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Abstract— Software can contain faults that remain unde-
tected prior to its release. It is then important to determine
the plausible root-cause of fault, namely, the faulty lines of
code, or indicators for any missing lines of code. To localize a
software fault to its “root-cause”, we introduce the notion of
a fault-seed, a fragment of a faulty-run, and propose a model-
based automated approach that analyzes the observed faulty-
run of the software, recorded during its runtime operation,
to determine the fault-seed. Owing to resource constraints in
certain system such as embedded system, the run-time data-
logging can be incomplete, resulting in partial observation of
software runs. A feature of our analysis is to localize the possible
root cause in presence of such partial observability of data
variables.

I. INTRODUCTION

In spite of the tremendous progress made in software
testing and verification, a software can contain faults. One
approach to detect unpredicted exceptions/faults is to instru-
ment the code by inserting assertions, which if violated,
indicate the presence of a software fault [10]. In [15], we
proposed a two-tiered hierarchical approach for detecting
faults in embedded control software during their runtime
operation: Monitoring at the control software level as well
as at the controlled-system level. When a software fault is
detected, there remains the difficult task of localizing it. Fault
localization is the process of guiding and narrowing the
search for identifying the faulty lines of code, or indicators
for missing lines of code.

The approaches proposed in prior works such as [11],
[9], [2], [13], [6], [4], [5] have the limitation that they re-
quire having nonfaulty-runs for comparing with the available
faulty-run. Also such comparisons do not necessarily yield
the root cause. Slicing based approaches are investigated in
[1], [14], [3], [7], [12] that slice-out non relevant portions
(such as those lacking variable dependencies).

One of our main contributions is to formalize the concept
of a root-cause by introducing the notion of a fault-seed,
a fragment of a faulty-run, which can be algorithmically
computed: A subset of statements included in a faulty-run
is called a fault-seed if their influencive execution in any
run of the software causes a failure (a certain specification
violation) to occur. The approach is helpful in localizing
faulty lines of code or an indicator for missing lines of
code (as the case may be). Since it is expensive to record
the variable values after each statement execution, another
contribution of our approach is that it works with a partial
data-log of a run.

Consider for example a simple program for computing
minimum (in form of output y1) and maximum (in form of

This work was supported in part by the National Science Founda-
tion under the grants NSF-ECS-0424048, NSF-ECS-0601570, NSF-ECCS-
0801763, NSF-CCF-0811541, and NSF-ECCS-0926029.

C. Zhou is with Magnatech LLC, East Granby, CT.
changyan.zhou@gmail.com; R. Kumar is with the
Department of Elec. & Comp. Eng., Iowa State Univ., Ames, IA.
rkumar@iastate.edu; S. Jiang is with General Motors R&D,
Warren, MI. shengbing.jiang@gm.com

output y2) for three inputs {u1, u2, u3}:
1 min=u1; max=u1; y1=y2=0;
2 if (max < u2) max = u2;
3 if (max < u3) max= u3;
4 if (min > u2) max= u2;
5 if (min > u3) min= u3;
6 y1= min; y2= max;

Initially, y1 = y2 = 0, and it is desired that as the program
evolves, the following property must be maintained: y1 ≤ y2.
For the input u1 = 5, u2 = 1, u3 = 6, the following sequence
of (y1, y2) values is computed as the program evolves:
(0, 0) → (0, 0) → (0, 0) → (0, 0) → (0, 0) → (5, 1). Clearly
the property y1 ≤ y2 is violated in the last step. The fault
lies in the 4th statement, where instead of “max” it should
have been “min”. As is illustrated later in the paper, our
approach (that analyzes the program, its specification, and
the above faulty-run) identifies the exact faulty statement as
a fault-fragment. Note that a path-slicing based approach
will present the entire faulty-run as a fault-fragment since the
sequence of statements executed in the above faulty-run form
a chain of causally-dependent statements. On the other hand,
the approaches based on comparing a faulty-run versus a
nonfaulty-run are not applicable here since a nonfaulty-run
is not even available.

