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Abstract— This paper proposes a parameter identification
methodology based on a discrete-time Least Squares algorithm
and a parametrization obtained using the Operational Calculus.
References [4] and [5] proposed previously this parametrization
and developed an Algebraic Identification Method (AIM) for
parameter estimation of linear systems. The AIM employs the
Operational Calculus to obtain analytical expressions for the
parameter estimates. These expressions have a singularity at t=0
and certain excitation signals may also produce singularities
at other time instants. The proposed approach employs the
same parametrization obtained using the Operational Calculus,
which is linear in the parameters, and employs a standard
on-line discrete-time Least Squares algorithm. In this way,
the proposed approach completely eliminates the problem of
singularities; moreover, it is experimentally shown that the AIM
and the proposed approach have similar performances.
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I. INTRODUCTION

Parameter estimation plays a key role in today servo drives

since the identified model allows tuning a controller applied

to a servomechanism. Moreover, the identification procedure

is applied under open loop or closed-loop conditions. There

exist in the literature several references dealing with pa-

rameter identification techniques [1]. Reference [2] shows

a procedure for identifying a velocity-controlled servomotor

using chaotic excitation signals. The Authors conclude from

experiments in a laboratory prototype that the choice of the

excitation signals has fundamental role in the identification

procedure. Reference [3] presents an output error closed loop

identification method. In this case, the servomechanism and a

two-parameter model are simultaneously controlled through

a Proportional Derivative (PD) controller. The error between

the output of the model and the servomechanism feeds a

gradient algorithm. Subsequently, the parameter estimates

allows computing a Proportional Integral Derivative (PID)

controller using a Linear Quadratic Regulator approach.

On the other hand, references [4] and [5] present a novel

algebraic identification approach based on the Operational

calculus. This approach, which in the sequel will be termed

as the Algebraic Identification Method (AIM), was applied

for the parameter identification of a DC motor [6] and

[7]. This approach has several interesting features. Firstly,

applying the Operational Calculus to the model of a DC

motor allows eliminating constant disturbances and the effect

of the initial conditions; moreover, it also filters-out high

frequency noise an provides parameter estimates in a very

short time period. The approach works with almost all kind

of excitation signals; however, there exists the possibility

of singularities in the solutions of the parameter estimates.

Reference [6] employs the AIM for closed-loop identification

of a DC motor model. The method simultaneously estimates

the servomotor inertia and viscous friction; then, these esti-

mates allow obtaining an estimate of the Coulomb friction.

Reference [7] shows the AIM applied for identifying the

second-order model of a velocity-controlled DC servomotor

under constant loads.

The aim of this work is to present an on-line identification

procedure based on the parametrization obtained using the

Operational Calculus combined with a discrete-time Least

Squares algorithm. This approach, which will be named

Algebraic Recursive Identification Method (ARIM), exploits

the advantages of this parametrization and does not exhibit

the problem of singularities. The paper has the following

structure. Section II presents the servomechanism model.

Section III shows the parametrization obtained using the

Operational Calculus as well as the AIM and the ARIM.

Section IV points up the method employed for validating the

identified model. Section V depicts the experimental results

obtained using both methods. The paper ends with some

concluding remarks.

II. SERVOMECHANISM MODEL

The servomechanism consists of a DC servomotor driving

a brass disk, a power amplifier and a position sensor; Fig. 1

depicts its block diagram.
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Fig. 1. Servomechanism model.
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The amplifier works in current model, i.e. a Proportional

Integral (PI) controller closes a loop around the amplifier

using the armature current Ia. Variable q is the servomotor

position, u is the control voltage, J and B are respectively

the inertia and viscous friction. The inertia J comprises the

motor and the brass disk inertias. Parameter µ defines the

Coulomb friction coefficient and the term Tc corresponds to

constant disturbances or parasitic constant voltages produced

inside the power amplifier.

The following equation describes the servomechanism

model

q̈(t) = −aq̇(t) + bu(t)− csign(q̇(t)) + d (1)

Variables are defined as a = B/J , b = K/J , K =
KEKT

Kc

,

c = µ/J y d = Tc/J . This model assumes a high value of

integral gain KI ; in this way, the servomechanism electric

time constant is much smaller than its mechanical time

constant.

III. IDENTIFICATION ALGORITHMS

Fig. 2 shows how the AIM and the ARIM take the signals

from the servomechanism. A PD controller stabilizes the loop

without knowledge about the servomechanism parameters.
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Fig. 2. Closed loop identification.

