S\D|
i=1 Pu

dn(s, i)
∑|S\D|

l=1 P j
nn(i, l)Rn(l) , Ts,u ≥ 2, (21)

and the reduced order transition probability,

P̄u(s, s̄) =

{

Pu
dd(s, s̄), Ts,u = 1,

∑|S\D|
i=1 Pu

dn(s, i)
(22)

∑|S\D|
l=1 P

Ts,u−2
nn (i, l)Pnd(l, s̄) , Ts,u ≥ 2.

This crucial step can be easily understood via the schematic

Fig. 2. Schematic of State Transition from one Decision State to another

shown in fig. 2 where upon taking action u, the system

transitions from decision state s to decision state t after

Ts,u = 4 steps. In this instance, Pu
dd(s, s̄) = 0, ∀s̄ ∈ D

since the system does not transition immediately to another

decision state from s and also,

|S\D|
∑

i=1

P π
dn(s, i)

|S\D|
∑

l=1

P j
nn(i, l)Pnd(l, s̄) = 0,

for j = 0, . . . ,K; j 6= Ts,u − 2. So the only non-zero entry

is the one corresponding to j = Ts,u − 2 that appears in

(22). It is intuitive to think of R̄(u) as defined in (21) to be

the expected discounted reward gained by traversing through

Ts,u−1 intermediate steps before the system reaches the next

decision state.

Now that we have a reduced order relation for computing

the value function associated with any policy π, one can

immediately write the DP equation for the optimal value

function: solve for all s ∈ D,

V ∗
d (s) = max

u∈As

{

R̄u(s) + λTs,u

∑

s̄∈D

P̄u(s, s̄)V ∗
d (s̄)

}

. (23)

Again, value iteration can be used to generate a sequence Vl

converging to V ∗
d according to Vl+1 = T̄ (Vl), where T̄ is

the DP operator, defined by

(T̄ V )(s) = max
u∈As

{

R̄u(s) + λTs,u

∑

s̄∈D

P̄u(s, s̄)V (s̄)

}

, (24)

for all s ∈ D. This sequence converges to V ∗
d for any

initialization, V0 ∈ R
|D|. Evaluating (24) has complexity

O(|D|2) per step. Notice the differences between the reduced

(23) and the original DP equation (12). First, the size of the

vector one needs to solve for is less i.e., |D| < |S|. Second,

one would expect faster convergence for the values which

correspond to decision states with high Ts,u since λ ∈ (0, 1)
and the value of future states are discounted by λTs,u as

opposed to just λ in the original equation. As expected, when

there are no non-decision states,

D = S ⇒ Ts,u = 1, ∀u ∈ As, ∀s ∈ S

the reduced (23) and the original (12) DP equations are

identical and hence there is no computational savings.

Thus far, we have not restricted ourselves to the perimeter

alert patrol problem. Hence, for any generic MDP with the

stated assumptions, one can use the reduced order DP (23)

to solve for the optimal value function and policy. But this

requires time consuming and probably memory intensive

matrix manipulations involved in constructing R̄u and P̄u

especially when the state space is large. Hence the reduced

order method is beneficial only if there is an efficient way of

computing R̄u and P̄u for different control actions. We shall

now illustrate the reduced order DP method via the patrol

problem since we do have a simple way of computing the

transition probabilities between the decision states therein.

B. Reduced order DP applied to Perimeter Patrol Problem

As established earlier, the original number of states S
(9) and the reduced number of states D (10) for the alert

patrol problem are quadratic and linear resp. in the number

of locations N around the perimeter. Given that the com-

putational complexity per value iteration step is of O(|S|2)
and O(|D|2) resp. for the original and reduced order DP

methods, we achieve significant savings in terms of CPU

time, especially for large N . Before we establish the reduced

order DP method for the perimeter patrol problem, we first

set up some preliminary identities. The transition probability

between different states is given by,

Pu(s, s̄) =

{

0, if s̄ 6= f(s, u, ỹj) for any j,
∑

j∈C pj, where C = {j|s̄ = f(s, u, ỹj)},
(25)

from the system evolution equation (5) and probabilities

(7) established earlier. Hence the DP equation (12) for the
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perimeter patrol problem can be written as: solve for all

s ∈ S,

V ∗(s) = max
u∈As







Ru(s) + λ

2m

∑

j=1

pjV
∗(f(s, u, ỹj))