II. SOFTWARE MODEL

We use input-output extended finite automata (I/O- EFA)
for modeling software. An I/O-EFA consists of locations (L),
data (D), continuous (numeric) inputs (U ), continuous (nu-
meric) outputs (Y ), discrete (symbolic) inputs (Σ), discrete
(symbolic) outputs (∆), transitions (E), initial locations (L0),
and initial data values (D0). The locations together with the
data form the state-space of an I/O-EFA. The locations are
finite and form the vertices of the automaton graph. (For a
software model, locations correspond to the values of the pro-
gram counter.) The edges of the graph represent transitions
between the locations and are guarded by constraints over the
data and the inputs. (For a software model, the statements are
captured as edges.) The occurrence of a transition triggers
a data update and an output assignment. An I/O-EFA is
formally defined as follows.

Definition 1: An input/output extended finite automaton
(I/O-EFA) is a nine-tuple P = (L, D, U, Y,Σ, ∆, E, L0, D0),
where

• L is the set of locations,
• D = D1 × . . . × Dp is the set of p-dimensional data,
• U = U1 × . . . × Uq is the set of q-dimensional input,
• Y = Y1 × . . . × Yr is the set of r-dimensional output,
• Σ is the set of discrete (symbolic) inputs,
• ∆ is the set of discrete (symbolic) outputs,
• E is the set of edges, and each e ∈ E is a 7-tuple,

e = (oe, te, σe, δe, Ge, fe, he), where

– oe ∈ L is the origin location,
– te ∈ L is the terminal location,
– σe ∈ Σ ∪ {ǫ} is the discrete input,
– δe ∈ ∆ ∪ {ǫ} is the discrete output,
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– Ge ⊆ D × U is the enabling guard (a predicate),
– fe : D × U → D is the data update function,
– he : D×U → Y is the output assignment function,

• L0 ⊆ L is the set of initial locations, and
• D0 = D10 × . . . × Dp0 ⊆ D is the set of initial data

values.

For the min/max computation program introduced earlier,
the I/O-EFA models P of the program and R of the spec-
ification monitor are shown in Figure 1. Each location and
each edge has been given a name, which will be used later
when discussing fault localization.

The specification monitor R captures all runs that satisfy
the desired invariant property, y1 ≤ y2, written in temporal
logic as G[y1 ≤ y2] (i.e, for all paths, always y1 ≤ y2).
Reaching the FAULT location in R implies the violation of
the specification.
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Fig. 1. I/O-EFA model P of min/max program (top) and specification
monitor R (bottom)

III. FAULT-SEED AND FAULT-FRAGMENT

A fault-seed is used to characterize a plausible root-
cause of a specification violation, namely, either faulty or
missing code. A fault-seed is an ordered set of statements
(i.e., an ordered set of edges of I/O-EFA model) such that
any sequence of statements of the software, containing the
fault-seed in an influencive manner, can eventually perform
a violating computation through the additional execution
of the statements. (Note since the fault may not manifest
immediately after the execution of a fault-seed, extensions
are considered). We start by defining a step, which is simply
a single state transition.

Definition 2: A step of an I/O-EFA P is given by,

(l, �d)
�u/�y;σ/δ
−−−−→ (l′, �d′), where l, l′ ∈ L, �d, �d′ ∈ D,�u ∈ U, �y ∈

Y , and exists e = (oe, te, σe, δe, Ge, fe, he) ∈ E such that

[oe = l, te = l′, σe = σ, δe = δ] ∧

Ge(�d, �u) ∧ [fe(�d, �u) = �d′] ∧ [he(�d, �u) = �y].

Using the notion of a step, we can define the notion of
run, which is simply a sequence of steps starting from an
initial state.