A. Algebraic Identification Method

In order to apply the AIM, assume that the motor rotates

only in one direction. This assumption allows writing equa-

tion (1) as follows

q̈(t) = −aq̇(t) + bu(t) + ν (2)

Note that ν = −c + d if sign(q̇(t))=1 and ν = c + d if

sign(q̇(t)) = −1. Applying the Operational Calculus [4] to

this last expression yields the following parametrization [6]

z1(t) = φ11(t)a+ φ12(t)b (3)

Where1

z1(t) = t3q − 9
∫

t2q + 18
∫ (2)

tq − 6
∫ (3)

q

φ11(t) = −
∫

t3q + 6
∫ (2)

t2q − 6
∫ (3)

tq

φ12(t) =
∫ (2)

t3u− 3
∫ (3)

t2u

(4)

1
∫ n

σ(t) represents the iterated integral
∫ t

0

∫ γ1
0

. . .
∫ γ

n−1

0
σ(γn)dγn . . . dγ2dγ1. Moreover,

(

∫

1
σ(t)

)

=
(∫

σ(t)
)

=
(

∫ t

0
σ(γ1)dγ1

)

.

The following expression gives an alternative writing of (4)

ż1 = z1a + t3q
ż1a = z1b − 9t2q
ż1b = z1c + 18tq
ż1c = −6q

(5)

φ̇11 = φ11a φ̇12 = φ12a
φ̇11a = φ11b − t3q φ̇12a = φ12b
φ̇11b = φ11c + 6t2q φ̇12b = φ12c + t3u

φ̇11c = −6tq φ̇12c = −3t2

(6)

On the other hand, integrating both sides of (3) yields

z2(t) = φ21(t)a+ φ22(t)b (7)

With

z2(t) =
∫ t

0
z1(τ)dτ, φ21(t) =

∫ t

0
φ11(τ)dτ,

φ22(t) =
∫ t

0 φ12(τ)dτ

Expressions (3) and (7) form the following set of simultane-

ous equations

[

φ11(t) φ12(t)
φ21(t) φ22(t)

] [

a
b

]

=

[

z1(t)
z2(t)

]

(8)

Solving the above system gives the estimates of a and b, i.e.

â =
nâ(t)

det(φ(t))
=

z1(t)φ22(t)− z2(t)φ12(t)

φ11(t)φ22(t)− φ12(t)φ21(t)

b̂ =
n
b̂
(t)

det(φ(t))
=

z2(t)φ11(t)− z1(t)φ21(t)

φ11(t)φ22(t)− φ12(t)φ21(t)

(9)

Note that det(φ(t)) = φ11(t)φ22(t) − φ12(t)φ21(t) = 0
for t = 0 and the solution has a singularity. Moreover,

according to [4], for t > 0, almost any signals u and q are

persistent, i.e., these signals satisfy a Persistent Condition

if they produce det(φ(t)) 6= 0. Moreover, it is possible to

obtain a unique solution â and b̂ in a finite time interval

[0, ρ], ρ > 0. After this time, the AIM stops functioning. It

is also worth remarking that the signals zi and the regressors

φij , i, j = 1, 2 in (3) and (7) remain bounded for a finite time

interval. The following filtering procedure [5] attenuates the

effects of zero-mean measurement noise.

â =
g ∗ nâ(t)

g ∗ det(φ(t))
b̂ =

g ∗ n
b̂
(t)

g ∗ det(φ(t))
(10)

The term g corresponds to a filter with transfer function

G(s) and ∗ is the convolution operator. This work uses

G(s) = 1/s and then the expressions for the estimates

becomes

â =

∫

nâ(t)
∫

det(φ(t))
b̂ =

∫

n
b̂
(t)

∫

det(φ(t))
(11)
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B. Algebraic Recursive Identification Method

The ARIM uses the parametrization (3) but the integrals

defined in (4) are reset every T seconds; this resetting

prevents these signals from becoming unbounded. Note that

(3) is also valid for t = kh; k = 0, 1, 2, . . ., where h is the

sampling period. The above remark allows writing (3) as

z1(kh) = φ11(kh)a+ φ12(kh)b (12)

Omitting the sampling period h and defining φ(k) =
[φ11(k) φ12(k)]

T and θ = [a b]T finally leads to

z1(k) = φT (k)θ (13)

This parametrization allows using the following standard

Least Squares algorithm [8], [9]:

θ̂(k) =

(

â(k)

b̂(k)

)

= θ̂(k − 1) + L(k)ǫ(k)

L(k) =
P (k − 1)φ(k)

1 + φT (k)P (k − 1)φ(k)

P (k) = P (k − 1)− P (k − 1)φ(k)φT (k)P (k − 1)

1 + φT (k)P (k − 1)φ(k)

ǫ(k) = z(k)− φT (k)θ̂(k − 1)

(14)

Vector θ̂ is an estimate of θ, P (k) is the covariance matrix

inverse and ǫ(k) the estimation error. Compared with the

AIM, it is clear that the ARIM completely eliminates the

singularity problem since it does not stem on the solution (9).