, (26)

with the reward Ru(s) defined earlier (8). We note that for

the patrol problem, the only stochastic component of the state

is the alert status Ai at each alert station i. Hence the tran-

sition probability between decision states s and s̄ is purely

determined by the alert status component of these states, the

control actions chosen and the time steps that elapsed going

from state s to s̄, Ts,u. Computing Ts,u for the alert patrol

problem is straightforward. For any given state s, we look

at the location component of the state (xj(s); j = 1, 2). For

each UAV j, under control action uj , let the distance to

the closest alert station location be denoted by ζ(xj(s), uj).
Then we have Ts,u = minj ζ(xj(s), uj). Now only when

both UAVs decide to move on (uj = 0; j = 1, 2), the system

transitions to a non-decision state and Ts,u ≥ 2. For all other

control choices u (where at least one UAV decides to loiter),

Ts,u = 1 since the system transitions immediately to another

decision state. Let us define qs =
∑m

i=1 Ai(s) to be the

number of stations with an active alert flag status in state s

and P{r, i|q} to be the probability that exactly i additional

stations are active after r time steps given that q stations

are active at the current time. At the non-decision states, the

reward defined earlier (8), simplifies to

Rn(s) = Rφ(s + |D|) = −βqs+|D|, s ∈ {1, . . . , |S\D|},
(27)

because the UAVs are not allowed to loiter at these states

and hence there is no information gain.

Having set up the preliminaries, we can now derive

compact expressions for the reduced order reward vector

(21) and transition probability matrix (22) as follows: First,

we note that the expected discounted reward obtained for

traversing through Ts,u−1 intermediate (non-decision) stages

is given by,

Ts,u−2
∑

j=0

λj+1

|S\D|
∑

i=1

P
φ
dn(s, i)

|S\D|
∑

l=1

P j
nn(i, l)Rn(l) =

−β

Ts,u−1
∑

j=1

λj

m−qs
∑

z=0

(qs + z)P{j, z|qs}. (28)

This is so because we start with qs active stations and end

up with qs̄ ≥ qs after Ts,u steps. In between, the number

of active stations can either stay the same or go up. It can

never go down in a (intermediate) non-decision state because

a UAV can reset an active alert at a station, thereby reducing

the number of active stations by one, only by loitering there.

But this constitutes a decision state! In conjunction with (27),

we see that the LHS of (28) is the expected (stage-discounted)

reward i.e., the expected number of active stations multiplied

by the weighing factor β.

Second, we have the probability that the system transitions

from decision state s to decision state s̄ in Ts,u ≥ 2 steps

given by,

|S\D|
∑

i=1

P
φ
dn(s, i)

|S\D|
∑

l=1

P Ts,u−2
nn (i, l)Pnd(l, s̄) =

1
(

m−qs

qs̄−qs

)P{Ts,u, qs̄ − qs|qs}. (29)

We interpret the LHS of (29) as the probability of first going

from decision state s to some non-decision state i, followed

by Ts,u − 2 transitions in the set of non-decision states S\D
and finally going from non-decision state l to the decision

state s̄ (see fig. 2 for clarity). This relation can be clarified

via a simple example: in state s, say we have stations 1
and 3 (where the m stations are ordered arbitrarily) currently

active and after Ts,u time steps, station 2 also becomes active.

Now, P{Ts,u, 1|2} denotes the probability that any one of the

remaining m − 2 inactive stations became active after Ts,u

steps. Hence for the particular instance that station 2 becomes

active, we have the probability given by 1

(m−2
1 )

P{Ts,u, 1|2}.

Finally, using (28) and (29), we can write the reduced

order reward vector,

R̄u(s) =

{

Ru(s), Ts,u = 1,

Ru(s) − β
∑Ts,u−1

j=1 λj (30)

∑m−qs

z=0 (qs + z)P{j, z|qs} , Ts,u ≥ 2,

and the reduced order transition probability,

P̄u(s, s̄) =

{

Pu(s, s̄), Ts,u = 1,
1

(m−q(s)
qs̄−qs

)
P{Ts,u, qs̄ − qs|qs}, Ts,u ≥ 2,

(31)

for decision states s and s̄. With the definitions (30) and (31),

we write the reduced order DP equation for the perimeter

patrol problem: solve for all s ∈ D,

V ∗
d (s) = max

u∈A

{

R̄u(s) + λTs,u

∑

s̄∈D

P̄u(s, s̄)V ∗
d (s̄)

}

. (32)

The only missing link is an expression to compute the

probability P{r, i|q} for arbitrary number of stages r, that

appears in both (30) and (31). For this, we first establish

P{1, i|q} and then derive a recursive relationship for higher

number of intermediate stages, r ≥ 2.