Definition 3: A run r of an I/O-EFA P is a finite sequence
of steps starting from an initial state:

r := (l0, �d0)
�u0/�y0;σ0/δ0

−−−−→ . . .
�un/�yn; σn/δn

−−−−→ (ln+1, �dn+1),

where l0 ∈ L0, �d0 ∈ D0 and for j ∈ {0, . . . , n},

(lj , �dj)
�uj/�yj;σj/δj

−−−−→ (lj+1, �dj+1) is a step.
Definition 4: For a run r, we say a path πr = e0 · · · en

(a sequence of edges of P ) is associated with the run r if

∀0 ≤ i ≤ n : [oei
= li, tei

= li+1, σei
= σi, δei

= δi] ∧

Gei
(�di, �ui) ∧ [�di+1 = fei

(�di, �ui)] ∧ [�yi = hei
(�di, �ui)].

Dually, we say that a run r is associated with a path π of
P if πr = π. We say a sequence of edges πf = ei0 · · · eim

is a fragment of πr if 0 ≤ i0 ≤ · · · ≤ im ≤ n.
Edges in a path can influence one another. For a fragment

to serve as a plausible root-cause of a specification violation
along a path, none of the intermediate edges of the path
should influence the edges of the fragment.

Definition 5: Given a path π = e0 . . . en, we say that an
edge ei influences another edge ej (i, j ∈ [0, n]), denoted
ei � ej , if j > i and the output of ej (as determined by Gej

,
fej

, hej
, or δej

) depends on the output of ei (as determined
via Gei

, fei
, hei

, or δei
).

A fragment πf = ei0 . . . eim
of a path πr = e0 . . . en is

said to be a influencive-fragment if for all k ∈ [i0, im] −
{i0, . . . , im}, there does not exist l ∈ {i0, . . . , im} such that
ek � el.

Example 1: Consider the min/max computation program
with inputs chosen as: (u1, u2, u3) = (5, 1, 6). Then the run
is given by:

r = (l0 = 1, min = −, max = −)
(5,1,6)/(0,0)
−−−−→

(2, 5, 5)
(5,1,6)/(0,0)
−−−−→ (3, 5, 5)

(5,1,6)/(0,0)
−−−−→

(4, 5, 6)
(5,1,6)/(0,0)

−−−−→ (5, 5, 1)
(5,1,6)/(0,0)

−−−−→

(6, 5, 1)
(5,1,6)/(5,1)
−−−−→ (7, 5, 1).

Its associated path is πr = e1e22e31e41e51e6, whereas πf =
e22e41 is a fragment of πr that can also be seen to be an
influencive-fragment since it computes, the value of max,
independently of the statements e1 or e31 or e32 preceding
it.

A run r is said to be a faulty-run of a certain specification
if r violates that specification. A path is said to be a faulty-
path if it is associated with a faulty-run. A fragment of a
faulty-path can be a fault-seed:

Definition 6: A fragment πf of a faulty-path πr associated
with a faulty-run r is said to be a fault-seed if (i) exists a
run possessing πf as an influencive-fragment, and (ii) for any
path π, with πf as an influencive-fragment, all subsequent
paths eventually have an associated faulty-run.

Note a fault must eventually manifest along each subse-
quent path for some run in order for πf to be regarded as a
fault-seed.

As we will see below, checking whether a selected frag-
ment is a fault-seed can be formulated as a model-checking
problem for the software model P refined with respect to
the specification model R. The refinement is obtained via
synchronous composition of two I/O-EFAs defined as fol-
lows. For notational convenience, let �v denote the variables
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(�d, �d′, �u, �y, σ, δ) ∈ D×D×U ×Y × (Σ∪{ǫ})× (∆∪{ǫ}),
and define

prede(�v) ≡ prede(�d, �d′, �u, �y, σ, δ)

:= Ge(�d, �u) ∧ [�d′ = fe(�d, �u)] ∧

[�y = he(�d, �u)] ∧ [σ = σe] ∧ [δ = δe].

The above predicate captures the guard-condition, the data-
update function, the output-assignment function and the
symbolic inputs and outputs of an edge e ∈ E as a single
predicate. Then each edge e of an I/O-EFA can be succinctly
represented as a tuple e = (oe, te, prede).