Note that the following Persistence of Excitation condition

[10], [11] replaces the Persistent Condition given in [4].

Definition 1: A vector φ(k) ∈ Rn satisfies a Persistence

of Excitation (PE) condition if for all j there exist some α
such that

α1 ≥
j+α
∑

κ=j

[χTφ(κ)]2 ≥ α2 (15)

For positive constants α1, α2 > 0 and for χ ∈ Rn with

‖χ‖=1.

The estimates θ̂ obtained using the AIM and the ARIM

allow computing estimates ĉ and d̂ of the remaining param-

eters c and d. Assume that after a time t0 the AIM and the

Least Squares algorithm provide estimates â and b̂ and define

the triangle reference qr(t) shown in Fig. 3

qr(t) =















m(t− t0) + qr(t0), if t ∈ [t0, t0 + δ]

−m[t− (t0 + 2δ)] + qr(t0),
if t ∈ [t0 + δ, tf ]

(16)

The terms m and −m correspond to the slopes of qr(t) and

δ =
tf − t0

2
. If the gain of the PD controller stabilizing

the servomechanism is high enough, then q(t) ≈ qr(t).
As a consequence, in the time interval [t0, t0 + δ] the

equalities q̇(t) = m, sign(q̇)=1, and q̈ = 0 hold. Therefore,

the estimated model corresponds to

ĉ− d̂ = −âm+ b̂u(t), t ∈ [t0, t0 + δ] (17)

qr

+ δt t f

(t)

00t

m −m

Fig. 3. Reference signal qr(t).

Equivalently, during the time interval [t0 + δ, tf ] the

inequalities q̇(t) = −m, sign(q̇) = −1, and q̈ = 0 hold.

The corresponding estimated model is

−ĉ− d̂ = âm+ b̂u(t), t ∈ [t0 + δ, tf ] (18)

Equation (17) is equivalent to

ĉ− d̂ = −âm+ b̂u(t− δ), t ∈ [t0 + δ, tf ] (19)

Since the estimates â, b̂, ĉ, and d̂ are constants so do the

control signals u(t) and u(t−δ). Hence, define um = u(t−δ)
and u

−m = u(t), t ∈ [t0 + δ, tf ]. Using this definition and

adding (18) and (19) yields

−2d̂ = b̂[um + u
−m] t ∈ [t0 + δ, tf ] (20)

Therefore, the following expressions give parameter esti-

mates ĉ and d̂

ĉ = −[âm+ b̂um + d̂]

d̂ = − b̂[um + u
−m]

2

(21)

IV. MODEL VALIDATION

In order to validate the identified models using the AIM

and the ARIM, they are employed for computing a model

reference tracking control law (see Fig. 4). The tracking error

e = qm − q is sampled p times and every sampled value ei
is used for computing the mean square error, which is a

measure of the tracking quality

E =

p
∑

i=1

e2i

q
m

qr +

− −
u

+

eController Servomechanism

Reference
model

Fig. 4. Model reference control system.

A. Control law

Assume the following reference model

q̈m(t) = −a1q̇m(t)− a2qm(t) + r(t) (22)
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Parameters a1 and a2 are positive constants and r(t) is

a reference. The next expression defines the control law

applied to the servomechanism

u(t) =
1

b̂
[λ1ė(t)+λ2e(t)+ q̈m(t)+ âq̇(t)+ ĉsign(q̇(t))− d̂]

(23)

The term q̈m(t) is given by (22) and λ1, λ2 are positive

constants. Adding and subtracting b̂u to ë(t) = q̈m(t)− q̈(t)
and using (1) leads to

ë(t) = q̈m(t)− q̈(t) + b̂u(t)− b̂u(t)

= q̈m(t) + aq̇(t)− bu(t) + csign(q̇(t))− d+ b̂u(t)− b̂u(t)
(24)