C. Transition Probability between Decision States

As defined earlier, P{r, i|q} is the probability that exactly

i additional stations are active after r time steps given that

q stations are active at the current time. Now the probability

that exactly i of the inactive stations flag an alert after one

time step is given by,

P{1, i|q} =

(

m − q

i

)

(1 − p)ipm−q−i. (33)

This follows from the definition of p made earlier (7). So

we have the identity,

m−q
∑

i=0

P{1, i|q} = (1 − p + p)m−q = 1. (34)
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The above relation can be extended to any number of time

steps r ≥ 2. First we note that for q + i stations to flag

an alert after r ≥ 2 steps, i − j stations will have flagged

an alert after r − 1 steps and an additional j stations will

have flagged an alert in the rth time interval. So we have

for r ≥ 2,

P{r, i|q} =

i
∑

j=0

P{1, j|q + i − j}P{r − 1, i − j|q}

=

i
∑

j=0

(

m − q − i + j

j

)

(1 − p)jpm−q−i

P{r − 1, i − j|q} (35)

= pm−q−i

i
∑

j=0

(

m − q − i + j

j

)

(1 − p)j

P{r − 1, i − j|q}, (36)

where we have used (33) to substitute for P{1, j|q + i− j}.

We have the identity (see Appendix I for proof),

m−q
∑

i=0

P{r, i|q} = 1. (37)

So one can use the recursive update equation (36), in

conjunction with (33), to compute the probability P{r, i|q},

for an arbitrary number of stages r. In summary, we have an

efficient DP method for computing the optimal value function

for the perimeter alert patrol optimization problem given by

(32) with the reduced order reward vector and transition

probability matrix computed via relations (30), (31) and (36).

IV. CONCLUSIONS

We have established a reduced order DP method that can

be used to efficiently compute the optimal value function

for a controlled Markov chain under the assumptions that a

reasonably large number of the states are non-decision states

and that the transition probabilities between decision states

be readily computable. The proposed reduced order method

has the potential to yield significant savings in computation

time and also faster convergence to the optimal solution. The

exact amount of savings one gets depends on the size of the

set of non-decision states in the given problem. Since the

reduced order DP was derived analytically from the original

DP equation, it yields the optimal solution. The method has

been illustrated on a multi UAV perimeter patrol optimization

problem.

APPENDIX I

Theorem 1: The transition probabilities satisfy

m−q
∑

i=0

P{r, i|q} = 1. (38)

Proof:

We shall prove the above by induction. First, we notice

that (38) readily holds for r = 1 by (34). Now, assume (38)

holds for some r = r̄ i.e.,

m−q
∑

i=0

P{r̄, i|q} = 1. (39)

Then for r = r̄ + 1 we have,

m−q
∑

i=0

P{r̄ + 1, i|q} =

m−q
∑

i=0

pm−q−i

i
∑

j=0

(

m − q − i + j

j

)

(1 − p)jP{r̄, i − j|q} (40)

=

m−q
∑

l=0

m−q−l
∑

j=0

pm−q−l−j

(

m − q − l

j

)

(1 − p)jP{r̄, l|q} (41)

=

m−q
∑

l=0

P{r̄, l|q}

m−q−l
∑

j=0

(

m − q − l

j

)

pm−q−l−j(1 − p)j (42)

=

m−q
∑

l=0

P{r̄, l|q}(p + 1 − p)m−q−l

=

m−q
∑

l=0

P{r̄, l|q} = 1. (43)

The first step (40) follows from the update equation (36) and

we have done a change of variable, l = i − j and used the

summing property,

m−q
∑

i=0

i
∑

j=0

g(i, j) =

m−q
∑

l=0

m−q−l
∑

j=0

g(j + l, j),

to arrive at (41).

�
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