Definition 7: The synchronous composition of Pi =
(Li, Di, Ui, Yi, Σi, ∆i, Ei, L0i, D0i), i = 1, 2 is given by,
P1‖P2 := (L1×L2, D1×D2, U1×U2, Y1×Y2, Σ1×Σ2, ∆1×
∆2, E, L01 ×L02, D01 ×D02), where each edge e ∈ E is a
tuple e = (oe, te, prede) such that the following holds:

∃ei = (oei
, tei

, predei
) ∈ Ei(i = 1, 2) :

oe = (oe1
, oe2

), te = (te1
, te2

),
prede(�v) = prede1

(�v1) ∧ prede2
(�v2) ∧ [v1 = v2].

According to the above definition, two edges of P1 and P2

synchronize if and only if both are enabled and agree on the
values of all the variables.

IV. FAULT LOCALIZATION

There exists trade-off between on-line resources required
for data-logging versus the off-line computation required for
fault localization. As a general guideline, one should record
sufficient data to ensure a faulty-run is not masked as a non-
faulty one.

For illustration, consider the min/max program extended
to include certain data-logging commands.
1 min=u1; max=u1; y1=y2=0;
2 if (max < u2) max = u2;

else record(δ1;y1,y2);
3 if (max < u3) max= u3;
4 if (min > u2) {

max= u2; record(δ2;y1,y2);
}

5 if (min > u3) min= u3;
6 y1= min; y2= max;

In the above example, the variables y1 and y2 are recorded,
along with the labels δ1 and δ2 as identifiers: The labels are
unique to statements, and so can be used to identify the
edges. For example δ1 and δ2 correspond to execution of
edges e22 and e41 respectively.

It is evident that data-logging introduces a partial observa-
tion of variables, and further the partial observation is edge-
dependent (since recordings at each edge may be different).
We use edge-dependent observation functions {Me | e ∈
E} to capture the partial observability introduced by a
certain data-logging scheme. We use M to denote the above
collection of observation functions. For a run

r = (l0, �d0)
�u0/�y0;σ0/δ0

−−−−→ . . .
�un/�yn; σn/δn

−−−−→ (ln+1, �dn+1),

let πr = e0 · · · en be the path associated with r. Then the
run r is recorded as:

M(r) = Me0
(e0; d0; �u0/�y0; σ0/δ0)

. . . Men
(en; dn; �un/�yn; σn/δn).

The partial observation due to data-logging introduces an
indistinguishability among the runs: Two runs r1 and r2

are indistinguishable if their recorded values are the same:
M(r1) = M(r2). The set of all runs indistinguishable from
a run r are given by, M−1M(r) := {r′ | M(r′) = M(r)}.
Thus when a software executes a faulty-run r (that violates
a certain specification), set of all r-indistinguishable runs in
M−1M(r) must be examined to identify a fault-seed. To
obtain the set of r-indistinguishable runs in M−1M(r), all
one needs is first build a I/O-EFA model for r (which is
simply a chain of edges representing the run) and next “M-
synchronize” the model with P .

Definition 8: The M-synchronous composition of Pi =
(Li, Di, Ui, Yi, Σi, ∆i, Ei, L0i, D0i), i = 1, 2 is given by,
P1‖MP2 := (L1 × L2, D1 × D2, U1 × U2, Y1 × Y2, Σ1 ×
Σ2, ∆1 ×∆2, E, L01 ×L02, D01 ×D02), where each e ∈ E
is a tuple e = (oe, te, prede) such that either of the following
three cases hold:

• ∃ei = (oei
, tei

, predei
) ∈ Ei(i = 1, 2) :

oe = (oe1
, oe2

), te = (te1
, te2

),
prede(�v) = prede1

(�v1) ∧ prede2
(�v2) ∧ [Me1

(v1) =
Me2

(v2) �= ǫ];
• ∃oe2

∈ L2, e1 = (oe1
, te1

, prede1
) ∈ E1 :

oe = (oe1
, oe2

), te = (te1
, oe2

),
prede(�v) = prede1

(�v1) ∧ [Me1
(v1) = ǫ];