Substituting the control law (23) in this last equation

produces the error dynamics

ë(t) + λ1ė(t) + λ2e(t) = θ̃Tψ(t) (25)

with

θ̃ =









ã

b̃
c̃

d̃









=









â− a

b̂− b
ĉ− c

d̂− d









ψ(t) =









−q̇(t)
u(t)

−sign(q̇(t))
1









(26)

V. EXPERIMENTAL RESULTS

The laboratory prototype consists in a servomotor from

Moog, model C34-L80-W40 (Fig. 5 (a)) driven by a Copley

Controls power amplifier, model 423, configured in current

mode. A BEI optical encoder, model L15 with 2500 pulses

per revolution, allows measuring the servomotor position.

The algorithms are coded using the MatLab/Simulink soft-

ware platform under the program Wincon from Quanser

Consulting, and a Q8 board also from Quanser Consulting

performs data acquisition. The software runs on a Personal

Computer using an Intel Core 2 quad processor, and the Q8

board is allocated in a PCI slot inside this computer. The

PD controller gains are set to kp = 10 and kd =0.34. The

following linear band-pass filter

G(s) =

(

220s

s+ 220

)(

500

s+ 500

)

estimates the servomotor velocity from position measure-

ments. The sampling period is 50 µs and the ODE5 method

allows evaluating the integrals appearing in the signals zi
and the regressors φij , i, j = 1, 2 of (3) and (7). The

sampling period for the Least Squares algorithm is fixed to

h =0.5ms and the time used for resetting the integrals used

in the proposed method is set to T = 2.5s. The initial value

for the covariance matrix in the Least Squares algorithm is

P (0) = diag(10,000, 10,000).

Fig. 5 (b) shows the excitation signal qr(t) employed

during the experiments. The excitation signal for the time

interval [0, 5] is qr = 11t + 4sin(0.8πt) and corresponds

to the identification of parameters a and b. Equation (16)

defines the excitation signal for the time interval [5, 15].

Fig. 5 (c) and 5 (d) depict respectively the servomotor speed

and the control signal obtained by applying the excitation

signal qr(t).
Fig. 6 shows the time evolution of the parameter estimates

produced by the AIM. Estimates â and b̂ were set to 1

in the time interval [0, 0.5] due to the singularity problem

exhibited by this method. Fig. 7 portraits the time evolution

of the parameter estimates obtained using the ARIM. It is

worth noting that the estimates â and b̂ obtained using the

AIM converge faster than the ones obtained using the ARIM

to 0.15 and 137 respectively . However, in both cases the

estimates converges to constant values after 2s. The behavior

of the estimates ĉ and d̂ for the two methods is the same.

Fig. 8 (a) shows the time evolution of
∑

[χTφ]2 with χ =
[1/

√
2 1/

√
2]T . Therefore, the excitation signal employed

for identifying â and b̂ is fulfills a PE condition. The

models identified using the AIM and the ARIM are used

for computing control law (23) with a1 =0.3, a2 = 10,

λ1 = 10 and λ2 = 10. Fig. 8 (b) depicts the output qm(t)
of the reference model, and Fig. 8 (c) and 8 (d) show the

tracking error when the control law is computed using the

parameter estimates obtained though the AIM and the ARIM

respectively.

Table I shows the parameter estimates and the mean

square error E, which is computed for p=300,000. This table

also shows the nominal parameters of the servomechanism

obtained using the servomotor and power amplifier technical

data. The experimental results indicates a good agreement

between the estimated parameters produced by the two

methods and the nominal parameters â and b̂. The parameters

associated to the Coulomb friction and the constant distur-

bance are not available from the technical data. Moreover,

the mean square error E is similar for the two identification

methods.

VI. CONCLUSIONS

The Algebraic Identification Method (AIM) and the pro-

posed approach (ARIM) successfully identified a four-

parameter DC servomotor model. The former provides pa-

rameter estimates in a slightly shorter time period than the

proposed approach; however, the later is completely free of

singularities.

Table I

PARAMETER ESTIMATES.

â b̂ ĉ d̂ Mean square error E

Nominal
parameters 0.193 137.78 — —

AIM 0.149 137.5 4.5 1.05 28.7375

ARIM 0.155 137.3 4.4 0.97 28.8329
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(a) Servomotor.
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Fig. 5. Servomotor used in the laboratory test and signals q(t), q̇(t) and
u(t).
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Fig. 6. Parameter estimates produced by the AIM.
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