• ∃oe1
∈ L1, e2 = (oe2

, te2
, prede2

) ∈ E2 :
oe = (oe1

, oe2
), te = (oe1

, te2
),

prede(�v) = prede2
(�v2) ∧ [Me2

(v2) = ǫ].
According to the definition, two edges of P1 and P2 syn-
chronize if and only if both are enabled and agree on the
observed values of all the variables. An edge of P1 (resp. of
P2) is executed asynchronously without the participation of
P2 (resp., P1) if the edge is enabled in P1 (resp., P2) and
all the variables of P1 (resp., P2) are not observed (so the
observed value equals ǫ).

Next we describe a model-based approach for fault local-
ization as an instance of a model-checking problem.

Algorithm 1: Given a software modeled as P , its specifi-
cation modeled as R, a faulty-run r (recorded as M(r)), our
algorithm for identifying a fault-seed is given as follows.

1) Compute r-indistinguishable paths: Identify the set
of all paths Πr in P associated with r-indistinguishable

runs: Πr := {π | ∃ faulty r′ ∈ M−1M(r) s.t. πr′

=
π}. Let P r denote an I/O-EFA model of r, then Πr is
simply the set of paths in (P‖R)‖MP r that reach a
location (−,FAULT,−). Since there are no unbounded
sequence of unobserved steps possible, Πr is finite.
Example 2: To illustrate our fault localization ap-
proach outlined above, we revisit the Example 1. As
discussed in the introduction, the specification G[y1 ≤
y2] is violated for this input (u1, u2, u3) = (5, 1, 6),
and the faulty-run is also mentioned in the introduction
and formalized in Example 1.
For the data-logging mentioned above that records the
variables y1 and y2 following the execution of the
edges e22 (recorded as δ1 label) and e41 (recorded as
δ2 label), the following faulty-run is recorded: M(r) =
(δ1; y1 = 0; y2 = 0)(δ2; y1 = 0; y2 = 0).
The set of all faulty-paths Πr associated with the r-
indistinguishable runs are given by:

Πr = {e1e22(e31 + e32)e41(e51 + e52)e6}

= {e1e22e31e41e51e6, e1e22e31e41e52e6,
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e1e22e32e41e51e6, e1e22e32e41e52e6}.

2) Initialize length for fragments to be checked: Set a
count value m = 1, and for all paths in Πr, obtain the
set of all fragments of length m, denoted Πr,m.

3) Check non-emptiness of set of fragments of a chosen
length: Proceed to next step if Πr,m is nonempty, else
set m := m + 1 and if m exceeds the length of the
faulty-run, then stop, else obtain Πr,m and repeat step
3.

4) Augment P with a counter to track length of
fragment-prefix executed so far: Pick a length-m
fragment πf ∈ Πr,m, and augment P with a counter of
maximum count value m to keep track of the length of
the fragment-prefix executed, in an influencive manner,
so far: Whenever a next edge taken of P is also a next
edge of the fragment, the counter is incremented by
one, and otherwise, the counter is either unchanged
(if the next edge taken of P does not influence the
fragment) or reset (if the next edge taken influences
the fragment).
The counter-augmented P is denoted P f and is defined
as: P f = (L × {0, · · · , m}, D, U, Y , Σ, ∆, Ef , L0 ×
{0}, D0), where ∀e ∈ E, ∀k ∈ {0, . . . , m}:

((oe, k), (te, k + 1), σe, δe, Ge, fe, he) ∈ Ef

if [e = eik
] ∧ [k < m],

((oe, k), (te, k), σe, δe, Ge, fe, he) ∈ Ef

if [e �= eik
∧ ∀l ∈ [k, m] : e �� eil

] ∨ [k = m],
((oe, k), (te, 0), σe, δe, Ge, fe, he) ∈ Ef

if [e �= eik
∧ ∃l ∈ [k, m] : e � eil

] ∧ [k < m].

Example 3: For m = 1, suppose we select the
fragment πf = e41 ∈ Πr,1 of the path πr =
e1e22e31e41e51e6 ∈ Πr. The I/O-EFA models for πf

and P f are as shown in Figure 2.
5) Refine counter-augment P wrt specification R, i.e.,

compute P f‖R.

Example 4: The synchronous composition P f‖R is as
shown in Figure 3.

6) Propositionally-label P f‖R and model-check πf for
fault-seed: Label a location in P f‖R by an atomic
proposition m, if the counter reads m (this is a
location of the type (−, m,−) in P f‖R); and by an
atomic proposition f , if the monitor is in the FAULT
location (this is a location of the type (−,−,FAULT)
in P f‖R). Use model-checking to verify the following
CTL formula:

P f‖R |= [EFm ∧ AG(m ⇒ AFf)].

In other words, “Exists a run that fully executes the
fragment πf (as captured by EFm)” and “For all runs
always if πf is a fragment, then for all subsequent
runs eventually fault occurs (as captured by AG(m ⇒
AFf))”. (πf is a fault-seed if and only if the answer
to the model-checking problem is affirmative.) Stop if
the answer is yes, else remove πf from Πr,m and go
back to step 3.
Example 5: It is immediate to verify that

P f‖R |= [EF1 ∧ AG(1 ⇒ AFf)]

holds, concluding that πf is a fault-seed. Since e41,
the 4th statement of the min/max program, is itself
faulty where “max” has been replaced with “min”,
our localization approach has been able to identify the
exact faulty statement.

The following theorem follows from the definition of fault-
seed and the above algorithm.

Theorem 1: Consider a software model P , a specification
R, a faulty-run r, and an observation function M (as induced
by data-logging). A fragment πf of a path in Πr (the set of
all paths associated with the r-indistinguishable runs) is a
fault-seed if and only if

P f‖R |= [EFm ∧ AG(m ⇒ AFf)].
Remark 1: Note the verification of the CTL formula is

polynomial in the size of the model P f ||R as well as the
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Fig. 4. P (left) and R (right)

length of the CTL formal (namely, the number of operators
in the formula). Since the above CTL formula is short in
length, the complexity is mainly determined by the size of
the model. Further a root-cause is typically limited to a few
lines of code, and so in practical setting it is expected that
only small length fragments need to be examined to identify
a fault-seed. Also note that those portions of the fragment
that do not affect the variables present in the specification
being violated, can be pruned out to reduce the search
space. Further if a comparative study between faulty versus
non-faulty runs is available, then the fragments unique to
faulty-runs (that aren’t present in the non-faulty runs) can
be treated as the candidates for the fault-seeds, and our
model-checking approach can be utilized to confirm whether
the chosen candidates are indeed the fault-seeds. Thus our
approach can be utilized in conjunction with the path-slicing
or comparative approaches to achieve finer resolution in
fault-identification.

V. ILLUSTRATIVE EXAMPLE

Consider an embedded software that allows users to
monitor whether the temperature of a device exceeds its
critical value. A user can enable and disable the monitoring
process by pressing a key on a keyboard. It is desired that if
the monitoring is enabled, then if the temperature is higher
(lower) than a critical value ThC (a critical value minus
a hysteretic value Hys), the alarm is On (Off); and if the
monitoring is disabled, then the alarm is Off. A temperature
sensor is connected to the analog channel ‘Channel’ of
an embedded controller and its value is read by the function
analogIn. The function Kelvin converts the reading
into the scale of Kelvin. An alarm is connected to the pin
Bit of the port Port of the embedded controller and set
On/Off by the function BitWrPort. The key pressing is

detected by the function kbhit. If key “1” (“2”) is pressed,
then the monitoring is enabled (or disabled). The functions
analogIn,BitWrPort,Kelvin,kbhit are provided
within a software-library and we assume those are correct.
A variable SensorArmed is used so that the alarm is set
On for only once when the temperature is above ThC. The
function Record is included for data-logging purpose.
1 brdInit(); key = ‘0’;

EnableC = False; SensorArmed = True;
BitWrPort(Port,Bit,0);// AlarmStatus = Off;

2 while (1) {
if (kbhit()) { key = getchar();
Record(δ1,key); }

3 if (key == ‘1’ ‖ key == ‘2’) {
4 if (key == ‘1’) EnableC = True;
5 if (key == ‘2’) EnableC = False;
6 rawTemp = analogIn (Channel);

Tc = Kelvin(rawTemp) − 273.15;
7 if (Tc ≥ ThC) {
8 if (EnableC && SensorArmed) {

BitWrPort(Port,Bit,1);// AlarmStatus =
On;

SensorArmed = False;
Record(δ2);}

}
else Record(δ3);

9 if (Tc < ThC-Hys) {
BitWrPort(Port,Bit,0); // AlarmStatus =

Off;
SensorArmed = True;
Record(δ4);

}
}

}
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Assume the line of code, “SensorArmed = True;”,
written in bold, is missing. For simplicity, we replace
the code BitWrPort(Port,Bit,1) (resp., BitWrPort(Port,Bit,0))
by AlarmStatus = On (resp., AlarmStatus = Off), and let
the specification be G[(key = ‘1’ ∧ Tc ≥ ThC) ⇒
X≤2(AlarmStatus = On)], which states that, “whenever
monitor is enabled (key=‘1’) and temperature is above
threshold, in next two steps alarm should be set On”. The
I/O-EFA models of the program and its specification monitor
are shown in Figure 4.

When key ‘1’ is pressed, a violation scenario of the
specification is shown in Figure 5, where the violation occurs
at the sample time t(4). Owing to the missing line of code,
the alarm is Off when Tc>ThC at t(4).

t(4)
t(k)

Tc

ThC

ThC−Hys

t(1) t(2) t(3)

Fig. 5. A violation scenario of R

The following faulty-run is recorded:
M(r) = (δ1; key = ‘1′)(δ3)(δ4)(δ2)(δ3)(δ4), where the
labels δ1, δ2, δ3, δ4 correspond to the execution of edges
e21, e81, e72, e91 respectively.

One of the faulty-paths associated with the runs in
M−1M(r) is given by:

π = e1e21e31e41e52e6e72e91e22e31e41e52e6e71e81

e92e22e31e41e52e6e72e91e22e31e41e52e6e71e82

e92e22 ∈ Πr.

Consider m = 2 and select the fragment πf = e41e81 ∈
Πr,2 of path πr. A portion of the synchronous composition
P f‖R is shown in Figure 6. It can be verified that

P f‖R |= [EF2 ∧ AG(2 ⇒ AFf)]

holds, concluding that πf is a fault-seed. An examination of
the lines of code corresponding to πf indicates no fault. This
implies πf is an indicator for certain missing lines of code.

VI. CONCLUSION

We proposed an approach for localizing a fault detected
during the runtime operation of software (refer to our prior
work on fault detection [15]). We presented a model-based
approach for fault localization that is based on the notion
of a fault-seed, generalizing the approach proposed in [8].
The complexity of checking whether a candidate fragment
is a fault-seed is polynomial in the size of the software
and the specification. Also since in practice a root-cause
is confined to a few lines of code, only a small number
of fragments, not exceeding in length of a root-cause, are
checked for candidacy to a fault-seed. Our approach can be
used to complement and supplement the existing approaches
(path-slicing or comparison of faulty versus non-faulty runs)
to achieve a finer resolution in fault-localization. Also the
proposed approach is helpful in localizing faulty lines of

e22 /\ E41
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e91 /\ E22 e91 /\ E22

e81 /\ E22 e91 /\ E31

e92 /\ E31

e81 /\ E21 e92 /\ E33 e91 /\ E33

911

e71 /\ E11 e91 /\ E32e92 /\ E32 e22 /\ E42
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Fig. 6. A portion of P f‖R

code or an indicator for missing lines of code (as the case
may be), and works with partial observations of a run.
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